Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of nutrition and body composition in peripheral arterial disease

Abstract

Peripheral arterial disease (PAD) has not been as extensively investigated as other cardiovascular diseases. However, the available data suggest that nutrition-based treatment strategies have the potential to reduce the cost-economic burden of PAD substantially. Abdominal obesity is associated with PAD and prospective and cross-sectional studies have shown that a low dietary intake of folate and reduced synthesis of vitamin D are associated with an increased risk of PAD and severe walking impairment in patients who have the disease. However, dietary patterns that are associated with decreased cardiovascular risk might protect against PAD. A small number of clinical trials have provided evidence that increased intakes of niacin and insoluble fiber might be associated with decreased levels of LDL cholesterol and thrombogenic biomarkers, as well as increased serum levels of HDL cholesterol in patients with PAD. However, little evidence that antioxidants, vitamins B6 and B12, or essential fatty acid supplements improve clinical outcomes in these patients exists. Overall, data on the effects of nutrition, body composition, and nutritional supplementation on the risk, progression, and prognosis of PAD are scarce. Further research into these areas is required to allow the development of evidence-based nutritional guidelines for the prevention and treatment of the disease.

Key Points

  • Folate and vitamin D deficiencies are associated with an increased risk of peripheral arterial disease (PAD) and increased walking impairment in patients with PAD

  • Diets that are rich in insoluble fiber, antioxidants, and polyunsaturated fats might protect against PAD; therefore, the existing nutritional recommendations for cardiovascular disease prevention could be applied to PAD

  • Further research into the effects of nutritional supplements on the incidence, symptoms, progression, and prognosis of PAD is required

  • Abdominal obesity is significantly associated with PAD

  • The high prevalence of PAD in African American populations might be attributable to high rates of vitamin D deficiency and high levels of novel risk factors such as lipoprotein(a)

  • Preliminary evidence suggests that nutritional interventions and weight loss might be useful components of PAD prevention or treatment strategies and could substantially reduce the burden of the disease

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Potential effects of vitamin B12 and folate deficiencies, and the Cys66Thr variant of the MTHFR gene on homocysteine regulation and PAD etiology.
Figure 2: Potential effects of vitamin D deficiency on the risk and progression of atherosclerosis and PAD.

Similar content being viewed by others

References

  1. Rice, T. W. & Lumsden, A. B. Optimal medical management of peripheral arterial disease. Vasc. Endovascular Surg. 40, 312–327 (2006).

    Article  PubMed  Google Scholar 

  2. Guidon, M. & McGee, H. Exercise-based interventions and health-related quality of life in intermittent claudication: a 20-year (1989–2008) review. Eur. J. Cardiovasc. Prev. Rehabil. 17, 140–154 (2010).

    Article  PubMed  Google Scholar 

  3. Mahoney, E. M. et al. One-year costs in patients with a history of or at risk for atherothrombosis in the United States. Circ. Cardiovasc. Qual. Outcomes 1, 38–45 (2008).

    Article  PubMed  Google Scholar 

  4. Norgren, L. et al. The next 10 years in the management of peripheral artery disease: perspectives from the 'PAD 2009' Conference. Eur. J. Vasc. Endovasc. Surg. 40, 375–380 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Selvin, E. & Erlinger, T. P. Prevalence of and risk factors for peripheral arterial disease in the United States: results from the National Health and Nutrition Examination Survey, 1999–2000. Circulation 110, 738–743 (2004).

    Article  PubMed  Google Scholar 

  6. Hirsch, A. T. et al. Peripheral arterial disease detection, awareness, and treatment in primary care. JAMA 286, 1317–1324 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Syvänen, K., Korhonen, P., Partanen, A. & Aarnio, P. Endothelial function in a cardiovascular risk population with borderline ankle-brachial index. Vasc. Health Risk Manag. 7, 97–101 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hirsch, A. T. et al. Gaps in public knowledge of peripheral arterial disease: the first national PAD public awareness survey. Circulation 116, 2086–2094 (2007).

    Article  PubMed  Google Scholar 

  9. McDermott, M. M., Mehta, S., Ahn, H. & Greenland, P. Atherosclerotic risk factors are less intensively treated in patients with peripheral arterial disease than in patients with coronary artery disease. J. Gen. Intern. Med. 12, 209–215 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mohler, E. R. 3rd et al. Utility and barriers to performance of the ankle-brachial index in primary care practice. Vasc. Med. 4, 253–260 (2004).

    Article  Google Scholar 

  11. Olin, J. W. et al. ACCF/AHA/ACR/SCAI/SIR/SVM/SVN/SVS 2010 performance measures for adults with peripheral artery disease. A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Performance Measures, the American College of Radiology, the Society for Cardiac Angiography and Interventions, the Society for Interventional Radiology, the Society for Vascular Medicine, the Society for Vascular Nursing, and the Society for Vascular Surgery (Writing Committee to Develop Clinical Performance Measures for Peripheral Artery Disease). Vasc. Med. 15, 481–512 (2010).

    Article  PubMed  Google Scholar 

  12. Antonelli-Incalzi, R. et al. Association between nutrient intake and peripheral artery disease: results from the InCHIANTI study. Atherosclerosis 186, 200–206 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Bleys, J. et al. Serum selenium and peripheral arterial disease: results from the national health and nutrition examination survey, 2003–2004. Am. J. Epidemiol. 169, 996–1003 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bunout, D. et al. Low serum folate but normal homocysteine levels in patients with atherosclerotic vascular disease and matched healthy controls. Nutrition 16, 434–438 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Ciccarone, E. et al. A high-score Mediterranean dietary pattern is associated with a reduced risk of peripheral arterial disease in Italian patients with type 2 diabetes. J. Thromb. Haemost. 1, 1744–1752 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Donnan, P. T., Thomson, M., Fowkes, F. G., Prescott, R. J. & Housley, E. Diet as a risk factor for peripheral arterial disease in the general population: the Edinburgh Artery Study. Am. J. Clin. Nutr. 57, 917–921 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Fahrleitner-Pammer, A. et al. Hypovitaminosis D, impaired bone turnover and low bone mass are common in patients with peripheral arterial disease. Osteoporos. Int. 16, 319–324 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Gaddipati, V. C. et al. The relationship of vitamin D status to cardiovascular risk factors and amputation risk in veterans with peripheral arterial disease. J. Am. Med. Dir. Assoc. 12, 58–61 (2011).

    Article  PubMed  Google Scholar 

  19. Gimeno, S. G. et al. Fat and fiber consumption are associated with peripheral arterial disease in a cross-sectional study of a Japanese-Brazilian population. Circ. J. 72, 44–50 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Hung, H. C. et al. The association between fruit and vegetable consumption and peripheral arterial disease. Epidemiology 14, 659–665 (2003).

    Article  PubMed  Google Scholar 

  21. Katsouyanni, K. et al. Diet and peripheral arterial occlusive disease: the role of poly-, mono-, and saturated fatty acids. Am. J. Epidemiol. 133, 24–31 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Kim, D. H., Sabour, S., Sagar, U. N., Adams, S., Whellan, D. J. Prevalence of hypovitaminosis D in cardiovascular diseases (from the National Health and Nutrition Examination Survey 2001 to 2004). Am. J. Cardiol. 102, 1540–1544 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Klipstein-Grobusch, K. et al. Dietary antioxidants and peripheral arterial disease : the Rotterdam Study. Am. J. Epidemiol. 154, 145–149 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Lane, J. S. et al. Nutrition impacts the prevalence of peripheral arterial disease in the United States. J. Vasc. Surg. 48, 897–904 (2008).

    Article  PubMed  Google Scholar 

  25. Leng, G. C. et al. Plasma essential fatty acids, cigarette smoking, and dietary antioxidants in peripheral arterial disease. A population-based case-control study. Arterioscler. Thromb. 14, 471–478 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Melamed, M. L. et al. Serum 25-hydroxyvitamin D levels and the prevalence of peripheral arterial disease: results from NHANES 2001 to 2004. Arterioscler. Thromb. Vasc. Biol. 28, 1179–1185 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Merchant, A. T. et al. A. Dietary fiber reduces peripheral arterial disease risk in men. J. Nutr. 133, 3658–3663 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Rassoul, F. et al. Plasma homocysteine and lipoprotein profile in patients with peripheral arterial occlusive disease. Angiology 51, 189–196 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Reis, J. P., Michos, E. D., von Muhlen, D. & Miller, E. R. 3rd. Differences in vitamin D status as a possible contributor to the racial disparity in peripheral arterial disease. Am. J. Clin. Nutr. 88, 1469–1477 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Sabino, A. et al. Polymorphism in the methylenetetrahydrofolate reductase (C677T) gene and homocysteine levels: a comparison in Brazilian patients with coronary arterial disease, ischemic stroke and peripheral arterial obstructive disease. J. Thromb. Thrombolysis 27, 82–87 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Tornwall, M. E. et al. Prospective study of diet, lifestyle, and intermittent claudication in male smokers. Am. J. Epidemiol. 151, 892–901 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Vega de Ceniga, M. et al. Anaemia, iron and vitamin deficits in patients with peripheral arterial disease. Eur. J. Vasc. Endovasc. Surg. 41, 828–830 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Wilmink, A. B. et al. Dietary folate and vitamin B6 are independent predictors of peripheral arterial occlusive disease. J. Vasc. Surg. 39, 513–516 (2004).

    Article  PubMed  Google Scholar 

  34. Blom, H. J. & Smulders, Y. Overview of homocysteine and folate metabolism. With special references to cardiovascular disease and neural tube defects. J. Inherit. Metab. Dis. 34, 75–81 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Di Minno, M. N., Tremoli, E., Coppola, A., Lupoli, R. & Di Minno, G. Homocysteine and arterial thrombosis: challenge and opportunity. Thromb. Haemost. 103, 942–961 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Dionisio, N., Jardin, I., Salido, G. M. & Rosado, J. A. Homocysteine, intracellular signaling and thrombotic disorders. Curr. Med. Chem. 17, 3109–3119 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Verhoeff, B. J., Trip, M. D., Prins, M. H., Kastelein, J. J. & Reitsma, P. H. The effect of a common methylenetetrahydrofolate reductase mutation on levels of homocysteine, folate, vitamin B12 and on the risk of premature atherosclerosis. Atherosclerosis 141, 161–166 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Guerzoni, A. R. et al. Methylenetetrahydrofolate reductase gene polymorphism and its association with coronary artery disease. Sao Paulo Med. J. 125, 4–8 (2007).

    Article  PubMed  Google Scholar 

  39. Wald, D. S., Law, M. & Morris, J. K. Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ 325, 1202 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Fowkes, F. G. et al. Methylene tetrahydrofolate reductase (MTHFR) and nitric oxide synthase (ecNOS) genes and risks of peripheral arterial disease and coronary heart disease: Edinburgh Artery Study. Atherosclerosis 150, 179–185 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Pollex, R. L. et al. Methylenetetrahydrofolate reductase polymorphism 677C>T is associated with peripheral arterial disease in type 2 diabetes. Cardiovasc. Diabetol. 4, 17 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Jones, G. T., Harris, E. L., Phillips, L. V. & van Rij, A. M. The methylenetetrahydrofolate reductase C677T polymorphism does not associate with susceptibility to abdominal aortic aneurysm. Eur. J. Vasc. Endovasc. Surg. 30, 137–142 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Ciccarone, E. et al. Homocysteine levels are associated with the severity of peripheral arterial disease in type 2 diabetic patients. J. Thromb. Haemost. 1, 2540–2547 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Khandanpour, N. et al. Peripheral arterial disease and methylenetetrahydrofolate reductase (MTHFR) C677T mutations: a case-control study and meta-analysis. J. Vasc. Surg. 49, 711–718 (2009).

    Article  PubMed  Google Scholar 

  45. Mueller, T. et al. Factor V Leiden, prothrombin G20210A, and methylenetetrahydrofolate reductase C677T mutations are not associated with chronic limb ischemia: the Linz Peripheral Arterial Disease (LIPAD) study. J. Vasc. Surg. 41, 808–815 (2005).

    Article  PubMed  Google Scholar 

  46. Santos, M. E. et al. Mutations in methylenetetrahydrofolate reductase and in cysthationine β synthase: is there a link to homocysteine levels in peripheral arterial disease? Mol. Biol. Rep. 38, 3361–3366 (2010).

    Article  PubMed  CAS  Google Scholar 

  47. Sofi, F. et al. Thrombophilic risk factors for symptomatic peripheral arterial disease. J. Vasc. Surg. 41, 255–260 (2005).

    Article  PubMed  Google Scholar 

  48. Stricker, H., Soldati, G., Balmelli, T. & Mombelli, G. Homocysteine, vitamins and gene mutations in peripheral arterial disease. Blood Coagul. Fibrinolysis 12, 469–475 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Zintzaras, E. & Zdoukopoulos, N. A field synopsis and meta-analysis of genetic association studies in peripheral arterial disease: The CUMAGAS-PAD database. Am. J. Epidemiol. 170, 1–11 (2009).

    Article  PubMed  Google Scholar 

  50. Forman, J. P. et al. Plasma 25-hydroxyvitamin D levels and risk of incident hypertension. Hypertension 49, 1063–1069 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Giovannucci, E., Liu, Y., Hollis, B. W. & Rimm E. B. 25-hydroxyvitamin D and risk of myocardial infarction in men: a prospective study. Arch. Intern. Med. 168, 1174–1180 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang, T. J. et al. Vitamin D deficiency and risk of cardiovascular disease. Circulation 117, 503–511 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Fahrleitner, A. et al. Vitamin D deficiency and secondary hyperparathyroidism are common complications in patients with peripheral arterial disease. J. Gen. Intern. Med. 17, 663–669 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Garcia-Canton, C. et al. Vascular calcification and 25-hydroxyvitamin D levels in non-dialysis patients with chronic kidney disease stages 4 and 5. Nephrol. Dial. Transplant. 26, 2250–2256 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Zagura, M. et al. Aortic stiffness and vitamin D are independent markers of aortic calcification in patients with peripheral arterial disease and in healthy subjects. Eur. J. Vasc. Endovasc. Surg. 42, 689–695 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Van Horn, L. et al. The evidence for dietary prevention and treatment of cardiovascular disease. J. Am. Diet. Assoc. 108, 287–331 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. de Lorgeril, M. & Salen, P. Mediterranean diet in secondary prevention of CHD. Public Health Nutr. 14, 2333–2337 (2011).

    Article  PubMed  Google Scholar 

  58. Hardin-Fanning, F. The effects of a Mediterranean-style dietary pattern on cardiovascular disease risk. Nurs. Clin. North Am. 43, 105–115 (2008).

    Article  PubMed  Google Scholar 

  59. Carrero, J. J., Lopez-Huertas, E., Salmeron, L. M., Baro, L. & Ros, E. Daily supplementation with (n-3) PUFAs, oleic acid, folic acid, and vitamins B6 and E increases pain-free walking distance and improves risk factors in men with peripheral vascular disease. J. Nutr. 135, 1393–1399 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Hiatt, W. R. et al. Effect of niacin ER/lovastatin on claudication symptoms in patients with peripheral artery disease. Vasc. Med. 15, 171–179 (2010).

    Article  PubMed  Google Scholar 

  61. Leng, G. C. et al. Randomized controlled trial of gamma-linolenic acid and eicosapentaenoic acid in peripheral arterial disease. Clin. Nutr. 17, 265–271 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Madden, J. et al. Fish oil induced increase in walking distance, but not ankle brachial pressure index, in peripheral arterial disease is dependent on both body mass index and inflammatory genotype. Prostaglandins Leukot. Essent. Fatty Acids 76, 331–340 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Maxwell, A. J., Anderson, B. E. & Cooke, J. P. Nutritional therapy for peripheral arterial disease: a double-blind, placebo-controlled, randomized trial of HeartBar. Vasc. Med. 5, 11–19 (2000).

    CAS  PubMed  Google Scholar 

  64. Bays, H. et al. Extended-release niacin/laropiprant lipid-altering consistency across patient subgroups. Int. J. Clin. Pract. 65, 436–445 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Olsson, A. G. HDL and LDL as therapeutic targets for cardiovascular disease prevention: the possible role of niacin. Nutr. Metab. Cardiovasc. Dis. 20, 553–557 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Wilson, A. M., Harada, R., Nair, N., Balasubramanian, N. & Cooke, J. P. L-arginine supplementation in peripheral arterial disease: no benefit and possible harm. Circulation 116, 188–195 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Holy, E. W. et al. Dietary α-linolenic acid inhibits arterial thrombus formation, tissue factor expression, and platelet activation. Arterioscler. Thromb. Vasc. Biol. 31, 1772–1780 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Sommerfield, T., Price, J. & Hiatt, W. R. Omega-3 fatty acids for intermittent claudication. Cochrane Database of Systematic Reviews, Issue 4. Art. No. CD003833. doi:10.1002/14651858.CD003833.pub3 (2007).

  69. Egert, S. & Stehle, P. Impact of n-3 fatty acids on endothelial function: results from human interventions studies. Curr. Opin. Clin. Nutr. Metab. Care 14, 121–131 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Furenes, E. B., Seljeflot, I., Solheim, S., Hjerkinn, E. M. & Arnesen, H. Long-term influence of diet and/or omega-3 fatty acids on matrix metalloproteinase-9 and pregnancy-associated plasma protein-A in men at high risk of coronary heart disease. Scand. J. Clin. Lab. Invest. 68, 177–184 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Hooper, L. et al. Omega 3 fatty acids for prevention and treatment of cardiovascular disease. Cochrane Database Systematic Reviews, Issue 4. Art. No. CD003177. doi:10.1002/14651858.CD003117.pub2 (2004).

  72. Lefevre, M., Kris-Etherton, P. M., Zhao, G. & Tracy, R. P. Dietary fatty acids, hemostasis, and cardiovascular disease risk. J. Am. Diet. Assoc. 104, 410–419 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Schiano, V. et al. Omega-3 polyunsaturated fatty acid in peripheral arterial disease: effect on lipid pattern, disease severity, inflammation profile, and endothelial function. Clin. Nutr. 27, 241–247 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Pase, M. P., Grima, N. A. & Sarris, J. Do long-chain n-3 fatty acids reduce arterial stiffness? A meta-analysis of randomised controlled trials. Br. J. Nutr. 106, 974–980 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Leyva, D. R. et al. The effect of dietary flaxseed on improving symptoms of cardiovascular disease in patients with peripheral artery disease. Rationale and design of the FLAX-PAD randomized controlled trial. Contemp. Clin. Trials 32, 724–730 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Chesney, C. M. et al. Effect of niacin, warfarin, and antioxidant therapy on coagulation parameters in patients with peripheral arterial disease in the Arterial Disease Multiple Intervention Trial (ADMIT). Am. Heart J. 140, 631–636 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Dalgard, C. et al. No influence of increased intake of orange and blackcurrant juices and dietary amounts of vitamin E on paraoxonase-1 activity in patients with peripheral arterial disease. Eur. J. Nutr. 46, 354–363 (2007).

    Article  PubMed  CAS  Google Scholar 

  78. Dalgard, C. et al. Supplementation with orange and blackcurrant juice, but not vitamin E, improves inflammatory markers in patients with peripheral arterial disease. Br. J. Nutr. 101, 263–269 (2009).

    Article  PubMed  CAS  Google Scholar 

  79. Khandanpour, N. et al. Randomized clinical trial of folate supplementation in patients with peripheral arterial disease. Br. J. Surg. 96, 990–998 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. de Jong, S. C. et al. Normohomocysteinaemia and vitamin-treated hyperhomocysteinaemia are associated with similar risks of cardiovascular events in patients with premature peripheral arterial occlusive disease. A prospective cohort study. J. Intern. Med. 246, 87–96 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Ganji, S. H., Qin, S., Zhang, L., Kamanna, V. S. & Kashyap, M. L. Niacin inhibits vascular oxidative stress, redox-sensitive genes, and monocyte adhesion to human aortic endothelial cells. Atherosclerosis 202, 68–75 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Ruparelia, N., Digby, J. E. & Choudhury, R. P. Effects of niacin on atherosclerosis and vascular function. Curr. Opin. Cardiol. 26, 66–70 (2010).

    Article  Google Scholar 

  83. Wu, B. J. et al. Evidence that niacin inhibits acute vascular inflammation and improves endothelial dysfunction independent of changes in plasma lipids. Arterioscler. Thromb. Vasc. Biol. 30, 968–975 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Elam, M. B. et al. Effect of niacin on lipid and lipoprotein levels and glycemic control in patients with diabetes and peripheral arterial disease: the ADMIT study: a randomized trial. Arterial Disease Multiple Intervention Trial. JAMA 284, 1263–1270 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Garg, R. et al. Effective and safe modification of multiple atherosclerotic risk factors in patients with peripheral arterial disease. Am. Heart J. 140, 792–803 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Philipp, C. S., Cisar, L. A., Saidi, P. & Kostis, J. B. Effect of niacin supplementation on fibrinogen levels in patients with peripheral vascular disease. Am. J. Cardiol. 82, 697–699 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Grassi, D. et al. Black tea consumption dose-dependently improves flow-mediated dilation in healthy males. J. Hypertens. 27, 774–781 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Hawkes, W. C. & Laslett, L. J. Selenium supplementation does not improve vascular responsiveness in healthy North American men. Am. J. Physiol. Heart Circ. Physiol. 296, H256–H262 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Tornwall, M. E. et al. The effect of α-tocopherol and β-carotene supplementation on symptoms and progression of intermittent claudication in a controlled trial. Atherosclerosis 147, 193–197 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Mitchell, D. C., Prince, M. R., Frisoli, J. K., Smith, R. E. & Wood, R. F. β-carotene uptake into atherosclerotic plaque: enhanced staining and preferential ablation with the pulsed dye laser. Lasers Surg. Med. 13, 149–157 (1993).

    Article  CAS  PubMed  Google Scholar 

  91. Giusti, V. Management of obesity in patients with peripheral arterial disease. Eur. J. Vasc. Endovasc. Surg. 34, 576–582 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Mangge, H. et al. Inflammation, adiponectin, obesity and cardiovascular risk. Curr. Med. Chem. 17, 4511–4520 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Canoy, D. Coronary heart disease and body fat distribution. Curr. Atheroscler. Rep. 12, 125–133 (2010).

    Article  PubMed  Google Scholar 

  94. Goodpaster, B. H. et al. Obesity, regional body fat distribution, and the metabolic syndrome in older men and women. Arch. Intern. Med. 165, 777–783 (2005).

    Article  PubMed  Google Scholar 

  95. Sung, K. C., Ryu, S. & Reaven, G. M. Relationship between obesity and several cardiovascular disease risk factors in apparently healthy Korean individuals: comparison of body mass index and waist circumference. Metabolism 56, 297–303 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Wannamethee, S. G., Shaper, A. G., Morris, R. W. & Whincup, P. H. Measures of adiposity in the identification of metabolic abnormalities in elderly men. Am. J. Clin. Nutr. 81, 1313–1321 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Berg, A. H. & Scherer, P. E. Adipose tissue, inflammation, and cardiovascular disease. Circ. Res. 96, 939–949 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Cabrera, M. A. et al. Metabolic syndrome, abdominal obesity, and cardiovascular risk in elderly women. Int. J. Cardiol. 114, 224–229 (2007).

    Article  PubMed  Google Scholar 

  99. Moller, D. E. & Kaufman, K. D. Metabolic syndrome: a clinical and molecular perspective. Annu. Rev. Med. 56, 45–62 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Ritchie, S. A. & Connell, J. M. The link between abdominal obesity, metabolic syndrome and cardiovascular disease. Nutr. Metab. Cardiovasc. Dis. 17, 319–326 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Smith, S. C. Jr & Haslam, D. Abdominal obesity, waist circumference and cardio-metabolic risk: awareness among primary care physicians, the general population and patients at risk-—the Shape of the Nations survey. Curr. Med. Res. Opin. 23, 29–47 (2007).

    Article  PubMed  Google Scholar 

  102. Browning, L. M., Hsieh, S. D. & Ashwell, M. A systematic review of waist-to-height ratio as a screening tool for the prediction of cardiovascular disease and diabetes: 0.5 could be a suitable global boundary value. Nutr. Res. Rev. 23, 247–269 (2010).

    Article  PubMed  Google Scholar 

  103. Dias, R. M. et al. Obesity decreases time to claudication and delays post-exercise hemodynamic recovery in elderly peripheral arterial disease patients. Gerontology 55, 21–26 (2009).

    Article  PubMed  Google Scholar 

  104. Galal, W. et al. The obesity paradox in patients with peripheral arterial disease. Chest 134, 925–930 (2008).

    Article  PubMed  Google Scholar 

  105. Hamburg, N. M. et al. Maladaptive enlargement of the brachial artery in severe obesity is reversed with weight loss. Vasc. Med. 15, 215–222 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Hooi, J. D. et al. Risk factors and cardiovascular diseases associated with asymptomatic peripheral arterial occlusive disease. The Limburg PAOD Study. Peripheral Arterial Occlusive Disease. Scand. J. Prim. Health Care 16, 177–182 (1998).

    Article  CAS  PubMed  Google Scholar 

  107. Ix, J. H. et al. Association of body mass index with peripheral arterial disease in older adults: the Cardiovascular Health Study. Am. J. Epidemiol. 174, 1036–1043 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Kumakura, H. et al. The influence of the obesity paradox and chronic kidney disease on long-term survival in a Japanese cohort with peripheral arterial disease. J. Vasc. Surg. 52, 110–117 (2010).

    Article  PubMed  Google Scholar 

  109. McDermott, M. M. et al. Obesity, weight change, and functional decline in peripheral arterial disease. J. Vasc. Surg. 43, 1198–1204 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Fox, C. S. et al. Periaortic fat deposition is associated with peripheral arterial disease: the Framingham heart study. Circ. Cardiovasc. Imaging 3, 515–519 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Gardner, A. W. & Montgomery, P. S. The effect of metabolic syndrome components on exercise performance in patients with intermittent claudication. J. Vasc. Surg. 47, 1251–1258 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Gardner, A. W. & Montgomery, P. S. Resting energy expenditure in patients with intermittent claudication and critical limb ischemia. J. Vasc. Surg. 51, 1436–1441 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Giugliano, G. et al. The prognostic impact of general and abdominal obesity in peripheral arterial disease. Int. J. Obes. (Lond.) 34, 280–286 (2010).

    Article  CAS  Google Scholar 

  114. Jakovljevic, B. et al. Obesity and fat distribution as predictors of aortoiliac peripheral arterial disease in middle-aged men. Eur. J. Intern. Med. 22, 84–88 (2011).

    Article  PubMed  Google Scholar 

  115. Lim, P. S., Hu, C. Y., Wu, M. Y., Wu, T. K. & Chang, H. C. Plasma adiponectin is associated with ankle-brachial index in patients on haemodialysis. Nephrology (Carlton) 12, 546–552 (2007).

    Article  CAS  Google Scholar 

  116. Makdisse, M. et al. Prevalence and risk factors associated with peripheral arterial disease in the Hearts of Brazil Project. Arq. Bras. Cardiol. 91, 370–382 (2008).

    Article  PubMed  Google Scholar 

  117. Planas, A. et al. Relationship of obesity distribution and peripheral arterial occlusive disease in elderly men. Int. J. Obes. Relat. Metab. Disord. 25, 1068–1070 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Skilton, M. R. et al. Metabolic health, obesity and 9-year incidence of peripheral arterial disease: the D.E.S.I.R. study. Atherosclerosis 216, 471–476 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Golledge, J. et al. Association of obesity and metabolic syndrome with the severity and outcome of intermittent claudication. J. Vasc. Surg. 45, 40–46 (2007).

    Article  PubMed  Google Scholar 

  120. Lavie, C. J., Milani, R. V. & Ventura, H. O. Obesity and cardiovascular disease: risk factor, paradox, and impact of weight loss. J. Am. Coll. Cardiol. 53, 1925–1932 (2009).

    Article  PubMed  Google Scholar 

  121. Saunders, E. & Ofili, E. Epidemiology of atherothrombotic disease and the effectiveness and risks of antiplatelet therapy: race and ethnicity considerations. Cardiol. Rev. 16, 82–88 (2008).

    Article  PubMed  Google Scholar 

  122. Ix, J. H., Allison, M. A., Denenberg, J. O., Cushman, M. & Criqui, M. H. Novel cardiovascular risk factors do not completely explain the higher prevalence of peripheral arterial disease among African Americans. The San Diego Population Study. J. Am. Coll. Cardiol. 51, 2347–2354 (2008).

    Article  PubMed  Google Scholar 

  123. Allison, M. A. et al. Genetic ancestry and lower extremity peripheral artery disease in the Multi-Ethnic Study of Atherosclerosis. Vasc. Med. 15, 351–359 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Allison, M. A. et al. The effect of novel cardiovascular risk factors on the ethnic-specific odds for peripheral arterial disease in the Multi-Ethnic Study of Atherosclerosis (MESA). J. Am. Coll. Cardiol. 48, 1190–1197 (2006).

    Article  PubMed  Google Scholar 

  125. Criqui, M. H. et al. Ethnicity and peripheral arterial disease: the San Diego Population Study. Circulation 112, 2703–2707 (2005).

    Article  PubMed  Google Scholar 

  126. Khawaja, F. J. et al. Association of novel risk factors with the ankle brachial index in African American and non-Hispanic white populations. Mayo Clin. Proc. 82, 709–716 (2007).

    Article  PubMed  Google Scholar 

  127. Grant, W. B. & Peiris, A. N. Possible role of serum 25-hydroxyvitamin D in black-white health disparities in the United States. J. Am. Med. Dir. Assoc. 11, 617–628 (2010).

    Article  PubMed  Google Scholar 

  128. Chen, T. C. et al. Factors that influence the cutaneous synthesis and dietary sources of vitamin D. Arch. Biochem. Biophys. 460, 213–217 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Clemens, T. L., Adams, J. S., Henderson, S. L. & Holick, M. F. Increased skin pigment reduces the capacity of skin to synthesise vitamin D3 . Lancet 319, 74–76 (1982).

    Article  Google Scholar 

  130. Stoner, M. C. et al. Cost per day of patency: understanding the impact of patency and reintervention in a sustainable model of healthcare. J. Vasc. Surg. 48, 1489–1496 (2008).

    Article  PubMed  Google Scholar 

  131. Flu, H. et al. Treatment for peripheral arterial obstructive disease: an appraisal of the economic outcome of complications. J. Vasc. Surg. 48, 368–376 (2008).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

D. P. Brostow researched the data for the article, provided a substantial contribution to discussions of the content, and wrote the article. M. S. Kurzer made a substantial contribution to discussions of the content. All the authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Mindy S. Kurzer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brostow, D., Hirsch, A., Collins, T. et al. The role of nutrition and body composition in peripheral arterial disease. Nat Rev Cardiol 9, 634–643 (2012). https://doi.org/10.1038/nrcardio.2012.117

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2012.117

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing