Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Trypanosomal immune evasion, chronicity and transmission: an elegant balancing act

Key Points

  • African trypanosomes generate chronic infections, extending over months or years, in mammalian hosts.

  • The infection profile of trypanosomes is influenced by their rate of immune evasion by antigenic variation. A further contributor to the infection profile is the rate of differentiation from proliferative slender forms to non-proliferative transmission stages called stumpy forms.

  • Recent mathematical models have demonstrated the importance of stumpy formation for infection chronicity and, together with cytological analyses, have provided a description of the temporal order of events that generate stumpy forms.

  • We propose that the interplay between antigenic variation and parasite development optimizes the ability to establish and be sustained in mammalian hosts in the field.

  • In the tsetse fly vector, trypanosomal commitment to onward differentiation and establishment is governed by a phosphatase signalling cascade that forms a novel bistable switch.

  • We propose that density-sensing mechanisms in the mammalian host are sustained by an evolutionary selection for transmission competence.

Abstract

During their life cycle, trypanosomes must overcome conflicting demands to ensure their survival and transmission. First, they must evade immunity without overwhelming the host. Second, they must generate and maintain transmission stages at sufficient levels to allow passage into their tsetse vector. Finally, they must rapidly commit to onward development when they enter the tsetse fly. On the basis of recent quantification and modelling of Trypanosoma brucei infection dynamics, we propose that the interplay between immune evasion and development achieves both infection chronicity and transmissibility. Moreover, we suggest that a novel form of bistable regulation ensures developmental commitment on entry into the tsetse fly midgut.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The life cycle and immune evasion of African trypanosomes.
Figure 2: Cytological events that accompany the transition from slender to stumpy forms.
Figure 3: The contribution of slender and stumpy forms to a chronic infection.
Figure 4: TbPTP1–TbPIP39 signalling and bistability.
Figure 5: The impact of defects in stumpy induction factor production or detection on parasite growth and transmission.

Similar content being viewed by others

References

  1. Barrett, M. P. The rise and fall of sleeping sickness. Lancet 367, 1377–1378 (2006).

    Article  PubMed  Google Scholar 

  2. Brun, R., Blum, J., Chappuis, F. & Burri, C. Human African trypanosomiasis. Lancet 375, 148–159 (2010).

    Article  PubMed  Google Scholar 

  3. Vassella, E., Reuner, B., Yutzy, B. & Boshart, M. Differentiation of African trypanosomes is controlled by a density sensing mechanism which signals cell cycle arrest via the cAMP pathway. J. Cell Sci. 110, 2661–2671 (1997).

    CAS  PubMed  Google Scholar 

  4. Reuner, B., Vassella, E., Yutzy, B. & Boshart, M. Cell density triggers slender to stumpy differentiation of Trypanosoma brucei bloodstream forms in culture. Mol. Biochem. Parasitol. 90, 269–280 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Roditi, I. & Lehane, M. J. Interactions between trypanosomes and tsetse flies. Curr. Opin. Microbiol. 11, 345–351 (2008).

    Article  PubMed  Google Scholar 

  6. Peacock, L. et al. Identification of the meiotic life cycle stage of Trypanosoma brucei in the tsetse fly. Proc. Natl Acad. Sci. USA 108, 3671–3676 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rudenko, G. African trypanosomes: the genome and adaptations for immune evasion. Essays Biochem. 51, 47–62 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Hertz-Fowler, C. et al. Telomeric expression sites are highly conserved in Trypanosoma brucei. PLoS ONE 3, e3527 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Navarro, M. & Gull, K. A pol I transcriptional body associated with VSG mono-allelic expression in Trypanosoma brucei. Nature 414, 759–763 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Navarro, M., Penate, X. & Landeira, D. Nuclear architecture underlying gene expression in Trypanosoma brucei. Trends Microbiol. 15, 263–270 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Borst, P. Antigenic variation and allelic exclusion. Cell 109, 5–8 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Horn, D. & Barry, J. D. The central roles of telomeres and subtelomeres in antigenic variation in African trypanosomes. Chromosome Res. 13, 525–533 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Marcello, L. & Barry, J. D. Analysis of the VSG gene silent archive in Trypanosoma brucei reveals that mosaic gene expression is prominent in antigenic variation and is favored by archive substructure. Genome Res. 17, 1344–1352 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Morrison, L. J., Marcello, L. & McCulloch, R. Antigenic variation in the African trypanosome: molecular mechanisms and phenotypic complexity. Cell. Microbiol. 11, 1724–1734 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Honigberg, B. M., Cunningham, I., Stanley, H. A., Su-Lin, K. E. & Luckins, A. G. Trypanosoma brucei: antigenic analysis of bloodstream, vector, and culture stages by the quantitative fluorescent antibody methods. Exp. Parasitol. 39, 496–522 (1976).

    Article  CAS  PubMed  Google Scholar 

  16. Vickerman, K. Developmental cycles and biology of pathogenic trypanosomes. Br. Med. Bull. 41, 105–114 (1985).

    Article  CAS  PubMed  Google Scholar 

  17. Fenn, K. & Matthews, K. R. The cell biology of Trypanosoma brucei differentiation. Curr. Opin. Microbiol. 10, 539–546 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dean, S. D., Marchetti, R., Kirk, K. & Matthews, K. A surface transporter family conveys the trypanosome differentiation signal. Nature 459, 213–217 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Robertson, M. Notes on the polymorphism of Trypanosoma gambiense in the blood and its relation to the exogenous cycle in Glossina palpalis. Proc. R. Soc. Lond. B 85, 241–539 (1912).

    Article  Google Scholar 

  20. McLintock, L. M., Turner, C. M. & Vickerman, K. Comparison of the effects of immune killing mechanisms on Trypanosoma brucei parasites of slender and stumpy morphology. Parasite Immunol. 15, 475–480 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Engstler, M. et al. Hydrodynamic flow-mediated protein sorting on the cell surface of trypanosomes. Cell 131, 505–515 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Morrison, L. J., Majiwa, P., Read, A. F. & Barry, J. D. Probabilistic order in antigenic variation of Trypanosoma brucei. Int. J. Parasitol. 35, 961–972 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Pays, E. Pseudogenes, chimaeric genes and the timing of antigen variation in African trypanosomes. Trends Genet. 5, 389–391 (1989).

    Article  CAS  PubMed  Google Scholar 

  24. Boothroyd, C. E. et al. A yeast-endonuclease-generated DNA break induces antigenic switching in Trypanosoma brucei. Nature 459, 278–281 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lythgoe, K. A., Morrison, L. J., Read, A. F. & Barry, J. D. Parasite-intrinsic factors can explain ordered progression of trypanosome antigenic variation. Proc. Natl Acad. Sci. USA 104, 8095–8100 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Marcello, L. & Barry, J. D. From silent genes to noisy populations-dialogue between the genotype and phenotypes of antigenic variation. J. Eukaryot. Microbiol. 54, 14–17 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gjini, E., Haydon, D. T., Barry, J. D. & Cobbold, C. A. Critical interplay between parasite differentiation, host immunity, and antigenic variation in trypanosome infections. Am. Nat. 176, 424–439 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Seed, J. R. & Black, S. J. A proposed density-dependent model of long slender to short stumpy transformation in the African trypanosomes. J. Parasitol. 83, 656–662 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Seed, J. R. & Black, S. J. A revised arithmetic model of long slender to short stumpy transformation in the African trypanosomes. J. Parasitol. 85, 850–854 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Turner, C. M. R., Aslam, N. & Dye, C. Replication, differentiation, growth and the virulence of Trypanosoma brucei infections. Parasitology 111, 289–300 (1995).

    Article  PubMed  Google Scholar 

  31. Macgregor, P., Savill, N. J., Hall, D. & Matthews, K. R. Transmission stages dominate trypanosome within-host dynamics during chronic infections. Cell Host Microbe 9, 310–318 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shapiro, S. Z., Naessen, J., Liesegang, B., Moloo, S. K. & Magondu, J. Analysis by flow cytometry of DNA synthesis during the life cycle of African trypanosomes. Acta Trop. 41, 313–323 (1984).

    CAS  PubMed  Google Scholar 

  33. Vanhollebeke, B., Uzureau, P., Monteyne, D., Perez-Morga, D. & Pays, E. Cellular and molecular remodeling of the endocytic pathway during differentiation of Trypanosoma brucei bloodstream forms. Eukaryot. Cell 9, 1272–1282 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Barnwell, E. M. et al. Developmental regulation and extracellular release of a VSG expression-site-associated gene product from Trypanosoma brucei bloodstream forms. J. Cell Sci. 123, 3401–3411 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jensen, B. C., Sivam, D., Kifer, C. T., Myler, P. J. & Parsons, M. Widespread variation in transcript abundance within and across developmental stages of Trypanosoma brucei. BMC Genomics 10, 482 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Florent, I. C., Raibaud, A. & Eisen, H. A family of genes related to a new expression site-associated gene in Trypanosoma equiperdum. Mol. Cell. Biol. 11, 2180–2188 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vanhollebeke, B. et al. A haptoglobin-hemoglobin receptor conveys innate immunity to Trypanosoma brucei in humans. Science 320, 677–681 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Vickerman, K. Polymorphism and mitochondrial activity in sleeping sickness trypanosomes. Nature 208, 762–766 (1965).

    Article  CAS  PubMed  Google Scholar 

  39. Tyler, K. M., Matthews, K. R. & Gull, K. The bloodstream differentiation-division of Trypanosoma brucei studied using mitochondrial markers. Proc. Biol. Sci. 264, 1481–1490 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tyler, K. M., Matthews, K. R. & Gull, K. Anisomorphic cell division by African trypanosomes. Protist 152, 367–378 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Brickman, M. J. & Balber, A. E. Trypanosoma brucei brucei and T. b. gambiense: stumpy bloodstream forms express more CB1 epitope in endosomes and lysosomes than slender forms. J. Eukaryot. Microbiol. 41, 533–536 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Savill, N. J. & Seed, J. R. Mathematical and statistical analysis of the Trypanosoma brucei slender to stumpy transition. Parasitology 128, 53–67 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Turner, C. M. R. & Barry, J. D. High frequency of antigenic variation in Trypanosoma brucei rhodesiense infections. Parasitology 99, 67–75 (1989).

    Article  PubMed  Google Scholar 

  44. Horn, D. & Cross, G. A. Analysis of Trypanosoma brucei vsg expression site switching in vitro. Mol. Biochem. Parasitol. 84, 189–201 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Turner, C. M. The rate of antigenic variation in fly-transmitted and syringe-passaged infections of Trypanosoma brucei. FEMS Microbiol. Lett. 153, 227–231 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Barry, J. D. et al. What the genome sequence is revealing about trypanosome antigenic variation. Biochem. Soc. Trans. 33, 986–989 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Barry, J. D. & Emery, D. L. Parasite development and host responses during the establishment of Trypanosoma brucei infection transmitted by tsetse fly. Parasitology 88, 67–84 (1984).

    Article  PubMed  Google Scholar 

  48. Van den Bossche, P. et al. Transmissibility of Trypanosoma brucei during its development in cattle. Trop. Med. Int. Health 10, 833–839 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Baylis, M. The daily feeding rate of tsetse (Diptera: Glossinidae) on cattle at Galana Ranch, Kenya and comparison with trypanosomiasis incidence. Acta Trop. 65, 81–96 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Jacobs, S. L. & Lee, N. D. Determination of citric acid in serum and urine using Br82. J. Nucl. Med. 5, 297–301 (1964).

    CAS  PubMed  Google Scholar 

  51. Brun, R. & Schonenberger, M. Stimulating effect of citrate and cis-aconitate on the transformation of Trypanosoma brucei bloodstream forms to procyclic forms in vitro. Z. Parasitenkd. 66, 17–24 (1981).

    Article  CAS  PubMed  Google Scholar 

  52. Engstler, M. & Boshart, M. Cold shock and regulation of surface protein trafficking convey sensitization to inducers of stage differentiation in Trypanosoma brucei. Genes Dev. 18, 2798–2811 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Szoor, B., Wilson, J., McElhinney, H., Tabernero, L. & Matthews, K. R. Protein tyrosine phosphatase TbPTP1: a molecular switch controlling life cycle differentiation in trypanosomes. J. Cell Biol. 175, 293–303 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Szoor, B., Ruberto, I., Burchmore, R. & Matthews, K. A novel phosphatase cascade regulates differentiation in trypanosomes via a glycosomal signaling pathway. Genes Dev. 24, 1306–1316 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kamenski, T., Heilmeier, S., Meinhart, A. & Cramer, P. Structure and mechanism of RNA polymerase II CTD phosphatases. Mol. Cell 15, 399–407 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Ferrell, J. E. Jr. Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr. Opin. Cell Biol. 14, 140–148 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Pomerening, J. R., Sontag, E. D. & Ferrell, J. E. Jr. Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2. Nature Cell Biol. 5, 346–351 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Domingo-Sananes, M. R., Kapuy, O., Hunt, T. & Novak, B. Switches and latches: a biochemical tug-of-war between the kinases and phosphatases that control mitosis. Phil. Trans. R. Soc. 366, 3584–3594 (2011).

    Article  CAS  Google Scholar 

  59. Matthews, K. R. Controlling and coordinating development in vector-transmitted parasites. Science 331, 1149–1153 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Matthews, K. R. & Gull, K. Commitment to differentiation and cell cycle re-entry are coincident but separable events in the transformation of African trypanosomes from their bloodstream to their insect form. J. Cell Sci. 110, 2609–2618 (1997).

    CAS  PubMed  Google Scholar 

  61. Herman, M., Perez-Morga, D., Schtickzelle, N. & Michels, P. A. Turnover of glycosomes during life-cycle differentiation of Trypanosoma brucei. Autophagy 4, 294–308 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Opperdoes, F. R. & Szikora, J. P. In silico prediction of the glycosomal enzymes of Leishmania major and trypanosomes. Mol. Biochem. Parasitol. 147, 193–206 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Chou, S., Jensen, B. C., Parsons, M., Alber, T. & Grundner, C. The Trypanosoma brucei life cycle switch TbPTP1 is structurally conserved and dephosphorylates the nucleolar protein NOPP44/46. J. Biol. Chem. 285, 22075–22081 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yabu, Y. & Takayanagi, T. Trypsin-stimulated transformation of Trypanosoma brucei gambiense bloodstream forms to procyclic forms in vitro. Parasitol. Res. 74, 501–506 (1988).

    Article  CAS  PubMed  Google Scholar 

  65. Rolin, S., Hancocq-Quertier, J., Paturiaux-Hanocq, F., Nolan, D. P. & Pays, E. Mild acid stress as a differentiation trigger in Trypanosoma brucei. Mol. Biochem. Parasitol. 93, 251–262 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Haanstra, J. R. et al. A domino effect in drug action: from metabolic assault towards parasite differentiation. Mol. Microbiol. 79, 94–108 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Frank, S. A. A model for the sequential dominance of antigenic variants in African trypanosome infections. Proc. Bio. Sci. 266, 1397–1401 (1999).

    Article  CAS  Google Scholar 

  68. Ashcroft, M. A comparison between syringe-passaged and a tsetse-fly transmitted line of a strain of Trypanosma rhodesiense. Ann. Trop. Med. Parasitol. 54, 44–70 (1960).

    Article  CAS  PubMed  Google Scholar 

  69. Matthews, K. R., Ellis, J. R. & Paterou, A. Molecular regulation of the life cycle of African trypanosomes. Trends Parasitol. 20, 40–47 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Turner, C. M. The use of experimental artefacts in African trypanosome research. Parasitol. Today 6, 14–17 (1990).

    Article  CAS  PubMed  Google Scholar 

  71. Fairbairn, H. & Culwick, A. The modification of Trypanosma rhodesiense on prolonged syringe passage. Ann. Trop. Med. Parasitol. 41, 26 (1947).

    Article  CAS  PubMed  Google Scholar 

  72. Brown, S. P. & Taddei, F. The durability of public goods changes the dynamics and nature of social dilemmas. PLoS ONE 2, e593 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Oberle, M., Balmer, O., Brun, R. & Roditi, I. Bottlenecks and the maintenance of minor genotypes during the life cycle of Trypanosoma brucei. PLoS Pathog. 6, e1001023 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Morrison, W. I., Wells, P. W., Moloo, S. K., Paris, J. & Murray, M. Interference in the establishment of superinfections with Trypanosoma congolense in cattle. J. Parasitol. 68, 755–764 (1982).

    Article  CAS  PubMed  Google Scholar 

  75. Pollitt, L. C., Macgregor, P., Matthews, K. & Reece, S. E. Malaria and trypanosome transmission: different parasites, same rules? Trends Parasitol. 27, 197–203 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Pays, E., Lips, S., Nolan, D., Vanhamme, L. & Perez-Morga, D. The VSG expression sites of Trypanosoma brucei: multipurpose tools for the adaptation of the parasite to mammalian hosts. Mol. Biochem. Parasitol. 114, 1–16 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Bitter, W., Gerrits, H., Kieft, R. & Borst, P. The role of transferrin-receptor variation in the host range of Trypanosoma brucei. Nature 391, 499–502 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Xong, H. V. et al. A VSG expression site-associated gene confers resistance to human serum in Trypanosoma rhodesiense. Cell 95, 839–846 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Pays, E. & Vanhollebeke, B. Human innate immunity against African trypanosomes. Curr. Opin. Immunol. 21, 493–498 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Vickerman, K. The fine structure of Trypanosoma congolense in its bloodstream phase. J. Protozool. 16, 54–69 (1969).

    Article  CAS  PubMed  Google Scholar 

  81. Stevens, J. R. & Brisse, S. in The Trypanosomiases Ch. 1 (eds Maudlin, I., Holmes, P. & Miles, M.) 1–25 (CABI, 2004).

    Book  Google Scholar 

  82. Gardiner, P. R. & Wilson, A. J. Trypanosoma (Duttonefla) vivax. Parasitol. Today 3, 49–52 (1987).

    Article  CAS  PubMed  Google Scholar 

  83. Nantulya, V. M., Doyle, J. J. & Jenni, L. Studies on Trypanosoma (nannomonas) congolense. I. On the morphological appearance of the parasite in the mouse. Acta Trop. 35, 329–337 (1978).

    CAS  PubMed  Google Scholar 

  84. Miles, M. A. Pleomorphism demonstrated in a clone of an akinetoplastic strain of Trypanosoma evansi. Trans. R. Soc. Trop. Med. Hyg. 64, 471 (1970).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to J. D. Barry for helpful comments on the manuscript and for providing useful additional insight during the preparation of the manuscript. Work in the K.R.M. laboratory is supported by the Wellcome Trust and by a Wellcome Trust Strategic Award to the Centre for Immunity, Infection and Evolution at the University of Edinburgh, UK. Work in the N.J.S. group is supported by the Wellcome Trust (grant number 082601/Z/07/Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith R. Matthews.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Keith R. Matthews's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacGregor, P., Szöőr, B., Savill, N. et al. Trypanosomal immune evasion, chronicity and transmission: an elegant balancing act. Nat Rev Microbiol 10, 431–438 (2012). https://doi.org/10.1038/nrmicro2779

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2779

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing