Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nutrition in acute and chronic diseases

Effect of a nut-enriched low-calorie diet on body weight and selected markers of inflammation in overweight and obese stable coronary artery disease patients: a randomized controlled study

Abstract

Background/objectives

Weight loss through a low-calorie diet (LCD) could improve low-grade inflammation evident in the obese state. Few studies have evaluated the effect of the mixed nuts consumption in the context of a LCD on inflammatory biomarkers. This study compared the effects of a nut-enriched LCD (NELCD) with a nut-free LCD (NFLCD) on body weight and inflammatory markers in overweight or obese coronary artery disease (CAD) patients.

Subjects/method

In this randomized controlled parallel trial, patients with stable CAD of both genders were randomly allocated to 8-week NELCD or NFLCD. Body weight, plasma C-reactive protein (CRP), interleukin-6 (IL-6), interleukin 10 (IL-10), intercellular adhesion molecule-1 (ICAM-1), and monocyte chemoattractant protein (MCP-1) were assessed at baseline and 8 weeks.

Results

Overall, 67 patients (aged 58.8 ± 7.4 years; BMI 30.9 ± 3.9 kg/m2) completed the study. Participants in both groups lost weight to a comparable extent. Patients in the NELCD group showed a decrease in ICAM-1 (p = 0.04) and IL-6 (p = 0.02) concentrations compared to NFLCD group. No significant difference in concentrations of MCP-1, IL-10, or CRP was observed between diet groups.

Conclusions

Nuts are healthy energy-dense foods that if included in controlled amounts in a weight management program can still result in weight reduction and may improve some plasma concentration of inflammatory factors, such as ICAM-1 and IL-6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flow diagram of the study.

Similar content being viewed by others

References

  1. Collaborators GBDCoD. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390:1151–210.

    Google Scholar 

  2. Wong BW, Meredith A, Lin D, McManus BM. The biological role of inflammation in atherosclerosis. Can J Cardiol. 2012;28:631–41.

    PubMed  Google Scholar 

  3. Li H, Sun K, Zhao R, Hu J, Hao Z, Wang F, et al. Inflammatory biomarkers of coronary heart disease. Front Biosci. 2018;10:185–96.

    Google Scholar 

  4. Ridker PM, Hennekens CH, Buring JE, Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N. Engl J Med. 2000;342:836–43.

    CAS  PubMed  Google Scholar 

  5. Blankenberg S, Rupprecht HJ, Bickel C, Peetz D, Hafner G, Tiret L, et al. Circulating cell adhesion molecules and death in patients with coronary artery disease. Circulation. 2001;104:1336–42.

    CAS  PubMed  Google Scholar 

  6. Marinou K, Tousoulis D, Antonopoulos AS, Stefanadi E, Stefanadis C. Obesity and cardiovascular disease: from pathophysiology to risk stratification. Int J Cardiol. 2010;138:3–8.

    PubMed  Google Scholar 

  7. Saltiel AR, Olefsky JM. Inflammatory mechanisms linking obesity and metabolic disease. J Clin Investig. 2017;127:1–4.

    PubMed  Google Scholar 

  8. Forsythe LK, Wallace JM, Livingstone MB. Obesity and inflammation: the effects of weight loss. Nutr Res Rev. 2008;21:117–33.

    CAS  PubMed  Google Scholar 

  9. Alasalvar C, Bolling BW. Review of nut phytochemicals, fat-soluble bioactives, antioxidant components and health effects. Br J Nutr. 2015;113:S68–78.

    CAS  PubMed  Google Scholar 

  10. Sabaté J, Ang Y. Nuts and health outcomes: new epidemiologic evidence. Am J Clin Nutr. 2009;89:1643S–8S.

    PubMed  Google Scholar 

  11. Luo C, Zhang Y, Ding Y, Shan Z, Chen S, Yu M, et al. Nut consumption and risk of type 2 diabetes, cardiovascular disease, and all-cause mortality: a systematic review and meta-analysis. Am J Clin Nutr. 2014;100:256–69.

    CAS  PubMed  Google Scholar 

  12. Yu Z, Malik VS, Keum N, Hu FB, Giovannucci EL, Stampfer MJ, et al. Associations between nut consumption and inflammatory biomarkers. Am J Clin Nutr. 2016;104:722–8.

    CAS  PubMed  Google Scholar 

  13. Liu JF, Liu YH, Chen CM, Chang WH, Chen CY. The effect of almonds on inflammation and oxidative stress in Chinese patients with type 2 diabetes mellitus: a randomized crossover controlled feeding trial. Eur J Nutr. 2013;52:927–35.

    CAS  PubMed  Google Scholar 

  14. Gulati S, Misra A, Pandey R, Bhatt DS, Saluja S. Effects of pistachio nuts on body composition, metabolic, inflammatory and oxidative stress parameters in Asian Indians with metabolic syndrome: A 24-week, randomized control trial. Nutrition. 2014;30:192–7.

    CAS  PubMed  Google Scholar 

  15. Xiao Y, Xia J, Ke Y, Cheng J, Yuan J, Wu S, et al. Effects of nut consumption on selected inflammatory markers: a systematic review and meta-analysis of randomized controlled trials. Nutrition. 2018;54:129–43.

    CAS  PubMed  Google Scholar 

  16. Neale EP, Tapsell LC, Guan V, Batterham MJ. The effect of nut consumption on markers of inflammation and endothelial function: a systematic review and meta-analysis of randomised controlled trials. BMJ Open. 2017;7:e016863.

  17. Hong MY, Groven S, Marx A, Rasmussen C, Beidler J. Anti-inflammatory, antioxidant, and hypolipidemic effects of mixed nuts in atherogenic diet-fed rats. Molecules. 2018;23:3126–38.

  18. Casas-Agustench P, López-Uriarte P, Bulló M, Ros E, Cabré-Vila JJ, Salas-Salvadó J. Effects of one serving of mixed nuts on serum lipids, insulin resistance and inflammatory markers in patients with the metabolic syndrome. Nutr, Metab, Cardiovasc Dis. 2011;21:126–35.

    CAS  Google Scholar 

  19. Lee YJ, Nam GE, Seo JA, Yoon T, Seo I, Lee JH, et al. Nut consumption has favorable effects on lipid profiles of Korean women with metabolic syndrome. Nutr Res. 2014;34:814–20.

    CAS  PubMed  Google Scholar 

  20. Abbaspour N, Roberts T, Hooshmand S, Kern M, Hong MY. Mixed nut consumption may improve cardiovascular disease risk factors in overweight and obese adults. Nutrients. 2019;11:1488–500.

  21. Casas R, Sacanella E, Urpi-Sarda M, Corella D, Castaner O, Lamuela-Raventos RM, et al. Long-term immunomodulatory effects of a mediterranean diet in adults at high risk of cardiovascular disease in the PREvencion con DIeta MEDiterranea (PREDIMED) Randomized Controlled Trial. J Nutr 2016;146:1684–93.

    CAS  PubMed  Google Scholar 

  22. Estruch R, Martinez-Gonzalez MA, Corella D, Salas-Salvado J, Ruiz-Gutierrez V, Covas MI, et al. Effects of a Mediterranean-style diet on cardiovascular risk factors: a randomized trial. Ann Intern Med. 2006;145:1–11.

    PubMed  Google Scholar 

  23. Mena MP, Sacanella E, Vazquez-Agell M, Morales M, Fito M, Escoda R, et al. Inhibition of circulating immune cell activation: a molecular antiinflammatory effect of the Mediterranean diet. Am J Clin Nutr. 2009;89:248–56.

    CAS  PubMed  Google Scholar 

  24. Mifflin MD, St Jeor ST, Hill LA, Scott BJ, Daugherty SA, Koh YO. A new predictive equation for resting energy expenditure in healthy individuals. Am J Clin Nutr. 1990;51:241–7.

    CAS  PubMed  Google Scholar 

  25. Craig C, Marshall A, Sjostrom M, Bauman A, Booth M, Ainsworth B, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci sports Exerc. 2003;35:1381–95.

    PubMed  Google Scholar 

  26. Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17:1689–96.

    PubMed  Google Scholar 

  27. Zhao G, Etherton TD, Martin KR, West SG, Gillies PJ, Kris-Etherton PM. Dietary alpha-linolenic acid reduces inflammatory and lipid cardiovascular risk factors in hypercholesterolemic men and women. J Nutr. 2004;134:2991–7.

    CAS  PubMed  Google Scholar 

  28. Tan SY, Dhillon J, Mattes RD. A review of the effects of nuts on appetite, food intake, metabolism, and body weight. Am J Clin Nutr. 2014;100:412S–22S.

    CAS  PubMed  Google Scholar 

  29. Hollis J, Mattes R. Effect of chronic consumption of almonds on body weight in healthy humans. Br J Nutr. 2007;98:651–6.

    CAS  PubMed  Google Scholar 

  30. Li Z, Song R, Nguyen C, Zerlin A, Karp H, Naowamondhol K, et al. Pistachio nuts reduce triglycerides and body weight by comparison to refined carbohydrate snack in obese subjects on a 12-week weight loss program. J Am Coll Nutr. 2010;29:198–203.

    CAS  PubMed  Google Scholar 

  31. Foster GD, Shantz KL, Vander Veur SS, Oliver TL, Lent MR, Virus A, et al. A randomized trial of the effects of an almond-enriched, hypocaloric diet in the treatment of obesity. Am J Clin Nutr. 2012;96:249–54.

    CAS  PubMed  Google Scholar 

  32. Wien MA, Sabate JM, Ikle DN, Cole SE, Kandeel FR. Almonds vs complex carbohydrates in a weight reduction program. Int J Obes Relat Metab Disord. 2003;27:1365–72.

    CAS  PubMed  Google Scholar 

  33. Mathieu P, Lemieux I, Despres JP. Obesity, inflammation, and cardiovascular risk. Clin Pharmacol Therapeutics. 2010;87:407–16.

    CAS  Google Scholar 

  34. Monneret D, Mestari F, Djiavoudine S, Bachelot G, Cloison M, Imbert-Bismut F, et al. Wide-range CRP versus high-sensitivity CRP on Roche analyzers: focus on low-grade inflammation ranges and high-sensitivity cardiac troponin T levels. Scand J Clin Lab Investig. 2018;78:346–51.

    CAS  Google Scholar 

  35. Li R, Xue Y, Wang T, Gong L, Peng P, Xiong P, et al. A comparison study between wide-range and high-sensitivity C-reactive protein assays (Roche Cobas c702) for low C-reactive protein concentration in patients with cardiovascular risk. J Clin Lab Anal. 2019;33:e22957.

    CAS  PubMed  Google Scholar 

  36. Rajaram S, Connell KM, Sabate J. Effect of almond-enriched high-monounsaturated fat diet on selected markers of inflammation: a randomised, controlled, crossover study. Br J Nutr. 2010;103:907–12.

    CAS  PubMed  Google Scholar 

  37. Tey SL, Gray AR, Chisholm AW, Delahunty CM, Brown RC. The dose of hazelnuts influences acceptance and diet quality but not inflammatory markers and body composition in overweight and obese individuals. J Nutr. 2013;143:1254–62.

    CAS  PubMed  Google Scholar 

  38. Parham M, Heidari S, Khorramirad A, Hozoori M, Hosseinzadeh F, Bakhtyari L, et al. Effects of pistachio nut supplementation on blood glucose in patients with type 2 diabetes: a randomized crossover trial. Rev Diabet Stud. 2014;11:190–6.

    PubMed  Google Scholar 

  39. Barbour JA, Howe PR, Buckley JD, Bryan J, Coates AM. Effect of 12 weeks high oleic peanut consumption on cardio-metabolic risk factors and body composition. Nutrients. 2015;7:7381–98.

    CAS  PubMed  Google Scholar 

  40. Chen CY, Holbrook M, Duess MA, Dohadwala MM, Hamburg NM, Asztalos BF, et al. Effect of almond consumption on vascular function in patients with coronary artery disease: a randomized, controlled, cross-over trial. Nutr J. 2015;14:61.

    CAS  PubMed  Google Scholar 

  41. Mazidi M, Rezaie P, Ferns GA, Gao HK. Impact of different types of tree nut, peanut, and soy nut consumption on serum C-reactive protein (CRP): A systematic review and meta-analysis of randomized controlled clinical trials. Medicine. 2016;95:e5165.

    CAS  PubMed  Google Scholar 

  42. Urpi-Sarda M, Casas R, Chiva-Blanch G, Romero-Mamani ES, Valderas-Martinez P, Salas-Salvado J, et al. The Mediterranean diet pattern and its main components are associated with lower plasma concentrations of tumor necrosis factor receptor 60 in patients at high risk for cardiovascular disease. J Nutr. 2012;142:1019–25.

    CAS  PubMed  Google Scholar 

  43. Sari I, Baltaci Y, Bagci C, Davutoglu V, Erel O, Celik H, et al. Effect of pistachio diet on lipid parameters, endothelial function, inflammation, and oxidative status: a prospective study. Nutrition. 2010;26:399–404.

    CAS  PubMed  Google Scholar 

  44. Aronis KN, Vamvini MT, Chamberland JP, Sweeney LL, Brennan AM, Magkos F, et al. Short-term walnut consumption increases circulating total adiponectin and apolipoprotein A concentrations, but does not affect markers of inflammation or vascular injury in obese humans with the metabolic syndrome: data from a double-blinded, randomized, placebo-controlled study. Metabolism. 2012;61:577–82.

    CAS  PubMed  Google Scholar 

  45. Lopez-Uriarte P, Nogues R, Saez G, Bullo M, Romeu M, Masana L, et al. Effect of nut consumption on oxidative stress and the endothelial function in metabolic syndrome. Clin Nutr. 2010;29:373–80.

    CAS  PubMed  Google Scholar 

  46. Biesalski HK. Polyphenols and inflammation: basic interactions. Curr Opin Clin Nutr Metab Care. 2007;10:724–8.

    CAS  PubMed  Google Scholar 

  47. Chen CY, Blumberg JB. Phytochemical composition of nuts. Asia Pac J Clin Nutr. 2008;17:329–32.

    CAS  PubMed  Google Scholar 

  48. Csiszar A. Anti-inflammatory effects of resveratrol: possible role in prevention of age-related cardiovascular disease. Ann N. Y Acad Sci. 2011;1215:117–22.

    CAS  PubMed  Google Scholar 

  49. Bolling BW, Chen CY, McKay DL, Blumberg JB. Tree nut phytochemicals: composition, antioxidant capacity, bioactivity, impact factors. A systematic review of almonds, Brazils, cashews, hazelnuts, macadamias, pecans, pine nuts, pistachios and walnuts. Nutr Res Rev. 2011;24:244–75.

    CAS  PubMed  Google Scholar 

  50. Owona BA, Abia WA, Moundipa PF. Natural compounds flavonoids as modulators of inflammasomes in chronic diseases. Int Immunopharmacol. 2020;84:106498.

    CAS  PubMed  Google Scholar 

  51. Medeiros-de-Moraes IM, Goncalves-de-Albuquerque CF, Kurz ARM, Oliveira FMJ, de Abreu VHP, Torres RC, et al. Omega-9 oleic acid, the main compound of olive oil, mitigates inflammation during experimental sepsis. Oxid Med Cell Longev. 2018;2018:6053492.

    PubMed  Google Scholar 

  52. Camell C, Smith CW. Dietary oleic acid increases m2 macrophages in the mesenteric adipose tissue. PLoS One. 2013;8:e75147.

    CAS  PubMed  Google Scholar 

Download references

Funding

This research is funded by the National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Science, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Contributions

The study was conceptualized by JN and MG, conducted by MG, SAP, SMH, and MS and the manuscript was prepared by JN, MG, and HE. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Javad Nasrollahzadeh.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanavati, M., Hosseinabadi, S.M., Parsa, S.A. et al. Effect of a nut-enriched low-calorie diet on body weight and selected markers of inflammation in overweight and obese stable coronary artery disease patients: a randomized controlled study. Eur J Clin Nutr 75, 1099–1108 (2021). https://doi.org/10.1038/s41430-020-00819-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-020-00819-9

Search

Quick links