Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Evolutionary biology of high-risk multiple myeloma

Key Points

  • Treatment of myeloma has developed rapidly over the past two decades with the advent of proteasome inhibitors and immunomodulatory agents. Despite their dramatic impact on overall patient outcomes, there remains a high-risk group of patients, constituting 20–30% of all cases, who have not benefited to the same extent and continue to have poor outcomes.

  • There is no single pathogenic mechanism that can currently be used to unify and define high-risk disease; instead, the common features are clinically aggressive behaviours, including therapy resistance, proliferation and evasion of apoptosis, which are the consequences of following several evolutionary trajectories driven by distinct gene–gene interactions.

  • The key molecular hallmarks of high-risk disease biology include increased proliferation and the development of a high-risk ecosystem that facilitates both cancer cell survival and failure of the immune response.

  • Genetic lesions underlie the key hallmarks of high-risk disease states and may occur as tumour initiating or progression events. No one of these lesions explains all high-risk disease, and in order to effectively target high-risk disease, we need to understand how these drivers arise, interact with each other and mediate their downstream effects.

  • Pathologically, the high-risk biological states of multiple myeloma are the end stage of a multi-step clinical progression system typical of multiple myeloma comprising benign monoclonal gammopathy; an intermediate stage lacking clinical damage; multiple myeloma itself, which has a range of clinical behaviours; and an easily recognizable leukaemic phase wherein disease is no longer confined to the bone marrow. This progression system is driven by subclonal competition and selective pressures within the bone marrow microenvironment.

  • To improve the outcomes of patients with high-risk disease, it is important to recognize them at disease presentation and to enter them into specific risk-stratified clinical trials. The heterogeneous nature of the molecular mechanisms underlying high-risk disease makes this challenging and is discussed in detail.

Abstract

The outcomes for the majority of patients with myeloma have improved over recent decades, driven by treatment advances. However, there is a subset of patients considered to have high-risk disease who have not benefited. Understanding how high-risk disease evolves from more therapeutically tractable stages is crucial if we are to improve outcomes. This can be accomplished by identifying the genetic mechanisms and mutations driving the transition of a normal plasma cell to one with the features of the following disease stages: monoclonal gammopathy of undetermined significance, smouldering myeloma, myeloma and plasma cell leukaemia. Although myeloma initiating events are clonal, subsequent driver lesions often occur in a subclone of cells, facilitating progression by Darwinian selection processes. Understanding the co-evolution of the clones within their microenvironment will be crucial for therapeutically manipulating the process. The end stage of progression is the generation of a state associated with treatment resistance, increased proliferation, evasion of apoptosis and an ability to grow independently of the bone marrow microenvironment. In this Review, we discuss these end-stage high-risk disease states and how new information is improving our understanding of their evolutionary trajectories, how they may be diagnosed and the biological behaviour that must be addressed if they are to be treated effectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A convergent evolutionary route to high-risk myeloma via dysregulation of the G1/S cell cycle checkpoint.
Figure 2: The interaction between genetic drivers and microenvironment changes drives high-risk disease states.
Figure 3: The structural changes to chromosome 1 involved in mediating high-risk multiple myeloma states.
Figure 4: Myeloma clonal evolution to high-risk.
Figure 5: Clonal sweeps and proposed model of regional evolution.

Similar content being viewed by others

References

  1. Nutt, S. L., Hodgkin, P. D., Tarlinton, D. M. & Corcoran, L. M. The generation of antibody-secreting plasma cells. Nature reviews. Immunology 15, 160–171 (2015).Excellent review of the immunology underlying plasma cell generation.

    CAS  PubMed  Google Scholar 

  2. Rajkumar, S. V. et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 15, e538–e548 (2014).Presents the current diagnostic criteria for myeloma.

    Article  PubMed  Google Scholar 

  3. Touzeau, C. & Moreau, P. How I treat extramedullary myeloma. Blood 127, 971–976 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Fernandez de Larrea, C. et al. Plasma cell leukemia: consensus statement on diagnostic requirements, response criteria and treatment recommendations by the International Myeloma Working Group. Leukemia 27, 780–791 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Weinstock, M. & Ghobrial, I. M. Extramedullary multiple myeloma. Leukemia Lymphoma 54, 1135–1141 (2013).

    Article  PubMed  Google Scholar 

  6. Blade, J. et al. Soft-tissue plasmacytomas in multiple myeloma: incidence, mechanisms of extramedullary spread, and treatment approach. J. Clin. Oncol. 29, 3805–3812 (2011).

    Article  PubMed  Google Scholar 

  7. Morgan, G. J., Walker, B. A. & Davies, F. E. The genetic architecture of multiple myeloma. Nat. Rev. Cancer 12, 335–348 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Bergsagel, P. L. et al. Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma. Blood 106, 296–303 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhan, F. et al. The molecular classification of multiple myeloma. Blood 108, 2020–2028 (2006).Refs 8 and 9 defined gene expression-derived molecular subgroups in myeloma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kumar, S. K. et al. Continued improvement in survival in multiple myeloma: changes in early mortality and outcomes in older patients. Leukemia 28, 1122–1128 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kumar, S. K. et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood 111, 2516–2520 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Barlogie, B. et al. Curing myeloma at last: defining criteria and providing the evidence. Blood 124, 3043–3051 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Weinhold, N. et al. Clinical value of molecular subtyping multiple myeloma using gene expression profiling. Leukemia 30, 423–430 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Shaughnessy, J. D. Jr. et al. A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood 109, 2276–2284 (2007).Generation and definition of the gene expression-derived GEP70 high-risk score.

    Article  CAS  PubMed  Google Scholar 

  15. Halliley, J. L. et al. Long-lived plasma cells are contained within the CD19CD38hiCD138+ subset in human bone marrow. Immunity 43, 132–145 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tooze, R. M. A replicative self-renewal model for long-lived plasma cells: questioning irreversible cell cycle exit. Frontiers Immunol. 4, 460 (2013).

    Article  CAS  Google Scholar 

  17. Hose, D. et al. Proliferation is a central independent prognostic factor and target for personalized and risk-adapted treatment in multiple myeloma. Haematologica 96, 87–95 (2011).Paper defining proliferation as a key phenotype of high-risk disease.

    Article  PubMed  Google Scholar 

  18. Weinhold, N. et al. Clonal selection and double-hit events involving tumor suppressor genes underlie relapse in myeloma. Blood 128, 1735–1744 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chavan, S. S. et al. Bi-allelic inactivation is more prevalent at relapse in multiple myeloma, identifying RB1 as an independent prognostic marker. Blood Cancer J. 7, e535 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gonzalez, M. et al. De novo methylation of tumor suppressor gene p16/INK4a is a frequent finding in multiple myeloma patients at diagnosis. Leukemia 14, 183–187 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Walker, B. A. et al. Translocations at 8q24 juxtapose MYC with genes that harbor superenhancers resulting in overexpression and poor prognosis in myeloma patients. Blood Cancer J. 4, e191 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kastritis, E. & Dimopoulos, M. A. Appraising myc involvement in high risk myeloma. Leukemia Lymphoma 56, 551–552 (2015).

    Article  PubMed  Google Scholar 

  23. Walker, B. A. et al. Mutational spectrum, copy number changes, and outcome: results of a sequencing study of patients with newly diagnosed myeloma. J. Clin. Oncol. 33, 3911–3920 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Stein, C. et al. The varied distribution and impact of RAS codon and other key DNA alterations across the translocation cyclin D subgroups in multiple myeloma Oncotarget 8, 27854–27867 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Heuck, C. J. et al. Inhibiting MEK in MAPK pathway-activated myeloma. Leukemia 30, 976–980 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Lionetti, M. et al. Molecular spectrum of TP53 mutations in plasma cell dyscrasias by next generation sequencing: an Italian cohort study and overview of the literature. Oncotarget 7, 21353–21361 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Herrero, A. B., Rojas, E. A., Misiewicz-Krzeminska, I., Krzeminski, P. & Gutierrez, N. C. Molecular mechanisms of p53 deregulation in cancer: an overview in multiple myeloma. Int. J. Mol. Sci. 17, E2003 (2016).

    Article  PubMed  CAS  Google Scholar 

  28. Kawano, Y. et al. Targeting the bone marrow microenvironment in multiple myeloma. Immunol. Rev. 263, 160–172 (2015).

    Article  PubMed  Google Scholar 

  29. Bianchi, G. & Munshi, N. C. Pathogenesis beyond the cancer clone(s) in multiple myeloma. Blood 125, 3049–3058 (2015).Refs 28 and 29 are reviews of the myeloma microenvironment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zamagni, E. et al. 18F-FDG PET/CT focal, but not osteolytic, lesions predict the progression of smoldering myeloma to active disease. Leukemia 30, 417–422 (2015).

    Article  PubMed  CAS  Google Scholar 

  31. Zamagni, E. et al. Prognostic relevance of 18-F FDG PET/CT in newly diagnosed multiple myeloma patients treated with up-front autologous transplantation. Blood 118, 5989–5995 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Hillengass, J. et al. Prognostic significance of focal lesions in whole-body magnetic resonance imaging in patients with asymptomatic multiple myeloma. J. Clin. Oncol. 28, 1606–1610 (2010).

    Article  PubMed  Google Scholar 

  33. Yaccoby, S. et al. The composition and clinical impact of focal lesions and their impact on the microenvironment in myeloma (abstract). Blood 126, 1806 (2015).

    Article  Google Scholar 

  34. Rasche, L. et al. Spatial genomic heterogeneity in multiple myeloma revealed by multi-region sequencing. Nat. Commun. (in the press).

  35. Noll, J. E. et al. Myeloma plasma cells alter the bone marrow microenvironment by stimulating the proliferation of mesenchymal stromal cells. Haematologica 99, 163–171 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Frassanito, M. A. et al. Bone marrow fibroblasts parallel multiple myeloma progression in patients and mice: in vitro and in vivo studies. Leukemia 28, 904–916 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Broderick, P. et al. Common variation at 3p22.1 and 7p15.3 influences multiple myeloma risk. Nature Genet. 44, 58–61 (2012).

    Article  CAS  Google Scholar 

  38. Chubb, D. et al. Common variation at 3q26.2, 6p21.33, 17p11.2 and 22q13.1 influences multiple myeloma risk. Nature Genet. 45, 1221–225 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Johnson, D. C. et al. Genome-wide association study identifies variation at 6q25.1 associated with survival in multiple myeloma. Nature Commun. 7, 10290 (2016).

    Article  CAS  Google Scholar 

  40. Li, N. et al. Multiple myeloma risk variant at 7p15.3 creates an IRF4-binding site and interferes with CDCA7L expression. Nature Commun. 7, 13656 (2016).

    Article  CAS  Google Scholar 

  41. Mitchell, J. S. et al. Implementation of genome-wide complex trait analysis to quantify the heritability in multiple myeloma. Scientif. Rep. 5, 12473 (2015).

    Article  Google Scholar 

  42. Mitchell, J. S. et al. Genome-wide association study identifies multiple susceptibility loci for multiple myeloma. Nature Commun. 7, 12050 (2016).

    Article  CAS  Google Scholar 

  43. Weinhold, N. et al. The CCND1 c.870G>A polymorphism is a risk factor for t(11;14)(q13;q32) multiple myeloma. Nature Genet. 45, 522–525 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Weinhold, N. et al. The 7p15.3 (rs4487645) association for multiple myeloma shows strong allele-specific regulation of the MYC-interacting gene CDCA7L in malignant plasma cells. Haematologica 100, e110–e113 (2015).Refs 37–44 give the results of important genome-wide association studies in myeloma to date.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Onodera, N. et al. Hyperdiploidy arising from near-haploidy in childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer 4, 331–336 (1992).

    Article  CAS  PubMed  Google Scholar 

  46. Chretien, M. L. et al. Understanding the role of hyperdiploidy in myeloma prognosis: which trisomies really matter? Blood 126, 2713–2719 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gonzalez, D. et al. Immunoglobulin gene rearrangements and the pathogenesis of multiple myeloma. Blood 110, 3112–3121 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Keats, J. J. et al. Overexpression of transcripts originating from the MMSET locus characterizes all t(4;14)(p16;q32)-positive multiple myeloma patients. Blood 105, 4060–4069 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chesi, M. et al. The t(4;14) translocation in myeloma dysregulates both FGFR3 and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts. Blood 92, 3025–3034 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Chesi, M. et al. Frequent dysregulation of the c-maf proto-oncogene at 16q23 by translocation to an Ig locus in multiple myeloma. Blood 91, 4457–4463 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Martinez-Garcia, E. et al. The MMSET histone methyl transferase switches global histone methylation and alters gene expression in t(4;14) multiple myeloma cells. Blood 117, 211–220 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Popovic, R. et al. Histone methyltransferase MMSET/NSD2 alters EZH2 binding and reprograms the myeloma epigenome through global and focal changes in H3K36 and H3K27 methylation. PLoS Genet. 10, e1004566 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Santra, M., Zhan, F., Tian, E., Barlogie, B. & Shaughnessy, J. Jr. A subset of multiple myeloma harboring the t(4;14)(p16;q32) translocation lacks FGFR3 expression but maintains an IGH/MMSET fusion transcript. Blood 101, 2374–2376 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Lauring, J. et al. The multiple myeloma associated MMSET gene contributes to cellular adhesion, clonogenic growth, and tumorigenicity. Blood 111, 856–864 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rasmussen, T., Knudsen, L. M., Dahl, I. M. & Johnsen, H. E. C-MAF oncogene dysregulation in multiple myeloma: frequency and biological relevance. Leukemia Lymphoma 44, 1761–1766 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Walker, B. A. et al. APOBEC family mutational signatures are associated with poor prognosis translocations in multiple myeloma. Nature Commun. 6, 6997 (2015).

    Article  CAS  Google Scholar 

  57. Usmani, S. Z. et al. Extramedullary disease portends poor prognosis in multiple myeloma and is over-represented in high-risk disease even in the era of novel agents. Haematologica 97, 1761–1767 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ross, F. M. et al. The t(14;20) is a poor prognostic factor in myeloma but is associated with long-term stable disease in monoclonal gammopathies of undetermined significance. Haematologica 95, 1221–1225 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Boyd, K. D. et al. A novel prognostic model in myeloma based on co-segregating adverse FISH lesions and the ISS: analysis of patients treated in the MRC Myeloma IX trial. Leukemia 26, 349–355 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Glitza, I. C. et al. Chromosome 8q24.1/c-MYC abnormality: a marker for high-risk myeloma. Leukemia Lymphoma 56, 602–607 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Affer, M. et al. Promiscuous MYC locus rearrangements hijack enhancers but mostly super-enhancers to dysregulate MYC expression in multiple myeloma. Leukemia 28, 1725–1735 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Beroukhim, R. et al. The landscape of somatic copy-number alteration across human cancers. Nature 463, 899–905 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Davoli, T. et al. Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell 155, 948–962 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zack, T. I. et al. Pan-cancer patterns of somatic copy number alteration. Nature Genet. 45, 1134–1140 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Sawyer, J. R., Waldron, J. A., Jagannath, S. & Barlogie, B. Cytogenetic findings in 200 patients with multiple myeloma. Cancer Genet. Cytogenet. 82, 41–49 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Sawyer, J. R. et al. Genomic instability in multiple myeloma: evidence for jumping segmental duplications of chromosome arm 1q. Genes Chromosomes Cancer 42, 95–106 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Sawyer, J. R., Tricot, G., Mattox, S., Jagannath, S. & Barlogie, B. Jumping translocations of chromosome 1q in multiple myeloma: evidence for a mechanism involving decondensation of pericentromeric heterochromatin. Blood 91, 1732–1741 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Sawyer, J. R. et al. Jumping translocations of 1q12 in multiple myeloma: a novel mechanism for deletion of 17p in cytogenetically defined high-risk disease. Blood 123, 2504–2512 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sawyer, J. R. et al. Evidence of an epigenetic origin for high-risk 1q21 copy number aberrations in multiple myeloma. Blood 125, 3756–3759 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sawyer, J. et al. Hyperhaploid multiple myeloma (MM): a rare karyotypic subgroup retaining disomy 18 and 1q12–23 Blood Abstr. 120, 3983 (2012).

    Article  Google Scholar 

  71. Sawyer, J. R. et al. Hyperhaploidy is a novel high-risk cytogenetic subgroup in multiple myeloma. Leukemia 31, 637–644 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Jimenez-Zepeda, V. H., Braggio, E. & Fonseca, R. Dissecting karyotypic patterns in non-hyperdiploid multiple myeloma: an overview on the karyotypic evolution. Clin. Lymphoma, Myeloma Leuk. 13, 552–558 (2013).

    Article  Google Scholar 

  73. Van Wier, S. et al. Hypodiploid multiple myeloma is characterized by more aggressive molecular markers than non-hyperdiploid multiple myeloma. Haematologica 98, 1586–1592 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Smadja, N. V. et al. Hypodiploidy is a major prognostic factor in multiple myeloma. Blood 98, 2229–2238 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Walker, B. A. et al. A compendium of myeloma-associated chromosomal copy number abnormalities and their prognostic value. Blood 116, e56–e65 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Fonseca, R. et al. Prognostic value of chromosome 1q21 gain by fluorescent in situ hybridization and increase CKS1B expression in myeloma. Leukemia 20, 2034–2040 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Hanamura, I. et al. Frequent gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fluorescence in situ hybridization: incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem-cell transplantation. Blood 108, 1724–1732 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shaughnessy, J. Amplification and overexpression of CKS1B at chromosome band 1q21 is associated with reduced levels of p27Kip1 and an aggressive clinical course in multiple myeloma. Hematology 10 (Suppl. 1), 117–126 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Black, J. C. et al. Hypoxia drives transient site-specific copy gain and drug-resistant gene expression. Genes Dev. 29, 1018–1031 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sawyer, J. R. et al. Evidence for a novel mechanism for gene amplification in multiple myeloma: 1q12 pericentromeric heterochromatin mediates breakage-fusion-bridge cycles of a 1q12 approximately 23 amplicon. Br. J. Haematol. 147, 484–494 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhan, F. et al. CKS1B, overexpressed in aggressive disease, regulates multiple myeloma growth and survival through SKP2- and p27Kip1-dependent and -independent mechanisms. Blood 109, 4995–5001 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jin, F. et al. ARNT/HIF-1beta links poor clinical outcome to microenvironmental hypoxia and high-risk 1q gain in multiple myeloma. Eur. Haematol. Associ. Abstr. 183932 (2017).

  83. Marchesini, M. et al. ILF2 is a regulator of RNA splicing and DNA damage response in 1q21-Amplified multiple myeloma. Cancer Cell 32, 88–100.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Boyd, K. D. et al. Mapping of chromosome 1p deletions in myeloma identifies FAM46C at 1p12 and CDKN2C at 1p32.3 as being genes in regions associated with adverse survival. Clin. Cancer Res. 17, 7776–7784 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Leone, P. E. et al. Deletions of CDKN2C in multiple myeloma: biological and clinical implications. Clin. Cancer Res. 14, 6033–6041 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hebraud, B. et al. Deletion of the 1p32 region is a major independent prognostic factor in young patients with myeloma: the IFM experience on 1195 patients. Leukemia 28, 675–679 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Barbieri, M. et al. Compendium of FAM46C gene mutations in plasma cell dyscrasias. Br. J. Haematol. 174, 642–645 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Hofman, I. J. et al. RPL5 on 1p22.1 is recurrently deleted in multiple myeloma and its expression is linked to bortezomib response. Leukemia http://dx.doi.org/10.1038/leu.2016.370 (2017).

  89. Avet-Loiseau, H. et al. Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe Francophone du Myelome. Blood 109, 3489–3495 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Merz, M. et al. Baseline characteristics, chromosomal alterations, and treatment affecting prognosis of deletion 17p in newly diagnosed myeloma. Am. J. Hematol. 91, E473–E477 (2016).

    Article  CAS  PubMed  Google Scholar 

  91. Thanendrarajan, S. et al. The level of deletion 17p and bi-allelic inactivation of TP53 has a significant impact on clinical outcome in multiple myeloma. Haematologica http://dx.doi.org/10.3324/haematol.2017.168872 (2017).

  92. Fonseca, R. et al. Deletions of chromosome 13 in multiple myeloma identified by interphase FISH usually denote large deletions of the q arm or monosomy. Leukemia 15, 981–986 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Walker, B. A. et al. Intraclonal heterogeneity is a critical early event in the development of myeloma and precedes the development of clinical symptoms. Leukemia 28, 384–390 (2014).

    Article  PubMed  Google Scholar 

  95. Keats, J. J. et al. Clonal competition with alternating dominance in multiple myeloma. Blood 120, 1067–1076 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pawlyn, C. et al. Loss of heterozygosity in multiple myeloma: a role for PARP inhibition? ASCO Annu. Meet. Abstr. 8026 (2017).

    Article  Google Scholar 

  97. Lohr, J. G. et al. Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell 25, 91–101 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bolli, N. et al. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nature Commun. 5, 2997 (2014).Refs 23, 97 and 98 provide the results of whole-exome sequencing projects in myeloma.

    Article  CAS  Google Scholar 

  99. Chapman, M. A. et al. Initial genome sequencing and analysis of multiple myeloma. Nature 471, 467–472 (2011).Results of the first next-generation sequencing project in myeloma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Manz, R. A., Thiel, A. & Radbruch, A. Lifetime of plasma cells in the bone marrow. Nature 388, 133–134 (1997).

    Article  CAS  PubMed  Google Scholar 

  101. Amanna, I. J., Carlson, N. E. & Slifka, M. K. Duration of humoral immunity to common viral and vaccine antigens. N. Engl. J. Med. 357, 1903–1915 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Odendahl, M. et al. Generation of migratory antigen-specific plasma blasts and mobilization of resident plasma cells in a secondary immune response. Blood 105, 1614–1621 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Sze, D. M., Toellner, K. M., Garcia de Vinuesa, C., Taylor, D. R. & MacLennan, I. C. Intrinsic constraint on plasmablast growth and extrinsic limits of plasma cell survival. J. Exp. Med. 192, 813–821 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cesana, C. et al. Prognostic factors for malignant transformation in monoclonal gammopathy of undetermined significance and smoldering multiple myeloma. J. Clin. Oncol. 20, 1625–1634 (2002).

    Article  PubMed  Google Scholar 

  105. Perez-Persona, E. et al. New criteria to identify risk of progression in monoclonal gammopathy of uncertain significance and smoldering multiple myeloma based on multiparameter flow cytometry analysis of bone marrow plasma cells. Blood 110, 2586–2592 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Katzmann, J. A. et al. Suppression of uninvolved immunoglobulins defined by heavy/light chain pair suppression is a risk factor for progression of MGUS. Leukemia 27, 208–212 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Egan, J. B. et al. Whole-genome sequencing of multiple myeloma from diagnosis to plasma cell leukemia reveals genomic initiating events, evolution, and clonal tides. Blood 120, 1060–1066 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Melchor, L. et al. Single-cell genetic analysis reveals the composition of initiating clones and phylogenetic patterns of branching and parallel evolution in myeloma. Leukemia 28, 1705–1715 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).

    Article  CAS  PubMed  Google Scholar 

  110. Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 (2012).Review of clonal Darwinian evolution across all cancer types.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Walker, B. A. et al. Intraclonal heterogeneity and distinct molecular mechanisms characterize the development of t(4;14) and t(11;14) myeloma. Blood 120, 1077–1086 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Landau, D. A., Carter, S. L., Getz, G. & Wu, C. J. Clonal evolution in hematological malignancies and therapeutic implications. Leukemia 28, 34–43 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Sottoriva, A. et al. A Big Bang model of human colorectal tumor growth. Nature Genet. 47, 209–216 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ding, L. et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481, 506–510 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nik-Zainal, S. et al. The life history of 21 breast cancers. Cell 149, 994–1007 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Greaves, M. Cancer stem cells as 'units of selection'. Evol. Appl. 6, 102–108 (2013).

    Article  PubMed  Google Scholar 

  118. Cremer, F. W. et al. High incidence and intraclonal heterogeneity of chromosome 11 aberrations in patients with newly diagnosed multiple myeloma detected by multiprobe interphase FISH. Cancer Genet. Cytogenet. 161, 116–124 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Manier, S., Sacco, A., Leleu, X., Ghobrial, I. M. & Roccaro, A. M. Bone marrow microenvironment in multiple myeloma progression. J. Biomed. Biotechnol. 2012, 157496 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Roccaro, A. M. et al. BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. J. Clin. Invest. 123, 1542–1555 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Corrado, C. et al. Exosomes as intercellular signaling organelles involved in health and disease: basic science and clinical applications. Int. J. Mol. Sci. 14, 5338–5366 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Raimondi, L. et al. Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation. Oncotarget 6, 13772–13789 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Lemaire, M. et al. The microenvironment and molecular biology of the multiple myeloma tumor. Adv. Cancer Res. 110, 19–42 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Reagan, M. R. et al. Investigating osteogenic differentiation in multiple myeloma using a novel 3D bone marrow niche model. Blood 124, 3250–3259 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Eleutherakis-Papaiakovou, V., Karali, M., Kokkonouzis, I., Tiliakos, I. & Dimopoulos, M. A. Bone marrow angiogenesis and progression in multiple myeloma: clinical significance and therapeutic approach. Leukemia Lymphoma 44, 937–948 (2003).

    Article  CAS  PubMed  Google Scholar 

  126. Ribatti, D., Moschetta, M. & Vacca, A. Microenvironment and multiple myeloma spread. Thromb. Res. 133 (Suppl. 2), S102–S106 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Binsfeld, M. et al. Granulocytic myeloid-derived suppressor cells promote angiogenesis in the context of multiple myeloma. Oncotarget 7, 37931–37943 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Vacca, A. & Ribatti, D. Bone marrow angiogenesis in multiple myeloma. Leukemia 20, 193–199 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Zingone, A. et al. Altered cytokine and chemokine profiles in multiple myeloma and its precursor disease. Cytokine 69, 294–297 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Neri, P. et al. Integrin β7-mediated regulation of multiple myeloma cell adhesion, migration, and invasion. Blood 117, 6202–6213 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kimmelman, A. C. Metabolic dependencies in RAS-driven cancers. Clin. Cancer Res. 21, 1828–1834 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Vousden, K. H. & Ryan, K. M. p53 and metabolism. Nat. Rev. Cancer 9, 691–700 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Maiso, P. et al. Metabolic signature identifies novel targets for drug resistance in multiple myeloma. Cancer Res. 75, 2071–2082 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gupta, V. A. et al. Bone marrow microenvironment-derived signals induce Mcl-1 dependence in multiple myeloma. Blood 129, 1969–1979 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Greipp, P. R. et al. International staging system for multiple myeloma. J. Clin. Oncol. 23, 3412–3420 (2005).

    Article  PubMed  Google Scholar 

  136. Palumbo, A. et al. Revised international staging system for multiple myeloma: A report from international myeloma working group. J. Clin. Oncol. 33, 2863–2869 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. An, G. et al. The impact of clone size on the prognostic value of chromosome aberrations by fluorescence in situ hybridization in multiple myeloma. Clin. Cancer Res. 21, 2148–2156 (2015).

    Article  PubMed  Google Scholar 

  138. Ross, F. M. et al. Report from the European Myeloma Network on interphase FISH in multiple myeloma and related disorders. Haematologica 97, 1272–1277 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Avet-Loiseau, H. et al. Bortezomib plus dexamethasone induction improves outcome of patients with t(4;14) myeloma but not outcome of patients with del(17p). J. Clin. Oncol. 28, 4630–4634 (2010).

    Article  CAS  PubMed  Google Scholar 

  140. Kuiper, R. et al. A gene expression signature for high-risk multiple myeloma. Leukemia 26, 2406–2413 (2012).Generation and definition of the gene expression-derived EMC-92 high-risk score.

    Article  CAS  PubMed  Google Scholar 

  141. Kuiper, R. et al. Prediction of high- and low-risk multiple myeloma based on gene expression and the International Staging System. Blood 126, 1996–2004 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. McDonald, J. E. et al. Assessment of total lesion glycolysis by 18F FDG PET/CT significantly improves prognostic value of GEP and ISS in myeloma. Clin. Cancer Res. 23, 1981–1987 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Bartel, T. B. et al. F18-fluorodeoxyglucose positron emission tomography in the context of other imaging techniques and prognostic factors in multiple myeloma. Blood 114, 2068–2076 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Rajkumar, S. V. et al. Serum free light chain ratio is an independent risk factor for progression in monoclonal gammopathy of undetermined significance. Blood 106, 812–817 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Perez-Persona, E. et al. Risk of progression in smouldering myeloma and monoclonal gammopathies of unknown significance: comparative analysis of the evolution of monoclonal component and multiparameter flow cytometry of bone marrow plasma cells. Br. J. Haematol. 148, 110–114 (2010).

    Article  PubMed  Google Scholar 

  146. Dhodapkar, M. V. et al. Clinical, genomic, and imaging predictors of myeloma progression from asymptomatic monoclonal gammopathies (SWOG S0120). Blood 123, 78–85 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kastritis, E. et al. Extensive bone marrow infiltration and abnormal free light chain ratio identifies patients with asymptomatic myeloma at high risk for progression to symptomatic disease. Leukemia 27, 947–953 (2013).

    Article  CAS  PubMed  Google Scholar 

  148. Rosinol, L. et al. Smoldering multiple myeloma: natural history and recognition of an evolving type. Br. J. Haematol. 123, 631–636 (2003).

    Article  CAS  PubMed  Google Scholar 

  149. Kyle, R. A. et al. Clinical course and prognosis of smoldering (asymptomatic) multiple myeloma. N. Engl. J. Med. 356, 2582–2590 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. Dispenzieri, A. et al. Immunoglobulin free light chain ratio is an independent risk factor for progression of smoldering (asymptomatic) multiple myeloma. Blood 111, 785–789 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Rajkumar, S. V. et al. Impact of primary molecular cytogenetic abnormalities and risk of progression in smoldering multiple myeloma. Leukemia 27, 1738–1744 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Neben, K. et al. Progression in smoldering myeloma is independently determined by the chromosomal abnormalities del(17p), t(4;14), gain 1q, hyperdiploidy, and tumor load. J. Clin. Oncol. 31, 4325–4332 (2013).

    Article  PubMed  Google Scholar 

  153. Khan, R. et al. Four genes predict high risk of progression from smoldering to symptomatic multiple myeloma (SWOG S0120). Haematologica 100, 1214–1221 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Schinke, C. et al. The prognostic value of the depth of response in multiple myeloma depends on the time of assessment, risk status and molecular subtype. Haematologica http://dx.doi.org/10.3324/haematol.2017.165217 (2017).

  155. Sonneveld, P. et al. Treatment of multiple myeloma with high-risk cytogenetics: a consensus of the International Myeloma Working Group. Blood 127, 2955–2962 (2016).Current IMWG consensus for the treatment of high-risk myeloma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Mead, G. M. et al. A prospective clinicopathologic study of dose-modified CODOX-M/IVAC in patients with sporadic Burkitt lymphoma defined using cytogenetic and immunophenotypic criteria (MRC/NCRI LY10 trial). Blood 112, 2248–2260 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Durrant, I. J., Prentice, H. G. & Richards, S. M. Intensification of treatment for adults with acute lymphoblastic leukaemia: results of U. K. Medical Research Council randomized trial UKALL XA. Medical Research Council Working Party on leukaemia in adults. Br. J. Haematol. 99, 84–92 (1997).

    Article  CAS  PubMed  Google Scholar 

  158. Usmani, S. Z. et al. Prognostic implications of serial 18-fluoro-deoxyglucose emission tomography in multiple myeloma treated with total therapy 3. Blood 121, 1819–1823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Dimopoulos, M. A. et al. Daratumumab, lenalidomide, and dexamethasone for multiple myeloma. N. Engl. J. Med. 375, 1319–1331 (2016).

    Article  CAS  PubMed  Google Scholar 

  160. Jakubowiak, A. et al. Randomized phase 2 study: elotuzumab plus bortezomib/dexamethasone versus bortezomib/dexamethasone for relapsed/refractory MM. Blood 127, 2833–2840 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Deckert, J. et al. SAR650984, a novel humanized CD38-targeting antibody, demonstrates potent antitumor activity in models of multiple myeloma and other CD38+ hematologic malignancies. Clin. Cancer Res. 20, 4574–4583 (2014).

    Article  CAS  PubMed  Google Scholar 

  162. Tai, Y. T. & Anderson, K. C. Targeting B-cell maturation antigen in multiple myeloma. Immunotherapy 7, 1187–1199 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Ali, S. A. et al. T cells expressing an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma. Blood 128, 1688–1700 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Van Allen, E. M. et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350, 207–211 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Rosenberg, J. E. et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387, 1909–1920 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Rizvi, N. A. et al. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. McGranahan, N. et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351, 1463–1469 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Balasa, B. et al. Elotuzumab enhances natural killer cell activation and myeloma cell killing through interleukin-2 and TNF-α pathways. Cancer Immunol., Immunother. 64, 61–73 (2015).

    Article  CAS  Google Scholar 

  169. Ray, A. et al. A novel agent SL-401 induces anti-myeloma activity by targeting plasmacytoid dendritic cells, osteoclastogenesis and cancer stem-like cells. Leukemia http://dx.doi.org/10.1038/leu.2017.135 (2017).

  170. Msaouel, P. et al. Clinical trials with oncolytic measles virus: current status and future prospects. Curr. Cancer Drug Targets http://dx.doi.org/10.2174/1568009617666170222125035 (2017).

  171. Garfall, A. L. & Stadtmauer, E. A. Cellular and vaccine immunotherapy for multiple myeloma. Hematology Am. Soc. Hematol. Educ. Program 2016, 521–527 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Pawlyn, C. et al. The spectrum and clinical impact of epigenetic modifier mutations in myeloma. Clin. Cancer Res. 22, 5783–5794 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Walker, B. A. et al. Aberrant global methylation patterns affect the molecular pathogenesis and prognosis of multiple myeloma. Blood 117, 553–562 (2011).

    Article  CAS  PubMed  Google Scholar 

  174. Pawlyn, C. et al. Overexpression of EZH2 in multiple myeloma is associated with poor prognosis and dysregulation of cell cycle control. Blood Cancer J. 7, e549 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Rizq, O. et al. Dual inhibition of EZH2 and EZH1 sensitizes PRC2-dependent tumors to proteasome inhibition. Clin. Cancer Res. http://dx.doi.org/10.1158/1078-0432.CCR-16-2735 (2017).

  176. Agarwal, P. et al. Genome-wide profiling of histone H3 lysine 27 and lysine 4 trimethylation in multiple myeloma reveals the importance of Polycomb gene targeting and highlights EZH2 as a potential therapeutic target. Oncotarget 7, 6809–6823 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Mithraprabhu, S., Kalff, A., Chow, A., Khong, T. & Spencer, A. Dysregulated Class I histone deacetylases are indicators of poor prognosis in multiple myeloma. Epigenetics 9, 1511–1520 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Tandon, N., Ramakrishnan, V. & Kumar, S. K. Clinical use and applications of histone deacetylase inhibitors in multiple myeloma. Clin. Pharmacol. 8, 35–44 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Heuck, C. J. et al. Myeloma is characterized by stage-specific alterations in DNA methylation that occur early during myelomagenesis. J. Immunol. 190, 2966–2975 (2013).

    Article  CAS  PubMed  Google Scholar 

  180. Kaiser, M. F. et al. Global methylation analysis identifies prognostically important epigenetically inactivated tumor suppressor genes in multiple myeloma. Blood 122, 219–226 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Krzeminski, P. et al. Integrative analysis of DNA copy number, DNA methylation and gene expression in multiple myeloma reveals alterations related to relapse. Oncotarget 7, 80664–80679 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Rastgoo, N., Abdi, J., Hou, J. & Chang, H. Role of epigenetics-microRNA axis in drug resistance of multiple myeloma. J. Hematol. Oncol. 10, 121 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Manier, S. et al. Prognostic role of circulating exosomal miRNAs in multiple myeloma. Blood 129, 2429–2436 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

C.P. is a Wellcome Trust clinical research fellow (102363/Z/13/Z). The authors would like to thank F. Davies, M. Greaves, J. Jones, C. Messiou, L. Rasche, J. Sawyer, C. Stein, B. Walker, N. Weinhold and S. Yaccoby for contributing to the figures, helpful discussions and/or critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

C.P. and G.J.M. researched data for the article, made substantial contributions to discussions of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Charlotte Pawlyn.

Ethics declarations

Competing interests

C.P. has participated in advisory boards for Celgene and Takeda Oncology and has received travel support from Celgene and Janssen. G.J.M. has participated in advisory boards for, received payment for lectures and the development of educational presentations from, and received travel support from Celgene, Novartis, Merck and Johnson & Johnson.

PowerPoint slides

Glossary

V(D)J recombination

A process occurring in the primary lymphoid organs and involving the somatic recombination of different segments of the heavy- and light-chain immunoglobulin genes, variable (V), joining (J) and diversity (D, heavy chain only), resulting in a diverse repertoire of antigen-binding regions.

Class-switch recombination

A process that enables the production of immunoglobulins (Igs) of different isotypes (IgG, IgM, IgE or IgD) by removing portions of the antibody heavy-chain locus. This occurs after V(D)J recombination and thus results in antibodies with the same antigenic specificity but with the ability to mediate different downstream effects.

Somatic hypermutation

Targeted nucleotide mutations affecting the variable regions of immunoglobulin genes in B cells to mediate affinity maturation.

Plasma cell leukaemia

(PCL). Myeloma circulating in the bloodstream. Defined by the World Health Organization as a condition in which plasma cells constitute more than 20% of the cells in peripheral blood, with an absolute plasma cell count of more than 2 × 109 per litre.

Extramedullary disease

(EMD). Myeloma existing outside the bone marrow, in the soft tissue or organs.

Convergent evolution

Different clonal populations evolving the same traits as a result of having to adapt to similar environments. The phenotype confers a selective advantage to such an extent that different molecular lesions leading to the same phenotype are selected for in different populations.

International Staging System

(ISS). Staging system for myeloma based on the plasma level of β2-microglobulin and albumin, yielding three groups associated with survival outcomes.

Interphase fluorescence in situ hybridization

(iFISH). A cytogenetic test that maps fluorescent probes to specific parts of the chromosome with the cell in interphase.

Revised International Staging System

(R-ISS). A revised risk score of the initial ISS that incorporates the high-risk cytogenetic markers 17p- and t(4;14) together with lactate dehydrogenase.

Immunoparesis

Reduced levels of uninvolved immunoglobulins, occurring as a consequence of the displacement of normal plasma cells from their bone marrow niche by malignant plasma cells better adapted to the niche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pawlyn, C., Morgan, G. Evolutionary biology of high-risk multiple myeloma. Nat Rev Cancer 17, 543–556 (2017). https://doi.org/10.1038/nrc.2017.63

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc.2017.63

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer