Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability

Key Points

  • Climate change, environmental degradation and population growth present major challenges to global food security.

  • Crop yields are destabilized by suboptimal growth conditions such as floods, droughts, air pollution, nutrient deficiency and toxic ion exposure.

  • Effective abiotic stress adaptation loci usually provide environment-specific solutions that depend on the timing, severity and duration of the stress.

  • To date, most of the characterized loci that improve abiotic stress tolerance without a yield penalty encode transcription factors or transporters.

  • Genetic variation in abiotic stress tolerance is often associated with allelic variation, gene duplication and/or gene neofunctionalization.

  • Improved yield stability has been traditionally attained through selective breeding. The precise identification of the specific genetic determinants of stress tolerance accelerates the marker-assisted introgression of naturally varying genes into popular varieties.

  • Characterization of the underlying genes and abiotic stress tolerance mechanisms that sustain reasonable yields under adverse conditions facilitates the translation of solutions between species.

  • Increased harnessing of natural genetic variation and biotechnological solutions, coupled with effective agronomic practices, is essential to provide necessary increases in crop yield stability to feed the human population.

Abstract

Crop yield reduction as a consequence of increasingly severe climatic events threatens global food security. Genetic loci that ensure productivity in challenging environments exist within the germplasm of crops, their wild relatives and species that are adapted to extreme environments. Selective breeding for the combination of beneficial loci in germplasm has improved yields in diverse environments throughout the history of agriculture. An effective new paradigm is the targeted identification of specific genetic determinants of stress adaptation that have evolved in nature and their precise introgression into elite varieties. These loci are often associated with distinct regulation or function, duplication and/or neofunctionalization of genes that maintain plant homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flooding survival in rice.
Figure 2: Deeper rooting in rice for drought tolerance.
Figure 3: HKT1 gene and functional variation associated with salt tolerance in the cereals wheat and rice.
Figure 4: Genetic basis for high Al3+ and low Pi tolerance mechanisms.
Figure 5: Cold tolerance in temperate cereals is coordinated by VRN1 at the FR1 locus and by CBF genes at the FR2 locus.

Similar content being viewed by others

References

  1. Bailey-Serres, J., Lee, S. C. & Brinton, E. Waterproofing crops: effective flooding survival strategies. Plant Physiol. 160, 1698–1709 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Boyer, J. S. et al. The U.S. drought of 2012 in perspective: a call to action. Global Food Secur. 2, 139–143 (2013).

    Google Scholar 

  3. Hirabayashi, Y. et al. Global flood risk under climate change. Nature Clim. Chang. 3, 816–821 (2013).

    Google Scholar 

  4. Pryor, S. C., Barthelmie, R. J. & Schoof, J. T. High-resolution projections of climate-related risks for the Midwestern USA. Clim. Res. 56, 61–79 (2013).

    Google Scholar 

  5. Bita, C. E. & Gerats, T. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front. Plant Sci. 4, 273 (2013).

    PubMed  PubMed Central  Google Scholar 

  6. Gourdji, S. M., Sibley, A. M. & Lobell, D. B. Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections. Environ. Res. Lett. 8, 024041 (2013).

    Google Scholar 

  7. Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).

    CAS  PubMed  Google Scholar 

  8. Iizumi, T. et al. Prediction of seasonal climate-induced variations in global food production. Nature Clim. Chang. 3, 904–908 (2013).

    Google Scholar 

  9. Intergovernmental Panel on Climate Change, 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) [online], (Cambridge University Press, 2014).

  10. Lobell, D. B. et al. Greater sensitivity to drought accompanies maize yield increase in the U.S. Midwest. Science 344, 516–519 (2014).

    CAS  PubMed  Google Scholar 

  11. Mansouri-Far, C., Modarres Sanavy, S. A. M. & Saberali, S. F. Maize yield response to deficit irrigation during low-sensitive growth stages and nitrogen rate under semi-arid climatic conditions. Agr. Water Manage. 97, 12–22 (2010).

    Google Scholar 

  12. Takeda, S. & Matsuoka, M. Genetic approaches to crop improvement: responding to environmental and population changes. Nature Rev. Genet. 9, 444–457 (2008).

    CAS  PubMed  Google Scholar 

  13. Gamuyao, R. et al. The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature 488, 535–539 (2012). PSTOL1 , a gene that regulates crown root development and root biomass, is shown to provide tolerance to low-P soils in rice.

    CAS  PubMed  Google Scholar 

  14. Xu, K. et al. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442, 705–708 (2006). A rice gene found in a farmer's landrace is identified as an ERF that confers tolerance of prolonged submergence on O. sativa ssp. indica and O. sativa ssp. japonica varieties of rice.

    CAS  PubMed  Google Scholar 

  15. Niroula, R. K. et al. SUB1A-dependent and -independent mechanisms are involved in the flooding tolerance of wild rice species. Plant J. 72, 282–293 (2012).

    CAS  PubMed  Google Scholar 

  16. Singh, N. et al. Molecular marker survey and expression analyses of the rice submergence-tolerance gene SUB1A. Theor. Appl. Genet. 121, 1441–1453 (2010).

    CAS  PubMed  Google Scholar 

  17. Fukao, T., Xu, K., Ronald, P. C. & Bailey-Serres, J. A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 18, 2021–2034 (2006). The mode of action of SUB1A is shown to involve the conservation of carbohydrate catabolism and the minimization of underwater elongation growth in rice.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Fukao, T. & Bailey-Serres, J. Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proc. Natl Acad. Sci. USA 105, 16814–16819 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Fukao, T., Yeung, E. & Bailey-Serres, J. The submergence tolerance gene SUB1A delays leaf senescence under prolonged darkness through hormonal regulation in rice. Plant Physiol. 160, 1795–1807 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Fukao, T., Yeung, E. & Bailey-Serres, J. The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell 23, 412–427 (2011).

    CAS  PubMed  Google Scholar 

  21. Septiningsih, E. M. et al. in Translational Genomics for Crop Breeding (eds Varshney, R. K. & Tuberosa, R.) 9–30 (Wiley, 2013).

    Google Scholar 

  22. Dar, M. H., de Janvry, A., Emerick, K., Raitzer, D. & Sadoulet, E. Flood-tolerant rice reduces yield variability and raises expected yield, differentially benefitting socially disadvantaged groups. Sci. Rep. 3, 3315 (2013).

    PubMed  PubMed Central  Google Scholar 

  23. Singh, S., Mackill, D. J. & Ismail, A. M. Responses of SUB1 rice introgression lines to submergence in the field: yield and grain quality. Field Crops Res. 113, 12–23 (2009).

    Google Scholar 

  24. Hattori, Y. et al. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460, 1026–1030 (2009). One of three QTLs present in deepwater rice that are necessary and sufficient to promote rapid underwater elongation growth encodes two ERFs related to SUB1A.

    CAS  PubMed  Google Scholar 

  25. Ayano, M. et al. Gibberellin biosynthesis and signal transduction is essential for internode elongation in deepwater rice. Plant Cell Environ. 37, 2313–2324 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Gibbs, D. J. et al. Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature 479, 415–418 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Licausi, F. et al. Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature 479, 419–422 (2011). References 26 and 27 show that the SUB1A-like ERFs of A. thaliana are targets of an oxygen-dependent branch of the N-end rule pathway.

    CAS  PubMed  Google Scholar 

  28. van Veen, H. et al. Two Rumex species from contrasting hydrological niches regulate flooding tolerance through distinct mechanisms. Plant Cell 25, 4691–4707 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Malik, A. I., Islam, A. K. & Colmer, T. D. Transfer of the barrier to radial oxygen loss in roots of Hordeum marinum to wheat (Triticum aestivum): evaluation of four H. marinum–wheat amphiploids. New Phytol. 190, 499–508 (2011).

    CAS  PubMed  Google Scholar 

  30. Abiko, T. et al. Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp. mays). Plant Cell Environ. 35, 1618–1630 (2012).

    CAS  PubMed  Google Scholar 

  31. Mano, Y. & Omori, F. Flooding tolerance in interspecific introgression lines containing chromosome segments from teosinte (Zea nicaraguensis) in maize (Zea mays subsp. mays). Ann. Bot. 112, 1125–1139 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Weber, V. S. et al. Efficiency of managed-stress screening of elite maize hybrids under drought and low nitrogen for yield under rainfed conditions in southern Africa. Crop Sci. 52, 1011–1020 (2012).

    Google Scholar 

  33. Hu, H. & Xiong, L. Genetic engineering and breeding of drought-resistant crops. Annu. Rev. Plant Biol. 65, 715–741 (2014).

    CAS  PubMed  Google Scholar 

  34. Xu, J. et al. Identification of candidate genes for drought tolerance by whole-genome resequencing in maize. BMC Plant Biol. 14, 83 (2014).

    PubMed  PubMed Central  Google Scholar 

  35. Sandhu, N. et al. Identification and mapping of stable QTL with main and epistasis effect on rice grain yield under upland drought stress. BMC Genet. 15, 63 (2014).

    PubMed  PubMed Central  Google Scholar 

  36. Ravi, K. et al. Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.). Theor. Appl. Genet. 122, 1119–1132 (2011).

    CAS  PubMed  Google Scholar 

  37. Swamy, B. P. et al. Genetic, physiological, and gene expression analyses reveal that multiple QTL enhance yield of rice mega-variety IR64 under drought. PLoS ONE 8, e62795 (2013).

    PubMed  Google Scholar 

  38. Makumburage, G. B. et al. Genotype to phenotype maps: multiple input abiotic signals combine to produce growth effects via attenuating signaling interactions in maize. G3 (Bethesda) 3, 2195–2204 (2013).

    Google Scholar 

  39. Tardieu, F. Any trait or trait-related allele can confer drought tolerance: just design the right drought scenario. J. Exp. Bot. 63, 25–31 (2012).

    CAS  PubMed  Google Scholar 

  40. Semagn, K. et al. Meta-analyses of QTL for grain yield and anthesis silking interval in 18 maize populations evaluated under water-stressed and well-watered environments. BMC Genomics 14, 313 (2013).

    PubMed  PubMed Central  Google Scholar 

  41. Uga, Y., Okuno, K. & Yano, M. Dro1, a major QTL involved in deep rooting of rice under upland field conditions. J. Exp. Bot. 62, 2485–2494 (2011).

    CAS  PubMed  Google Scholar 

  42. Uga, Y. et al. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genet. 45, 1097–1102 (2013). A gene determining the downward growth of roots is identified and shown to contribute to avoidance of drought in rice.

    CAS  PubMed  Google Scholar 

  43. Arai-Sanoh, Y. et al. Deep rooting conferred by DEEPER ROOTING 1, enhances rice yield in paddy fields. Sci. Rep. 4, 5563 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Burton, A. L. et al. QTL mapping and phenotypic variation for root architectural traits in maize (Zea mays L.). Theor. Appl. Genet. 127, 2293–2311 (2014).

    PubMed  Google Scholar 

  45. Placido, D. F. et al. Introgression of novel traits from a wild wheat relative improves drought adaptation in wheat. Plant Physiol. 161, 1806–1819 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Mace, E. S. et al. QTL for nodal root angle in sorghum (Sorghum bicolor L. Moench) co-locate with QTL for traits associated with drought adaptation. Theor. Appl. Genet. 124, 97–109 (2012).

    CAS  PubMed  Google Scholar 

  47. Naz, A. A., Arifuzzaman, M., Muzammil, S., Pillen, K. & Leon, J. Wild barley introgression lines revealed novel QTL alleles for root and related shoot traits in the cultivated barley (Hordeum vulgare L.). BMC Genet. 15, 107 (2014).

    PubMed  PubMed Central  Google Scholar 

  48. Varshney, R. K. et al. Fast-track introgression of “QTL-hotspot” for root traits and other drought tolerance traits in JG 11, an elite and leading variety of chickpea (Cicer arietinum L.). Plant Genome http://dx.doi.org/10.3835/plantgenome2013.07.0022 (2013).

  49. Kollist, H., Nuhkat, M. & Roelfsema, M. R. Closing gaps: linking elements that control stomatal movement. New Phytol. 203, 44–62 (2014).

    CAS  PubMed  Google Scholar 

  50. Daszkowska-Golec, A. & Szarejko, I. Open or close the gate — stomata action under the control of phytohormones in drought stress conditions. Front. Plant Sci. 4, 138 (2013).

    PubMed  PubMed Central  Google Scholar 

  51. Danquah, A., de Zelicourt, A., Colcombet, J. & Hirt, H. The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol. Adv. 32, 40–52 (2014).

    CAS  PubMed  Google Scholar 

  52. Ma, Y. et al. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324, 1064–1068 (2009). A receptor of ABA is identified and shown to regulate signal transduction through interaction with a protein phosphatase.

    CAS  PubMed  Google Scholar 

  53. Park, S.-Y. et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324, 1068–1071 (2009). An ABA-binding protein is identified through the use of a chemical agonist and genetic screening; the binding of the hormone to the receptor limits negative regulation of signalling.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Fujii, H. et al. In vitro reconstitution of an abscisic acid signalling pathway. Nature 462, 660–664 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R. & Abrams, S. R. Abscisic acid: emergence of a core signaling network. Annu. Rev. Plant Biol. 61, 651–679 (2010).

    CAS  PubMed  Google Scholar 

  56. Fujii, H. & Zhu, J. K. Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proc. Natl Acad. Sci. USA 106, 8380–8385 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Miyakawa, T., Fujita, Y., Yamaguchi-Shinozaki, K. & Tanokura, M. Structure and function of abscisic acid receptors. Trends Plant Sci. 18, 259–266 (2013).

    CAS  PubMed  Google Scholar 

  58. Fujita, Y. et al. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17, 3470–3488 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Okamoto, M. et al. Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance. Proc. Natl Acad. Sci. USA 110, 12132–12137 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Cao, M. et al. An ABA-mimicking ligand that reduces water loss and promotes drought resistance in plants. Cell Res. 23, 1043–1054 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. González-Guzmán, M. et al. Tomato PYR/PYL/RCAR abscisic acid receptors show high expression in root, differential sensitivity to the abscisic acid agonist quinabactin, and the capability to enhance plant drought resistance. J. Exp. Bot. 65, 4451–4464 (2014).

    PubMed  PubMed Central  Google Scholar 

  62. Kim, H. et al. Overexpression of PYL5 in rice enhances drought tolerance, inhibits growth, and modulates gene expression. J. Exp. Bot. 65, 453–464 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Park, S. Y. et al. Agrichemical control of plant water use using engineered ABA receptors. Nature http://dx.doi.org/10.1038/nature14123 (2015). Redesign of the ABA-binding pocket of the receptor is achieved to enable activation of the response pathway by another small molecule.

  64. Thomas, H. & Ougham, H. The stay-green trait. J. Exp. Bot. 65, 3889–3900 (2014).

    CAS  PubMed  Google Scholar 

  65. De Simone, V., Soccio, M., Borrelli, G. M., Pastore, D. & Trono, D. Stay-green trait-antioxidant status interrelationship in durum wheat (Triticum durum) flag leaf during post-flowering. J. Plant Res. 127, 159–171 (2014).

    PubMed  Google Scholar 

  66. Castiglioni, P. et al. Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiol. 147, 446–455 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Jeong, J. S. et al. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol. 153, 185–197 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Qin, H. et al. Regulated expression of an isopentenyltransferase gene (IPT) in peanut significantly improves drought tolerance and increases yield under field conditions. Plant Cell Physiol. 52, 1904–1914 (2011). Appropriate manipulation of an enzyme in the cytokinin biosynthesis pathway is shown to improve drought tolerance.

    CAS  PubMed  Google Scholar 

  69. Hasegawa, P. M. Sodium (Na+) homeostasis and salt tolerance of plants. Environ. Exp. Bot. 92, 19–31 (2013).

    CAS  Google Scholar 

  70. Platts, B. E. & Grismer, M. E. Chloride levels increase after 13 years of recycled water use in the Salinas Valley. Calif. Agr. 68, 68–74 (2014).

    Google Scholar 

  71. Munns, R. & Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681 (2008).

    CAS  PubMed  Google Scholar 

  72. Deinlein, U. et al. Plant salt-tolerance mechanisms. Trends Plant Sci. 19, 371–379 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Schroeder, J. I. et al. Using membrane transporters to improve crops for sustainable food production. Nature 497, 60–66 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Roy, S. J., Negrão, S. & Tester, M. Salt resistant crop plants. Curr. Opin. Biotechnol. 26, 115–124 (2014).

    CAS  PubMed  Google Scholar 

  75. Flowers, T. J. & Colmer, T. D. Salinity tolerance in halophytes. New Phytol. 179, 945–963 (2008).

    CAS  PubMed  Google Scholar 

  76. Munns, R. et al. Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nature Biotech. 30, 360–364 (2012). A Na+-selective transporter located on the plasma membranes of parenchyma cells surrounding the xylem is introduced from a wild relative into wheat and provides significant yield protection in saline soils.

    CAS  Google Scholar 

  77. James, R. A. et al. Impact of ancestral wheat sodium exclusion genes Nax1 and Nax2 on grain yield of durum wheat on saline soils. Funct. Plant Biol. 39, 609–618 (2012).

    CAS  PubMed  Google Scholar 

  78. Dubcovsky, J., María, G. S., Epstein, E., Luo, M. C. & Dvor˘ák, J. Mapping of the K+/Na+ discrimination locus Kna1 in wheat. Theor. Appl. Genet. 92, 448–454 (1996).

    CAS  PubMed  Google Scholar 

  79. Yang, C. et al. Evolution of physiological responses to salt stress in hexaploid wheat. Proc. Natl Acad. Sci. USA 111, 11882–11887 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Ren, Z. H. et al. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genet. 37, 1141–1146 (2005). Amino acid variations in an HKT-type Na+ transporter associated with enhanced salt tolerance are identified in rice.

    CAS  PubMed  Google Scholar 

  81. Platten, J. D., Egdane, J. A. & Ismail, A. M. Salinity tolerance, Na+ exclusion and allele mining of HKT1;5 in Oryza sativa and O. glaberrima: many sources, many genes, one mechanism? BMC Plant Biol. 13, 32 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Asins, M. J. et al. Two closely linked tomato HKT coding genes are positional candidates for the major tomato QTL involved in Na+/K+ homeostasis. Plant Cell Environ. 36, 1171–1191 (2013).

    CAS  PubMed  Google Scholar 

  83. Thomson, M. J. et al. Characterizing the Saltol quantitative trait locus for salinity tolerance in rice. Rice 3, 148–160 (2010).

    Google Scholar 

  84. Liu, J., Piñeros, M. A. & Kochian, L. V. The role of aluminum sensing and signaling in plant aluminum resistance. J. Integr. Plant Biol. 56, 221–230 (2014).

    CAS  PubMed  Google Scholar 

  85. Sasaki, T. et al. Sequence upstream of the wheat (Triticum aestivum L.) ALMT1 gene and its relationship to aluminum resistance. Plant Cell Physiol. 47, 1343–1354 (2006).

    CAS  PubMed  Google Scholar 

  86. Sasaki, T. et al. A wheat gene encoding an aluminum-activated malate transporter. Plant J. 37, 645–653 (2004).

    CAS  PubMed  Google Scholar 

  87. Raman, H. et al. Analysis of TaALMT1 traces the transmission of aluminum resistance in cultivated common wheat (Triticum aestivum L.). Theor. Appl. Genet. 116, 343–354 (2008).

    CAS  PubMed  Google Scholar 

  88. Ryan, P. R. et al. The multiple origins of aluminium resistance in hexaploid wheat include Aegilops tauschii and more recent cis mutations to TaALMT1. Plant J. 64, 446–455 (2010).

    CAS  PubMed  Google Scholar 

  89. Fujii, M. et al. Acquisition of aluminium tolerance by modification of a single gene in barley. Nature Commun. 3, 713 (2012). Genetic variation in tissue-specific expression of a barley citrate transporter is shown to ameliorate toxicity of aluminium in acid soils.

    Google Scholar 

  90. Magalhaes, J. V. et al. A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nature Genet. 39, 1156–1161 (2007).

    CAS  PubMed  Google Scholar 

  91. Maron, L. G. et al. Aluminum tolerance in maize is associated with higher MATE1 gene copy number. Proc. Natl Acad. Sci. USA 110, 5241–5246 (2013). CNV of a malate transporter gene is shown to underlie distinctions in root growth in the presence of high levels of aluminium.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Li, J. Y. et al. Natural variation underlies alterations in Nramp aluminum transporter (NRAT1) expression and function that play a key role in rice aluminum tolerance. Proc. Natl Acad. Sci. USA 111, 6503–6508 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Chatterjee, M. et al. The boron efflux transporter ROTTEN EAR Is required for maize inflorescence development and fertility. Plant Cell 26, 2962–2977 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Durbak, A. R. et al. Transport of boron by the tassel-less1 aquaporin is critical for vegetative and reproductive development in maize. Plant Cell 26, 2978–2995 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Nable, R. O., Bañuelos, G. S. & Paull, J. G. Boron toxicity. Plant Soil 193, 181–198 (1997).

    CAS  Google Scholar 

  96. Sutton, T. et al. Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science 318, 1446–1449 (2007).

    CAS  PubMed  Google Scholar 

  97. Schnurbusch, T. et al. Boron toxicity tolerance in barley through reduced expression of the multifunctional aquaporin HvNIP2;1. Plant Physiol. 153, 1706–1715 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Pallotta, M. et al. Molecular basis of adaptation to high soil boron in wheat landraces and elite cultivars. Nature 514, 88–91 (2014). Molecular characterization of loci associated with B tolerance uncovers CNV and variation in expression of genes encoding B transporters in wheat cultivars.

    CAS  PubMed  Google Scholar 

  99. Jones, D. L. et al. Nutrient stripping: the global disparity between food security and soil nutrient stocks. J. Appl. Ecol. 50, 851–862 (2013).

    Google Scholar 

  100. López-Arredondo, D. L., Leyva-González, M. A., González-Morales, S. I., López-Bucio, J. & Herrera-Estrella, L. Phosphate nutrition: improving low-phosphate tolerance in crops. Annu. Rev. Plant Biol. 65, 95–123 (2014).

    PubMed  Google Scholar 

  101. Wissuwa, M., Wegner, J., Ae, N. & Yano, M. Substitution mapping of Pup1: a major QTL increasing phosphorus uptake of rice from a phosphorus-deficient soil. Theor. Appl. Genet. 105, 890–897 (2002).

    CAS  PubMed  Google Scholar 

  102. Chin, J. H. et al. Developing rice with high yield under phosphorus deficiency: Pup1 sequence to application. Plant Physiol. 156, 1202–1216 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Hufnagel, B. et al. Duplicate and conquer: multiple homologs of phosphorus-starvation tolerance 1 enhance phosphorus acquisition and sorghum performance on low-P soils. Plant Physiol. 166, 659–677 (2014).

    PubMed  PubMed Central  Google Scholar 

  104. Miura, K. & Furumoto, T. Cold signaling and cold response in plants. Int. J. Mol. Sci. 14, 5312–5337 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Kawamura, Y. & Uemura, M. in Plant Abiotic Stress 2nd edn Ch. 5 (eds Jenks, M. A. & Hasegawa, P. M.) (Wiley, 2014).

    Google Scholar 

  106. Wisniewski, M. et al. Genomics of cold hardiness in woody plants. CRC Crit. Rev. Plant Sci. 33, 92–124 (2014).

    CAS  Google Scholar 

  107. Guy, C. Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41, 187–223 (1990).

    CAS  Google Scholar 

  108. Dhillon, T., et al. Regulation of freezing tolerance and flowering in temperate cereals: the VRN-1 connection. Plant Physiol. 153, 1846–1858 (2010). This is one of several reports describing the functional roles of the key loci that coordinate the acquisition of cold tolerance and transition from vegetative to reproductive growth in temperate cereals.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Stockinger, E. J., Skinner, J. S., Gardner, K. G., Francia, E. & Pecchioni, N. Expression levels of barley Cbf genes at the Frost resistance-H2 locus are dependent upon alleles at Fr-H1 and Fr-H2. Plant J. 51, 308–321 (2007).

    CAS  PubMed  Google Scholar 

  110. Knox, A. K. et al. CBF gene copy number variation at Frost Resistance-2 is associated with levels of freezing tolerance in temperate-climate cereals. Theor. Appl. Genet. 121, 21–35 (2010).

    PubMed  Google Scholar 

  111. Zhu, J. et al. Copy number and haplotype variation at the VRN-A1 and central FR-A2 loci are associated with frost tolerance in hexaploid wheat. Theor. Appl. Genet. 127, 1183–1197 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Oliver, S. N., Finnegan, E. J., Dennis, E. S., Peacock, W. J. & Trevaskis, B. Vernalization-induced flowering in cereals is associated with changes in histone methylation at the VERNALIZATION1 gene. Proc. Natl Acad. Sci. USA 106, 8386–8391 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Thomashow, M. F. Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiol. 154, 571–577 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Skinner, J. S. et al. Structural, functional, and phylogenetic characterization of a large CBF gene family in barley. Plant Mol. Biol. 59, 533–551 (2005).

    CAS  PubMed  Google Scholar 

  115. Badawi, M., Danyluk, J., Boucho, B., Houde, M. & Sarhan, F. The CBF gene family in hexaploid wheat and its relationship to the phylogenetic complexity of cereal CBFs. Mol. Genet. Genom. 277, 533–554 (2007).

    CAS  Google Scholar 

  116. Francia, E. et al. Two loci on chromosome 5H determine low-temperature tolerance in a 'Nure' (winter) x 'Tremois' (spring) barley map. Theor. Appl. Genet. 108, 670–680 (2004).

    CAS  PubMed  Google Scholar 

  117. Francia, E. et al. Fine mapping of a HvCBF gene cluster at the frost resistance locus Fr-H2 in barley. Theor. Appl. Genet. 115, 1083–1091 (2007).

    CAS  PubMed  Google Scholar 

  118. Dhillon, T. & Stockinger, E. J. Cbf14 copy number variation in the A, B, and D genomes of diploid and polyploid wheat. Theor. Appl. Genet. 126, 2777–2789 (2013).

    CAS  PubMed  Google Scholar 

  119. Pearce, S. et al. Large deletions in the CBF gene cluster at the Fr-B2 locus are associated with reduced frost tolerance in wheat. Theor. Appl. Genet. 126, 2683–2697 (2013).

    PubMed  PubMed Central  Google Scholar 

  120. Su, C. F. et al. A novel MYBS3-dependent pathway confers cold tolerance in rice. Plant Physiol. 153, 145–158 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Pachecoy, M. I., Ramirez, I. A., Marín, A. & Pontaroli, A. C. Assessment of cold tolerance at early developmental stages and allelic variation at candidate genes in South American rice germplasm. Euphytica 197, 423–434 (2014).

    CAS  Google Scholar 

  122. Yang, Z. et al. Mapping of quantitative trait loci underlying cold tolerance in rice seedlings via high-throughput sequencing of pooled extremes. PLoS ONE 8, e68433 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Meng, L. et al. Simultaneous improvement in cold tolerance and yield of temperate japonica rice (Oryza sativa L.) by introgression breeding. Plant Breed. 132, 604–612 (2013).

    CAS  Google Scholar 

  124. Peng, S. et al. Rice yields decline with higher night temperature from global warming. Proc. Natl Acad. Sci. USA 101, 9971–9975 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Echer, F. R., Oosterhuis, D. M., Loka, D. A. & Rosolem, C. A. High night temperatures during the floral bud stage increase the abscission of reproductive structures in cotton. J. Agron. Crop Sci. 200, 191–198 (2014).

    Google Scholar 

  126. Waters, E. R. The evolution, function, structure, and expression of the plant sHSPs. J. Exp. Bot. 64, 391–403 (2013).

    CAS  PubMed  Google Scholar 

  127. Lavania, D., Dhingra, A., Siddiqui, M. H., Al-Whaibi, M. H. & Grover, A. Current status of the production of high temperature tolerance transgenic crops for cultivation in warmer climates. Plant Physiol. Biochem. 86, 100–108 (2015).

    CAS  PubMed  Google Scholar 

  128. Cossani, C. M. & Reynolds, M. P. Physiological traits for improving heat tolerance in wheat. Plant Physiol. 160, 1710–1718 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Machado, J. C. et al. Recurrent selection as breeding strategy for heat tolerance in wheat. CBAB 10, 9–15 (2010).

    Google Scholar 

  130. Gororo, N. N., Eagles, H. A., Eastwood, R. F., Nicolas, M. E. & Flood, R. G. Use of Triticum tauschii to improve yield of wheat in low-yielding environments. Euphytica 123, 241–254 (2002).

    Google Scholar 

  131. Benites, F. R. G. & Pinto, C. A. B. P. Genetic gains for heat tolerance in potato in three cycles of recurrent selection. Crop Breed. Appl. Biotechnol. 11, 133–140 (2011).

    Google Scholar 

  132. Mohammed, Y. S. A. et al. Impact of wheat-Leymus racemosus added chromosomes on wheat adaptation and tolerance to heat stress. Breed. Sci. 63, 450–460 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Ye, C. et al. Mapping QTL for heat tolerance at flowering stage in rice using SNP markers. Plant Breed. 131, 33–41 (2012).

    CAS  Google Scholar 

  134. Shi, W. et al. Source-sink dynamics and proteomic reprogramming under elevated night temperature and their impact on rice yield and grain quality. New Phytol. 197, 825–837 (2013).

    CAS  PubMed  Google Scholar 

  135. Ishimaru, T. et al. A genetic resource for early-morning flowering trait of wild rice Oryza officinalis to mitigate high temperature-induced spikelet sterility at anthesis. Ann. Bot. 106, 515–520 (2010).

    PubMed  PubMed Central  Google Scholar 

  136. Khoury, C. K. et al. An inventory of crop wild relatives of the United States. Crop Sci. 53, 1496–1508 (2013).

    Google Scholar 

  137. Atwell, B. J., Wang, H. & Scafaro, A. P. Could abiotic stress tolerance in wild relatives of rice be used to improve Oryza sativa? Plant Sci. 215–216, 48–58 (2014).

    PubMed  Google Scholar 

  138. Prasanna, B. M. Diversity in global maize germplasm: characterization and utilization. J. Biosci. 37, 843–855 (2012).

    CAS  PubMed  Google Scholar 

  139. Qi, X. et al. Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. Nature Commun. 5, 4340 (2014).

    CAS  Google Scholar 

  140. Bolger, A. et al. The genome of the stress-tolerant wild tomato species Solanum pennellii. Nature Genet. 46, 1034–1038 (2014).

    CAS  PubMed  Google Scholar 

  141. Furuta, T. et al. Development and evaluation of chromosome segment substitution lines (CSSLs) carrying chromosome segments derived from Oryza rufipogon in the genetic background of Oryza sativa L. Breed. Sci. 63, 468–475 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Baltazar, M. D. et al. QTL mapping for tolerance of anaerobic germination from IR64 and the aus landrace Nanhi using SNP genotyping. Euphytica 197, 251–260 (2014).

    CAS  Google Scholar 

  143. Oh, D. H. et al. Genome structures and transcriptomes signify niche adaptation for the multiple-ion-tolerant extremophyte Schrenkiella parvula. Plant Physiol. 164, 2123–2138 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Li, X. L., Yang, X., Hu, Y. X., Yu, X. D. & Li, Q. L. A novel NAC transcription factor from Suaeda liaotungensis K. enhanced transgenic Arabidopsis drought, salt, and cold stress tolerance. Plant Cell Rep. 33, 767–778 (2014).

    CAS  PubMed  Google Scholar 

  145. Leiser, W. L. et al. Two in one sweep: aluminum tolerance and grain yield in P-limited soils are associated to the same genomic region in West African sorghum. BMC Plant Biol. 14, 206 (2014).

    PubMed  PubMed Central  Google Scholar 

  146. Topp, C. N. et al. 3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture. Proc. Natl Acad. Sci. USA 110, E1695–E1704 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Araus, J. L. & Cairns, J. E. Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci. 19, 52–61 (2014).

    CAS  PubMed  Google Scholar 

  148. Zhang, Y. et al. Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol. 161, 20–27 (2013).

    CAS  PubMed  Google Scholar 

  149. Zhang, H. et al. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol. J. 12, 797–807 (2014).

    CAS  PubMed  Google Scholar 

  150. Cotsaftis, O., Plett, D., Shirley, N., Tester, M. & Hrmova, M. A two-staged model of Na+ exclusion in rice explained by 3D modeling of HKT transporters and alternative splicing. PLoS ONE 7, e39865 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Byrt, C. S. et al. HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol. 143, 1918–1928 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Zhou, G. et al. Enhancing the aluminium tolerance of barley by expressing the citrate transporter genes SbMATE and FRD3. J. Exp. Bot. 65, 2381–2390 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Pariasca-Tanaka, J. et al. A novel allele of the P-starvation tolerance gene OsPSTOL1 from African rice (Oryza glaberrima Steud) and its distribution in the genus Oryza. Theor. Appl. Genet. 127, 1387–1398 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Ainsworth, E. A., Yendrek, C. R., Sitch, S., Collins, W. J. & Emberson, L. D. The effects of tropospheric ozone on net primary productivity and implications for climate change. Annu. Rev. Plant Biol. 63, 637–661 (2012).

    CAS  PubMed  Google Scholar 

  155. Uauy, C., Distelfeld, A., Fahima, T., Blechl, A. & Dubcovsky, J. A. NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314, 1298–1301 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research in the authors' laboratories is supported by the US National Science Foundation IOS-121626 and IOS-1238243 (to J.B.-S.); and the US Department of Agriculture, US National Institute of Food and Agriculture – Agriculture and Food Research Initiative Grant no. 2011–04015 (to J.B.-S.), and nos. 2009–04824 and 2009–02130 (to M.V.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Bailey-Serres.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Examples of increased abiotic stress survival, biomass or yield – from the (trans)gene to crop in the field (PDF 345 kb)

PowerPoint slides

Glossary

Germplasm

A collection (either wild or cultivated) of diverse genetic material.

Plasticity

The ability of an organism to modify its phenotype (for example, metabolism or development) in response to the environment.

Edaphic conditions

Conditions related to soil, including physical (for example, texture and drainage) and chemical (for example, pH and elemental content) properties.

Transient stress

An aberrant change in the environment lasting for a short period of time — for example, high vapour pressure deficit at midday and temporary flooding.

Chronic stress

A suboptimal environmental condition lasting for a substantial portion of the life cycle of the plant — for example, salt accumulation in fertilized fields and season-long water stress.

Stress tolerance

The ability to maintain metabolic function, growth and/or yield despite the presence of an abiotic stress, achieved via mechanisms such as ion homeostasis and osmotic adjustment.

Stress avoidance

Mechanisms whereby an organism is able to alter or halt the effect of a stress by mechanisms such as ion exclusion, stomatal closure and leaf movements.

Acclimation

A short-term (typically within a generation) modification at the genetic, cellular and/or organismal levels that allows a plant to survive an aberrant change in the surrounding environment.

Adaptation

A long-term (typically over generations) modification at the genetic level that allows a plant to survive a change in its environment. The ability to quickly acclimate (for example, to transient stress) can be an adaptive trait.

Monophyletic origin

Organisms descended from a common ancestor.

Convergent evolution

Evolution via independent paths to a similar outcome, such as a solution to an abiotic constraint.

Yield stability

The maintenance of crop yield, despite suboptimal growth conditions, such as the presence of an abiotic stress.

Quantitative trait locus

(QTL). A region of chromosome that determines a trait that is quantitative in nature.

Allelic variation

Distinction in the coding sequence or regulatory regions of an allele (form of a gene at the same genetic locus).

Copy number variation

(CNV). Regions of chromosome that differ because of duplication or deletion of DNA that usually includes complete genes. CNV results in distinct haplotypes at a chromosomal region and is often associated with higher or lower expression owing to gene copy number duplication or deletion, respectively.

Neofunctionalization

Evolution of a duplicated gene that results in the distinct function and/or regulation of a formerly paralogous gene or protein.

Introgressed

Pertaining to the transfer of a genetic determinant from a donor genotype to a recipient genotype by repeated backcross hybridization. It can be accelerated by the use of molecular markers for the donor chromosomal region, as well as markers surrounding that region and the other chromosomes of the recipient genotype.

Landraces

Locally adapted varieties used by farmers.

Quiescence

A reduction in growth associated with the conservation of energy reserves.

Aerenchyma

Hollow conduits that form within roots and stems to facilitate the exchange of gases. There are multiple processes of aerenchyma development.

Guard cell

One of a pair of cells within the epidermal layer of some organs (primarily leaves) that are shaped to form a closable pore (stoma) that enables the exchange of gases between the plant and the atmosphere.

Stay-green phenotype

Phenotype of delayed senescence through the grain-filling period that is associated with delayed chlorophyll degradation.

Rhizosphere

Soil and associated microorganisms in the narrow region surrounding the root system.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mickelbart, M., Hasegawa, P. & Bailey-Serres, J. Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16, 237–251 (2015). https://doi.org/10.1038/nrg3901

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3901

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing