Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nutrition in acute and chronic diseases

Effect of pecan nuts and extra-virgin olive oil on glycemic profile and nontraditional anthropometric indexes in patients with coronary artery disease: a randomized clinical trial

Abstract

Background/Objectives

The influence of cardioprotective foods on nontraditional indexes related to dysglycemia and body fat distribution is unknown in individuals with coronary artery disease (CAD). This study aimed to evaluate the effect of a healthy diet supplemented with pecan nuts or extra-virgin olive oil on glycemic profile and adipose tissue dysfunction assessed by anthropometric indexes in patients with stable CAD.

Subjects/Methods

In a randomized, pragmatic, parallel clinical trial lasting 12 weeks, 204 individuals were allocated to three interventions: a healthy diet (control group [CG], n = 67), a healthy diet plus 30 g/day of pecan nuts (pecan nut group [PNG], n = 68), or a healthy diet plus 30 mL/day of extra-virgin olive oil (olive oil group [OOG], n = 69). Triglyceride-glucose (TyG) index (primary outcome) and other markers of glycemic profile were evaluated, and nontraditional anthropometric indexes as well. Diet quality was assessed according to the Alternate Healthy Eating Index (mAHEI).

Results

After adjustment for baseline values, use of antidiabetic drugs and insulin, there were no differences in both glycemic and anthropometric profiles according to groups at the end of the study. PNG improved the quality of the diet in comparison to other groups (final mAHEI scores: CG: 19 ± 7.5; PNG: 26 ± 8; OOG: 18.9 ± 6; P < 0.001).

Conclusions

There was no difference regarding glycemic and anthropometric parameters according to interventions in patients with stable CAD. However, adding pecan nuts to a healthy diet may improve its quality. Further studies must be conducted considering dietary interventions on secondary cardiovascular prevention setting.

Clinical trials identifier number

NCT02202265. First Posted: July 2014; Last Update: September 2020.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flowchart of the study.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, AM, upon reasonable request.

References

  1. Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, et al. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2021 Update: A Report From the American Heart Association. Circulation 2021;143:e254–e743.

    Article  PubMed  Google Scholar 

  2. Su G, Mi S, Tao H, Li Z, Yang H, Zheng H, et al. Association of glycemic variability and the presence and severity of coronary artery disease in patients with type 2 diabetes. Cardiovasc Diabetol. 2011;10:19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xia J, Yin C. Glucose variability and coronary artery disease. Heart Lung Circ. 2019;28:553–9.

    Article  PubMed  Google Scholar 

  4. Khan SH, Sobia F, Niazi NK, Manzoor SM, Fazal N, Ahmad F. Metabolic clustering of risk factors: evaluation of Triglyceride-glucose index (TyG index) for evaluation of insulin resistance. Diabetol Metab Syndr. 2018;10:74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Silva A, Caldas APS, Rocha DMUP, Bressan J. Triglyceride-glucose index predicts independently type 2 diabetes mellitus risk: a systematic review and meta-analysis of cohort studies. Prim Care Diabetes. 2020;14:584–93.

    Article  PubMed  Google Scholar 

  6. Hu C, Zhang J, Liu J, Liu Y, Gao A, Zhu Y, et al. Discordance between the triglyceride glucose index and fasting plasma glucose or HbA1C in patients with acute coronary syndrome undergoing percutaneous coronary intervention predicts cardiovascular events: a cohort study from China. Cardiovasc Diabetol. 2020;19:116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. da Silva A, Caldas APS, Hermsdorff HHM, Bersch-Ferreira ÂC, Torreglosa CR, Weber B, et al. Triglyceride-glucose index is associated with symptomatic coronary artery disease in patients in secondary care. Cardiovasc Diabetol. 2019;18:89.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Van Gaal LF, Mertens IL, De Block CE. Mechanisms linking obesity with cardiovascular disease. Nature. 2006;444:875–80.

    Article  PubMed  Google Scholar 

  9. Luo Y, Ma X, Shen Y, Xu Y, Xiong Q, Zhang X, et al. Neck circumference as an effective measure for identifying cardio-metabolic syndrome: a comparison with waist circumference. Endocrine. 2017;55:822–30.

    Article  CAS  PubMed  Google Scholar 

  10. Garofallo SB, Portal VL, Markoski MM, Dias LD, de Quadros AS, Marcadenti A. Correlations between traditional and nontraditional indicators of adiposity, inflammation, and monocyte subtypes in patients with stable coronary artery disease. J Obes. 2019;2019:3139278.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Han L, Fu KL, Zhao J, Wang ZH, Tang MX, Wang J, et al. Visceral adiposity index score indicated the severity of coronary heart disease in Chinese adults. Diabetol Metab Syndr. 2014;6:143.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chiavaroli L, Viguiliouk E, Nishi SK, Blanco Mejia S, Rahelić D, Kahleová H, et al. DASH dietary pattern and cardiometabolic outcomes: an umbrella review of systematic reviews and meta-analyses. Nutrients. 2019;11:338.

    Article  CAS  PubMed Central  Google Scholar 

  13. Rees K, Takeda A, Martin N, Ellis L, Wijesekara D, Vepa A, et al. Mediterranean-style diet for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2019;3:CD009825.

    PubMed  Google Scholar 

  14. Widmer RJ, Flammer AJ, Lerman LO, Lerman A. The Mediterranean diet, its components, and cardiovascular disease. Am J Med. 2015;128:229–38.

    Article  PubMed  Google Scholar 

  15. Tindall AM, Johnston EA, Kris-Etherton PM, Petersen KS. The effect of nuts on markers of glycemic control: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr. 2019;109:297–314.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Santangelo C, Filesi C, Varì R, Scazzocchio B, Filardi T, Fogliano V, et al. Consumption of extra-virgin olive oil rich in phenolic compounds improves metabolic control in patients with type 2 diabetes mellitus: a possible involvement of reduced levels of circulating visfatin. J Endocrinol Investig. 2016;39:1295–301.

    Article  CAS  Google Scholar 

  17. Estruch R, Martínez-González MA, Corella D, Salas-Salvadó J, Fitó M, Chiva-Blanch G, et al. Effect of a high-fat Mediterranean diet on bodyweight and waist circumference: a prespecified secondary outcomes analysis of the PREDIMED randomised controlled trial. Lancet Diabetes Endocrinol. 2019;7:e6–e17.

    Article  PubMed  Google Scholar 

  18. Campos VP, Portal VL, Markoski MM, Quadros AS, Bersch-Ferreira ÂC, Garavaglia J, et al. Effects of a healthy diet enriched or not with pecan nuts or extra-virgin olive oil on the lipid profile of patients with stable coronary artery disease: a randomised clinical trial. J Hum Nutr Diet. 2020;33:439–50.

    Article  CAS  PubMed  Google Scholar 

  19. Thomazella MC, Góes MF, Andrade CR, Debbas V, Barbeiro DF, Correia RL, et al. Effects of high adherence to mediterranean or low-fat diets in medicated secondary prevention patients. Am J Cardiol. 2011;108:1523–9.

    Article  PubMed  Google Scholar 

  20. Yubero-Serrano EM, Fernandez-Gandara C, Garcia-Rios A, Rangel-Zuñiga OA, Gutierrez-Mariscal FM, Torres-Peña JD, et al. Mediterranean diet and endothelial function in patients with coronary heart disease: an analysis of the CORDIOPREV randomized controlled trial. PLoS Med. 2020;17:e1003282.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Martínez-González MA, Fernandez-Lazaro CI, Toledo E, Díaz-López A, Corella D, Goday A, et al. Carbohydrate quality changes and concurrent changes in cardiovascular risk factors: a longitudinal analysis in the PREDIMED-Plus randomized trial. Am J Clin Nutr. 2020;111:291–306.

    Article  PubMed  Google Scholar 

  22. Babiker R, Elmusharaf K, Keogh MB, Saeed AM. Effect of Gum Arabic (Acacia Senegal) supplementation on visceral adiposity index (VAI) and blood pressure in patients with type 2 diabetes mellitus as indicators of cardiovascular disease (CVD): a randomized and placebo-controlled clinical trial. Lipids Health Dis. 2018;17:56.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Portal VL, Markoski MM, Quadros AS, Garofallo S, Santos JL, Oliveira A, et al. Effect of polymorphisms in the CD36 and STAT3 genes on different dietary interventions among patients with coronary artery disease: study protocol for a randomized controlled trial. Trials 2016;17:437.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Weschenfelder C, Gottschall CBA, Markoski MM, Portal VL, de Quadros AS, Bersch-Ferreira ÂC et al. Effects of supplementing a healthy diet with pecan nuts or extra-virgin olive oil on inflammatory profile of patients with stable coronary artery disease: a randomized clinical trial. Br J Nutr. 2021;11:1–27. https://doi.org/10.1017/S0007114521001513.

  25. Amato MC, Giordano C, Galia M, Criscimanna A, Vitabile S, Midiri M, et al. Visceral Adiposity Index: a reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care. 2010;33:920–2.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ioachimescu AG, Brennan DM, Hoar BM, Hoogwerf BJ. The lipid accumulation product and all-cause mortality in patients at high cardiovascular risk: a PreCIS database study. Obesity. 2010;18:1836–44.

    Article  CAS  PubMed  Google Scholar 

  27. Brundavani V, Murthy SR, Kurpad AV. Estimation of deep-abdominal-adipose-tissue (DAAT) accumulation from simple anthropometric measurements in Indian men and women. Eur J Clin Nutr. 2006;60:658–66.

    Article  CAS  PubMed  Google Scholar 

  28. Dehghan M, Mente A, Teo KK, Gao P, Sleight P, Dagenais G, et al. Relationship between healthy diet and risk of cardiovascular disease among patients on drug therapies for secondary prevention: a prospective cohort study of 31 546 high-risk individuals from 40 countries. Circulation. 2012;126:2705–12.

    Article  CAS  PubMed  Google Scholar 

  29. Weber B, Bersch-Ferreira ÂC, Torreglosa CR, Marcadenti A, Lara ES, da Silva JT, et al. Implementation of a Brazilian Cardioprotective Nutritional (BALANCE) Program for improvement on quality of diet and secondary prevention of cardiovascular events: a randomized, multicenter trial. Am Heart J. 2019;215:187–97.

    Article  PubMed  Google Scholar 

  30. Willett WC, Howe GR, Kushi LH. Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr. 1997;65:1220S–1228S.

    Article  CAS  PubMed  Google Scholar 

  31. Reis Ribeiro S, Klein B, Machado Ribeiro Q, Duarte Dos Santos I, Gomes Genro AL, de Freitas, et al. Chemical composition and oxidative stability of eleven pecan cultivars produced in southern Brazil. Food Res Int. 2020;136:109596.

    Article  CAS  PubMed  Google Scholar 

  32. Belury MA, Cole RM, Snoke DB, Banh T, Angelotti A. Linoleic acid, glycemic control and Type 2 diabetes. Prostaglandins Leukot Ess Fat Acids. 2018;132:30–33.

    Article  CAS  Google Scholar 

  33. Qian F, Korat AA, Malik V, Hu FB. Metabolic Effects of Monounsaturated Fatty Acid-Enriched Diets Compared With Carbohydrate or Polyunsaturated Fatty Acid-Enriched Diets in Patients With Type 2 Diabetes: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Diabetes Care. 2016;39:1448–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Silva FM, Kramer CK, de Almeida JC, Steemburgo T, Gross JL, Azevedo MJ. Fiber intake and glycemic control in patients with type 2 diabetes mellitus: a systematic review with meta-analysis of randomized controlled trials. Nutr Rev. 2013;71:790–801.

    Article  PubMed  Google Scholar 

  35. Rocca AS, LaGreca J, Kalitsky J, Brubaker PL. Monounsaturated fatty acid diets improve glycemic tolerance through increased secretion of glucagon-like peptide-1. Endocrinology. 2001;142:1148–55.

    Article  CAS  PubMed  Google Scholar 

  36. Bozzetto L, Prinster A, Annuzzi G, Costagliola L, Mangione A, Vitelli A, et al. Liver fat is reduced by an isoenergetic MUFA diet in a controlled randomized study in type 2 diabetic patients. Diabetes Care. 2012;35:1429–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Iwasaki T, Tomeno W, Yoneda M, Inamori M, Shirakawa J, Imajo K, et al. Non-alcoholic fatty liver disease adversely affects the glycemic control afforded by sitagliptin. Hepatogastroenterology. 2012;59:1522–5.

    PubMed  Google Scholar 

  38. Viguiliouk E, Kendall CW, Blanco Mejia S, Cozma AI, Ha V, Mirrahimi A, et al. Effect of tree nuts on glycemic control in diabetes: a systematic review and meta-analysis of randomized controlled dietary trials. PLoS One. 2014;9:e103376.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ribeiro PVM, Silva A, Almeida AP, Hermsdorff HH, Alfenas RC. Effect of chronic consumption of pistachios (Pistacia vera L.) on glucose metabolism in pre-diabetics and type 2 diabetics: a systematic review. Crit Rev Food Sci Nutr. 2019;59:1115–23.

    Article  CAS  PubMed  Google Scholar 

  40. Del Gobbo LC, Falk MC, Feldman R, Lewis K, Mozaffarian D. Effects of tree nuts on blood lipids, apolipoproteins, and blood pressure: systematic review, meta-analysis, and dose-response of 61 controlled intervention trials. Am J Clin Nutr. 2015;102:1347–56.

    Article  PubMed  PubMed Central  Google Scholar 

  41. McKay DL, Eliasziw M, Chen CYO, Blumberg JB. A Pecan-Rich Diet Improves Cardiometabolic Risk Factors in Overweight and Obese Adults: A Randomized Controlled Trial. Nutrients. 2018;10:339.

    Article  PubMed Central  Google Scholar 

  42. Venkatachalam M, Kshirsagar HH, Seeram NP, Heber D, Thompson TE, Roux KH, et al. Biochemical composition and immunological comparison of select pecan [Carya illinoinensis (Wangenh.) K. Koch] cultivars. J Agric Food Chem. 2007;55:9899–907.

    Article  CAS  PubMed  Google Scholar 

  43. Mazidi M, Vatanparast H, Katsiki N, Banach M. The impact of nuts consumption on glucose/insulin homeostasis and inflammation markers mediated by adiposity factors among American adults. Oncotarget. 1827;9:31173–86.

    Article  Google Scholar 

  44. Ferramosca A, Conte A, Burri L, Berge K, De Nuccio F, Giudetti AM, et al. A krill oil supplemented diet suppresses hepatic steatosis in high-fat fed rats. PLoS One. 2012;7:e38797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Röder PV, Geillinger KE, Zietek TS, Thorens B, Koepsell H, Daniel H. The role of SGLT1 and GLUT2 in intestinal glucose transport and sensing. PLoS One. 2014;9:e89977.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhang ZF, Li Q, Liang J, Dai XQ, Ding Y, Wang JB, et al. Epigallocatechin-3-O-gallate (EGCG) protects the insulin sensitivity in rat L6 muscle cells exposed to dexamethasone condition. Phytomedicine. 2010;17:14–8.

    Article  CAS  PubMed  Google Scholar 

  47. Schwingshackl L, Lampousi AM, Portillo MP, Romaguera D, Hoffmann G, Boeing H. Olive oil in the prevention and management of type 2 diabetes mellitus: a systematic review and meta-analysis of cohort studies and intervention trials. Nutr Diabetes. 2017;7:e262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pedan V, Popp M, Rohn S, Nyfeler M, Bongartz A. Characterization of Phenolic Compounds and Their Contribution to Sensory Properties of Olive Oil. Molecules. 2019;24:2041.

    Article  CAS  PubMed Central  Google Scholar 

  49. Tekaya M, Mechri B, Bchir A, Attia F, Cheheb H, Daassa M, et al. Effect of nutrient-based fertilisers of olive trees on olive oil quality. J Sci Food Agric. 2013;93:2045–52.

    Article  CAS  PubMed  Google Scholar 

  50. European Comission. Brussels: Official Journal of the European Union: 2012. Accessed 27 Mar 2021. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2012:136:FULL:EN:PDF.

  51. Meza CA, La Favor JD, Kim DH, Hickner RC. Endothelial Dysfunction: Is There a Hyperglycemia-Induced Imbalance of NOX and NOS? Int J Mol Sci. 2019;20:3775.

    Article  CAS  PubMed Central  Google Scholar 

  52. Mach F, Ray KK, Wiklund O, Corsini A, Catapano AL, Bruckert E, et al. Adverse effects of statin therapy: perception vs. the evidence—focus on glucose homeostasis, cognitive, renal and hepatic function, haemorrhagic stroke and cataract. Eur Heart J. 2018;39:2526–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gelli C, Tarocchi M, Abenavoli L, Di Renzo L, Galli A, De Lorenzo A. Effect of a counseling-supported treatment with the Mediterranean diet and physical activity on the severity of the non-alcoholic fatty liver disease. World J Gastroenterol. 2017;23:3150–62.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the staff from the Hemodynamic Service and the Laboratory of Cellular and Molecular Cardiology (LCMC) of the Instituto de Cardiologia do Rio Grande do Sul; Dr. Ricardo Bruch for laboratory analysis; and the companies Olivas do Sul, Divinut, and Pecanita for the supplies of extra-virgin olive oil and pecan nuts.

Funding

This study was supported by the Brazilian National Council for Scientific and Technological Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico [CNPq]), under grant number 487146/2013-1; and the Rio Grande do Sul Research Foundation (Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul [FAPERGS]), under grant ‘Gestão Compartilhada em Saúde – PPSUS – CHAMADA FAPERGS/MS/CNPq/SESRS n. 002/2013’.

Author information

Authors and Affiliations

Authors

Contributions

AM designed the study. AM and VLP were responsible for funding acquisition. JLS participated in data collection and follow-up. AM and ACB-F performed the statistical analysis. AM and JLS wrote the draft of the manuscript. MMM, VLP and ASQ contributed intellectually and revised the manuscript. All authors read and approved the final version of the article.

Corresponding author

Correspondence to Aline Marcadenti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, J.L., Portal, V.L., Markoski, M.M. et al. Effect of pecan nuts and extra-virgin olive oil on glycemic profile and nontraditional anthropometric indexes in patients with coronary artery disease: a randomized clinical trial. Eur J Clin Nutr 76, 827–834 (2022). https://doi.org/10.1038/s41430-021-01045-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-021-01045-7

Search

Quick links