Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Somatic mosaicism: on the road to cancer

Abstract

Diversity is the basis of fitness selection. Although the genome of an individual is considered to be largely stable, there is theoretical and experimental evidence — both in model organisms and in humans — that genetic mosaicism is the rule rather than the exception. The continuous generation of cell variants, their interactions and selective pressures lead to life-long tissue dynamics. Individuals may thus enjoy 'clonal health', defined as a clonal composition that supports healthy morphology and physiology, or suffer from clonal configurations that promote disease, such as cancer. The contribution of mosaicism to these processes starts during embryonic development. In this Opinion article, we argue that the road to cancer might begin during these early stages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The 'when' and 'where' of embryonic mutations.

Similar content being viewed by others

References

  1. Youssoufian, H. & Pyeritz, R. E. Mechanisms and consequences of somatic mosaicism in humans. Nat. Rev. Genet. 3, 748–758 (2002).

    CAS  PubMed  Google Scholar 

  2. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).

    CAS  PubMed  Google Scholar 

  4. Nik-Zainal, S. et al. The life history of 21 breast cancers. Cell 149, 994–1007 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Behjati, S. et al. Genome sequencing of normal cells reveals developmental lineages and mutational processes. Nature 513, 422–425 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).

    CAS  PubMed  Google Scholar 

  7. Dalerba, P., Cho, R. W. & Clarke, M. F. Cancer stem cells: models and concepts. Annu. Rev. Med. 58, 267–284 (2007).

    CAS  PubMed  Google Scholar 

  8. Dick, J. E. Stem cell concepts renew cancer research. Blood 112, 4793–4807 (2008).

    CAS  PubMed  Google Scholar 

  9. Frumkin, D., Wasserstrom, A., Kaplan, S., Feige, U. & Shapiro, E. Genomic variability within an organism exposes its cell lineage tree. PLoS Comput. Biol. 1, e50 (2005).

    PubMed  PubMed Central  Google Scholar 

  10. Lynch, M. Rate, molecular spectrum, and consequences of human mutation. Proc. Natl Acad. Sci. USA 107, 961–968 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. McCulloch, S. D. & Kunkel, T. A. The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. Cell Res. 18, 148–161 (2008).

    CAS  PubMed  Google Scholar 

  12. Bianconi, E. et al. An estimation of the number of cells in the human body. Ann. Hum. Biol. 40, 463–471 (2013).

    PubMed  Google Scholar 

  13. Poduri, A., Evrony, G. D., Cai, X. & Walsh, C. A. Somatic mutation, genomic variation, and neurological disease. Science 341, 1237758 (2013).

    PubMed  PubMed Central  Google Scholar 

  14. Doniger, S. W. et al. A catalog of neutral and deleterious polymorphism in yeast. PLoS Genet. 4, e1000183 (2008).

    PubMed  PubMed Central  Google Scholar 

  15. Leslie, R., O'Donnell, C. J. & Johnson, A. D. GRASP: analysis of genotype-phenotype results from 1390 genome-wide association studies and corresponding open access database. Bioinformatics 30, i185–i194 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Martin, D. I., Ward, R. & Suter, C. M. Germline epimutation: a basis for epigenetic disease in humans. Ann. NY Acad. Sci. 1054, 68–77 (2005).

    PubMed  Google Scholar 

  17. Shlien, A. et al. Combined hereditary and somatic mutations of replication error repair genes result in rapid onset of ultra-hypermutated cancers. Nat. Genet. 47, 257–262 (2015).

    CAS  PubMed  Google Scholar 

  18. Di Noia, J. M. & Neuberger, M. S. Molecular mechanisms of antibody somatic hypermutation. Annu. Rev. Biochem. 76, 1–22 (2007).

    CAS  PubMed  Google Scholar 

  19. Baillie, J. K. et al. Somatic retrotransposition alters the genetic landscape of the human brain. Nature 479, 534–537 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Choate, K. A. et al. Mitotic recombination in patients with ichthyosis causes reversion of dominant mutations in KRT10. Science 330, 94–97 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kiritsi, D. et al. Mechanisms of natural gene therapy in dystrophic epidermolysis bullosa. J. Invest. Dermatol. 134, 2097–2104 (2014).

    CAS  PubMed  Google Scholar 

  22. Hirschhorn, R. et al. Spontaneous in vivo reversion to normal of an inherited mutation in a patient with adenosine deaminase deficiency. Nat. Genet. 13, 290–295 (1996).

    CAS  PubMed  Google Scholar 

  23. McDermott, D. H. et al. Chromothriptic cure of WHIM syndrome. Cell 160, 686–699 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lo Ten Foe, J. R. et al. Somatic mosaicism in Fanconi anemia: molecular basis and clinical significance. Eur. J. Hum. Genet. 5, 137–148 (1997).

    CAS  PubMed  Google Scholar 

  25. Waisfisz, Q. et al. Spontaneous functional correction of homozygous Fanconi anaemia alleles reveals novel mechanistic basis for reverse mosaicism. Nat. Genet. 22, 379–383 (1999).

    CAS  PubMed  Google Scholar 

  26. Lu, Q. L. et al. Massive idiosyncratic exon skipping corrects the nonsense mutation in dystrophic mouse muscle and produces functional revertant fibers by clonal expansion. J. Cell Biol. 148, 985–996 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Maley, C. C. et al. Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nat. Genet. 38, 468–473 (2006).

    CAS  PubMed  Google Scholar 

  28. Park, S. Y., Gonen, M., Kim, H. J., Michor, F. & Polyak, K. Cellular and genetic diversity in the progression of in situ human breast carcinomas to an invasive phenotype. J. Clin. Invest. 120, 636–644 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Campbell, I. M., Shaw, C. A., Stankiewicz, P. & Lupski, J. R. Somatic mosaicism: implications for disease and transmission genetics. Trends Genet. 31, 382–392 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen, H., Lin, F., Xing, K. & He, X. The reverse evolution from multicellularity to unicellularity during carcinogenesis. Nat. Commun. 6, 6367 (2015).

    CAS  PubMed  Google Scholar 

  31. Lodato, M. A. et al. Somatic mutation in single human neurons tracks developmental and transcriptional history. Science 350, 94–98 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Martincorena, I. et al. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348, 880–886 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Iannello, A. & Raulet, D. H. Immune surveillance of unhealthy cells by natural killer cells. Cold Spring Harb. Symp. Quant. Biol. 78, 249–257 (2013).

    PubMed  PubMed Central  Google Scholar 

  34. Pastor-Pareja, J. C. & Xu, T. Dissecting social cell biology and tumors using Drosophila genetics. Annu. Rev. Genet. 47, 51–74 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Reizel, Y. et al. Colon stem cell and crypt dynamics exposed by cell lineage reconstruction. PLoS Genet. 7, e1002192 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Snippert, H. J. et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143, 134–144 (2010).

    CAS  PubMed  Google Scholar 

  37. Alcolea, M. P. & Jones, P. H. Lineage analysis of epidermal stem cells. Cold Spring Harb. Perspect Med. 4, a015206 (2014).

    PubMed  PubMed Central  Google Scholar 

  38. Weissman, I. L., Warnke, R., Butcher, E. C., Rouse, R. & Levy, R. The lymphoid system. Its normal architecture and the potential for understanding the system through the study of lymphoproliferative diseases. Hum. Pathol. 9, 25–45 (1978).

    CAS  PubMed  Google Scholar 

  39. Shapiro, E., Biezuner, T. & Linnarsson, S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat. Rev. Genet. 14, 618–630 (2013).

    CAS  PubMed  Google Scholar 

  40. Padron-Barthe, L. et al. Clonal analysis identifies hemogenic endothelium as the source of the blood-endothelial common lineage in the mouse embryo. Blood 124, 2523–2532 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kinder, S. J. et al. The orderly allocation of mesodermal cells to the extraembryonic structures and the anteroposterior axis during gastrulation of the mouse embryo. Development 126, 4691–4701 (1999).

    CAS  PubMed  Google Scholar 

  42. Burrell, R. A., McGranahan, N., Bartek, J. & Swanton, C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501, 338–345 (2013).

    CAS  PubMed  Google Scholar 

  43. Moreno, E. & Rhiner, C. Darwin's multicellularity: from neurotrophic theories and cell competition to fitness fingerprints. Curr. Opin. Cell Biol. 31, 16–22 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Fujita, Y. Interface between normal and transformed epithelial cells: a road to a novel type of cancer prevention and treatment. Cancer Sci. 102, 1749–1755 (2011).

    CAS  PubMed  Google Scholar 

  45. Kwon, M. C. et al. Paracrine signaling between tumor subclones of mouse SCLC: a critical role of ETS transcription factor Pea3 in facilitating metastasis. Genes Dev. 29, 1587–1592 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Martins, V. C. et al. Cell competition is a tumour suppressor mechanism in the thymus. Nature 509, 465–470 (2014).

    CAS  PubMed  Google Scholar 

  47. Goetz, J. G. et al. Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell 146, 148–163 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Biesecker, L. G. & Spinner, N. B. A genomic view of mosaicism and human disease. Nat. Rev. Genet. 14, 307–320 (2013).

    CAS  PubMed  Google Scholar 

  49. Ford, A. M. et al. In utero rearrangements in the trithorax-related oncogene in infant leukaemias. Nature 363, 358–360 (1993).

    CAS  PubMed  Google Scholar 

  50. Wiemels, J. L. et al. Prenatal origin of acute lymphoblastic leukaemia in children. Lancet 354, 1499–1503 (1999).

    CAS  PubMed  Google Scholar 

  51. Teuffel, O. et al. Prenatal origin of separate evolution of leukemia in identical twins. Leukemia 18, 1624–1629 (2004).

    CAS  PubMed  Google Scholar 

  52. Greaves, M. Darwin and evolutionary tales in leukemia. The Ham–Wasserman Lecture. Hematology Am. Soc. Hematol. Educ. Program 2009, 3–12 (2009).

    Google Scholar 

  53. McHale, C. M. et al. Prenatal origin of TEL–AML1-positive acute lymphoblastic leukemia in children born in California. Genes Chromosomes Cancer 37, 36–43 (2003).

    CAS  PubMed  Google Scholar 

  54. Mori, H. et al. Chromosome translocations and covert leukemic clones are generated during normal fetal development. Proc. Natl Acad. Sci. USA 99, 8242–8247 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Romana, S. P. et al. The t(12;21) of acute lymphoblastic leukemia results in a tel-AML1 gene fusion. Blood 85, 3662–3670 (1995).

    CAS  PubMed  Google Scholar 

  56. Shurtleff, S. A. et al. TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. Leukemia. 9, 1985–1989 (1995).

    CAS  PubMed  Google Scholar 

  57. Borkhardt, A. et al. Incidence and clinical relevance of TEL/AML1 fusion genes in children with acute lymphoblastic leukemia enrolled in the German and Italian multicenter therapy trials. Blood 90, 571–577 (1997).

    CAS  PubMed  Google Scholar 

  58. Hong, D. et al. Initiating and cancer-propagating cells in TEL-AML1-associated childhood leukemia. Science 319, 336–339 (2008).

    CAS  PubMed  Google Scholar 

  59. Tsuzuki, S. & Seto, M. TEL (ETV6)-AML1 (RUNX1) initiates self-renewing fetal pro-B cells in association with a transcriptional program shared with embryonic stem cells in mice. Stem Cells 31, 236–247 (2013).

    CAS  PubMed  Google Scholar 

  60. Eguchi-Ishimae, M. et al. Breakage and fusion of the TEL (ETV6) gene in immature B lymphocytes induced by apoptogenic signals. Blood 97, 737–743 (2001).

    CAS  PubMed  Google Scholar 

  61. Marshall, G. M. et al. The prenatal origins of cancer. Nat. Rev. Cancer 14, 277–289 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Hotfilder, M. et al. Immature CD34+CD19– progenitor/stem cells in TEL/AML1-positive acute lymphoblastic leukemia are genetically and functionally normal. Blood 100, 640–646 (2002).

    CAS  PubMed  Google Scholar 

  63. Greaves, M. F. & Wiemels, J. Origins of chromosome translocations in childhood leukaemia. Nat. Rev. Cancer 3, 639–649 (2003).

    CAS  PubMed  Google Scholar 

  64. Gale, K. B. et al. Backtracking leukemia to birth: identification of clonotypic gene fusion sequences in neonatal blood spots. Proc. Natl Acad. Sci. USA 94, 13950–13954 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Cazzaniga, G. et al. Developmental origins and impact of BCR-ABL1 fusion and IKZF1 deletions in monozygotic twins with Ph+ acute lymphoblastic leukemia. Blood 118, 5559–5564 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Doisaki, S. et al. Somatic mosaicism for oncogenic NRAS mutations in juvenile myelomonocytic leukemia. Blood 120, 1485–1488 (2012).

    CAS  PubMed  Google Scholar 

  67. Happle, R. & Rogers, M. Epidermal nevi. Adv. Dermatol. 18, 175–201 (2002).

    PubMed  Google Scholar 

  68. Happle, R. Lethal genes surviving by mosaicism: a possible explanation for sporadic birth defects involving the skin. J. Am. Acad. Dermatol. 16, 899–906 (1987).

    CAS  PubMed  Google Scholar 

  69. Hafner, C. et al. Mosaicism of activating FGFR3 mutations in human skin causes epidermal nevi. J. Clin. Invest. 116, 2201–2207 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Hafner, C. et al. Oncogenic PIK3CA mutations occur in epidermal nevi and seborrheic keratoses with a characteristic mutation pattern. Proc. Natl Acad. Sci. USA 104, 13450–13454 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Hafner, C. et al. Keratinocytic epidermal nevi are associated with mosaic RAS mutations. J. Med. Genet. 49, 249–253 (2012).

    CAS  PubMed  Google Scholar 

  72. Bourdeaut, F. et al. Mosaicism for oncogenic G12D KRAS mutation associated with epidermal nevus, polycystic kidneys and rhabdomyosarcoma. J. Med. Genet. 47, 859–862 (2010).

    PubMed  Google Scholar 

  73. Hafner, C., Toll, A. & Real, F. X. HRAS mutation mosaicism causing urothelial cancer and epidermal nevus. N. Engl. J. Med. 365, 1940–1942 (2011).

    CAS  PubMed  Google Scholar 

  74. Toll, A. & Real, F. X. Somatic oncogenic mutations, benign skin lesions and cancer progression: where to look next? Cell Cycle 7, 2674–2681 (2008).

    CAS  PubMed  Google Scholar 

  75. Groesser, L. et al. Postzygotic HRAS and KRAS mutations cause nevus sebaceous and Schimmelpenning syndrome. Nat. Genet. 44, 783–787 (2012).

    CAS  PubMed  Google Scholar 

  76. Moody, M. N., Landau, J. M. & Goldberg, L. H. Nevus sebaceous revisited. Pediatr. Dermatol. 29, 15–23 (2012).

    PubMed  Google Scholar 

  77. Groesser, L. et al. Phacomatosis pigmentokeratotica is caused by a postzygotic HRAS mutation in a multipotent progenitor cell. J. Invest. Dermatol. 133, 1998–2003 (2013).

    CAS  PubMed  Google Scholar 

  78. Benjamin, L. T. Birthmarks of medical significance in the neonate. Semin. Perinatol. 37, 16–19 (2013).

    PubMed  Google Scholar 

  79. Gerami, P. & Paller, A. S. Making a mountain out of a molehill: NRAS, mosaicism, and large congenital nevi. J. Invest. Dermatol. 133, 2127–2130 (2013).

    CAS  PubMed  Google Scholar 

  80. Ichii-Nakato, N. et al. High frequency of BRAFV600E mutation in acquired nevi and small congenital nevi, but low frequency of mutation in medium-sized congenital nevi. J. Invest. Dermatol. 126, 2111–2118 (2006).

    CAS  PubMed  Google Scholar 

  81. Kinsler, V. A. et al. Multiple congenital melanocytic nevi and neurocutaneous melanosis are caused by postzygotic mutations in codon 61 of NRAS. J. Invest. Dermatol. 133, 2229–2236 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Gripp, K. W., Stabley, D. L., Nicholson, L., Hoffman, J. D. & Sol-Church, K. Somatic mosaicism for an HRAS mutation causes Costello syndrome. Am. J. Med. Genet. A 140, 2163–2169 (2006).

    PubMed  Google Scholar 

  83. Lindhurst, M. J. et al. A mosaic activating mutation in AKT1 associated with the Proteus syndrome. N. Engl. J. Med. 365, 611–619 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Kurek, K. C. et al. Somatic mosaic activating mutations in PIK3CA cause CLOVES syndrome. Am. J. Hum. Genet. 90, 1108–1115 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Shirley, M. D. et al. Sturge–Weber syndrome and port-wine stains caused by somatic mutation in GNAQ. N. Engl. J. Med. 368, 1971–1979 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Colman, S. D., Rasmussen, S. A., Ho, V. T., Abernathy, C. R. & Wallace, M. R. Somatic mosaicism in a patient with neurofibromatosis type 1. Am. J. Hum. Genet. 58, 484–490 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Messiaen, L. et al. Mosaic type-1 NF1 microdeletions as a cause of both generalized and segmental neurofibromatosis type-1 (NF1). Hum. Mutat. 32, 213–219 (2011).

    CAS  PubMed  Google Scholar 

  88. Trofatter, J. A. et al. A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell 72, 791–800 (1993).

    CAS  PubMed  Google Scholar 

  89. Baser, M. E. et al. Genotype–phenotype correlations for nervous system tumors in neurofibromatosis 2: a population-based study. Am. J. Hum. Genet. 75, 231–239 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Goutagny, S. & Kalamarides, M. Meningiomas and neurofibromatosis. J. Neurooncol. 99, 341–347 (2010).

    PubMed  Google Scholar 

  91. Amary, M. F. et al. Ollier disease and Maffucci syndrome are caused by somatic mosaic mutations of IDH1 and IDH2. Nat. Genet. 43, 1262–1265 (2011).

    CAS  PubMed  Google Scholar 

  92. Pansuriya, T. C. et al. Somatic mosaic IDH1 and IDH2 mutations are associated with enchondroma and spindle cell hemangioma in Ollier disease and Maffucci syndrome. Nat. Genet. 43, 1256–1261 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Dommering, C. J. et al. RB1 mutation spectrum in a comprehensive nationwide cohort of retinoblastoma patients. J. Med. Genet. 51, 366–374 (2014).

    CAS  PubMed  Google Scholar 

  94. Amitrano, S. et al. Next generation sequencing in sporadic retinoblastoma patients reveals somatic mosaicism. Eur. J. Hum. Genet. 23, 1523–1530 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Walsh, T. et al. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc. Natl Acad. Sci. USA 108, 18032–18037 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Behjati, S. et al. A pathogenic mosaic TP53 mutation in two germ layers detected by next generation sequencing. PLoS ONE 9, e96531 (2014).

    PubMed  PubMed Central  Google Scholar 

  97. Hes, F. J. et al. Somatic APC mosaicism: an underestimated cause of polyposis coli. Gut 57, 71–76 (2008).

    CAS  PubMed  Google Scholar 

  98. Macrae, F., du Sart, D. & Nasioulas, S. Familial adenomatous polyposis. Best Pract. Res. Clin. Gastroenterol. 23, 197–207 (2009).

    CAS  PubMed  Google Scholar 

  99. Necker, J., Kovac, M., Attenhofer, M., Reichlin, B. & Heinimann, K. Detection of APC germ line mosaicism in patients with de novo familial adenomatous polyposis: a plea for the protein truncation test. J. Med. Genet. 48, 526–529 (2011).

    CAS  PubMed  Google Scholar 

  100. Friedman, E. et al. Low-level constitutional mosaicism of a de novo BRCA1 gene mutation. Br. J. Cancer. 112, 765–768 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Ruark, E. et al. Mosaic PPM1D mutations are associated with predisposition to breast and ovarian cancer. Nature 493, 406–410 (2013).

    CAS  PubMed  Google Scholar 

  102. Akbari, M. R. et al. PPM1D mutations in circulating white blood cells and the risk for ovarian cancer. J. Natl Cancer Inst. 106, djt323 (2014).

    PubMed  Google Scholar 

  103. Buffet, A. et al. Mosaicism in HIF2A-related polycythemia-paraganglioma syndrome. J. Clin. Endocrinol. Metab. 99, E369–E373 (2014).

    CAS  PubMed  Google Scholar 

  104. Rodriguez-Santiago, B. et al. Mosaic uniparental disomies and aneuploidies as large structural variants of the human genome. Am. J. Hum. Genet. 87, 129–138 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Tomasetti, C. & Vogelstein, B. Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347, 78–81 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Rozhok, A. I., Wahl, G. M. & DeGregori, J. A critical examination of the “bad luck” explanation of cancer risk. Cancer Prev. Res. (Phila.) 8, 762–764 (2015).

    CAS  Google Scholar 

  107. Weiss, L. M., Warnke, R. A., Sklar, J. & Cleary, M. L. Molecular analysis of the t(14;18) chromosomal translocation in malignant lymphomas. N. Engl. J. Med. 317, 1185–1189 (1987).

    CAS  PubMed  Google Scholar 

  108. Zelenetz, A. D. et al. Enhanced detection of the t(14;18) translocation in malignant lymphoma using pulsed-field gel electrophoresis. Blood 78, 1552–1560 (1991).

    CAS  PubMed  Google Scholar 

  109. McDonnell, T. J. et al. bcl-2-Immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell 57, 79–88 (1989).

    CAS  PubMed  Google Scholar 

  110. Egle, A., Harris, A. W., Bath, M. L., O'Reilly, L. & Cory, S. VavP-Bcl2 transgenic mice develop follicular lymphoma preceded by germinal center hyperplasia. Blood 103, 2276–2283 (2004).

    CAS  PubMed  Google Scholar 

  111. Roulland, S. et al. Long-term clonal persistence and evolution of t(14;18)-bearing B cells in healthy individuals. Leukemia 20, 158–162 (2006).

    CAS  PubMed  Google Scholar 

  112. Roulland, S. et al. t(14;18) translocation: a predictive blood biomarker for follicular lymphoma. J. Clin. Oncol. 32, 1347–1355 (2014).

    PubMed  Google Scholar 

  113. Kishimoto, W. & Nishikori, M. Molecular pathogenesis of follicular lymphoma. J. Clin. Exp. Hematop. 54, 23–30 (2014).

    PubMed  Google Scholar 

  114. Forsberg, L. A. et al. Age-related somatic structural changes in the nuclear genome of human blood cells. Am. J. Hum. Genet. 90, 217–228 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Jacobs, K. B. et al. Detectable clonal mosaicism and its relationship to aging and cancer. Nat. Genet. 44, 651–658 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Laurie, C. C. et al. Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nat. Genet. 44, 642–650 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Machiela, M. J. et al. Characterization of large structural genetic mosaicism in human autosomes. Am. J. Hum. Genet. 96, 487–497 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Dumanski, J. P. & Piotrowski, A. Structural genetic variation in the context of somatic mosaicism. Methods Mol. Biol. 838, 249–272 (2012).

    CAS  PubMed  Google Scholar 

  119. Bonnefond, A. et al. Association between large detectable clonal mosaicism and type 2 diabetes with vascular complications. Nat. Genet. 45, 1040–1043 (2013).

    CAS  PubMed  Google Scholar 

  120. McKerrell, T. et al. Leukemia-associated somatic mutations drive distinct patterns of age-related clonal hemopoiesis. Cell Rep. 10, 1239–1245 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Schick, U. M. et al. Confirmation of the reported association of clonal chromosomal mosaicism with an increased risk of incident hematologic cancer. PLoS ONE 8, e59823 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Genovese, G., Jaiswal, S., Ebert, B. L. & McCarroll, S. A. Clonal hematopoiesis and blood-cancer risk. N. Engl. J. Med. 372, 1071–1072 (2015).

    CAS  PubMed  Google Scholar 

  123. Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

    PubMed  PubMed Central  Google Scholar 

  124. Ortmann, C. A. et al. Effect of mutation order on myeloproliferative neoplasms. N. Engl. J. Med. 372, 601–612 (2015).

    PubMed  PubMed Central  Google Scholar 

  125. McKerrell, T. & Vassiliou, G. S. Aging as a driver of leukemogenesis. Sci. Transl Med. 7, 306fs38 (2015).

    PubMed  PubMed Central  Google Scholar 

  126. Hanks, S. et al. Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat. Genet. 36, 1159–1161 (2004).

    CAS  PubMed  Google Scholar 

  127. Snape, K. et al. Mutations in CEP57 cause mosaic variegated aneuploidy syndrome. Nat. Genet. 43, 527–529 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Forsberg, L. A. et al. Mosaic loss of chromosome Y in peripheral blood is associated with shorter survival and higher risk of cancer. Nat. Genet. 46, 624–628 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Dumanski, J. P. et al. Mutagenesis. Smoking is associated with mosaic loss of chromosome Y. Science 347, 81–83 (2015).

    CAS  PubMed  Google Scholar 

  130. Hafner, C. et al. Multiple oncogenic mutations and clonal relationship in spatially distinct benign human epidermal tumors. Proc. Natl Acad. Sci. USA 107, 20780–20785 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Slaughter, D. P., Southwick, H. W. & Smejkal, W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer 6, 963–968 (1953).

    CAS  PubMed  Google Scholar 

  132. Simple, M., Suresh, A., Das, D. & Kuriakose, M. A. Cancer stem cells and field cancerization of oral squamous cell carcinoma. Oral Oncol. 51, 643–651 (2015).

    CAS  PubMed  Google Scholar 

  133. Mohan, M. & Jagannathan, N. Oral field cancerization: an update on current concepts. Oncol. Rev. 8, 244 (2014).

    PubMed  PubMed Central  Google Scholar 

  134. Torezan, L. A. & Festa-Neto, C. Cutaneous field cancerization: clinical, histopathological and therapeutic aspects. An. Bras. Dermatol. 88, 775–786 (2013).

    PubMed  PubMed Central  Google Scholar 

  135. Zeki, S. S., McDonald, S. A. & Graham, T. A. Field cancerization in Barrett's esophagus. Discov. Med. 12, 371–379 (2011).

    PubMed  Google Scholar 

  136. Rivenbark, A. G. & Coleman, W. B. Field cancerization in mammary carcinogenesis — implications for prevention and treatment of breast cancer. Exp. Mol. Pathol. 93, 391–398 (2012).

    CAS  PubMed  Google Scholar 

  137. Forsberg, L. A. et al. Signatures of post-zygotic structural genetic aberrations in the cells of histologically normal breast tissue that can predispose to sporadic breast cancer. Genome Res. 25, 1521–1535 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Galandiuk, S. et al. Field cancerization in the intestinal epithelium of patients with Crohn's ileocolitis. Gastroenterology 142, 855–864.e8 (2012).

    PubMed  Google Scholar 

  139. Cheng, L. et al. The origins of urothelial carcinoma. Expert Rev. Anticancer Ther. 10, 865–880 (2010).

    CAS  PubMed  Google Scholar 

  140. Weaver, J. M. et al. Ordering of mutations in preinvasive disease stages of esophageal carcinogenesis. Nat. Genet. 46, 837–843 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Nakazawa, H. et al. UV and skin cancer: specific p53 gene mutation in normal skin as a biologically relevant exposure measurement. Proc. Natl Acad. Sci. USA 91, 360–364 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Ziegler, A. et al. Sunburn and p53 in the onset of skin cancer. Nature 372, 773–776 (1994).

    CAS  PubMed  Google Scholar 

  143. Goriely, A. et al. Activating mutations in FGFR3 and HRAS reveal a shared genetic origin for congenital disorders and testicular tumors. Nat. Genet. 41, 1247–1252 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Maher, G. J., Goriely, A. & Wilkie, A. O. Cellular evidence for selfish spermatogonial selection in aged human testes. Andrology 2, 304–314 (2014).

    CAS  PubMed  Google Scholar 

  145. Hu, B. et al. Multifocal epithelial tumors and field cancerization from loss of mesenchymal CSL signaling. Cell 149, 1207–1220 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Yates, L. R. et al. Subclonal diversification of primary breast cancer revealed by multiregion sequencing. Nat. Med. 21, 751–759 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    CAS  PubMed  Google Scholar 

  148. Brouha, B. et al. Hot L1s account for the bulk of retrotransposition in the human population. Proc. Natl Acad. Sci. USA 100, 5280–5285 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Kano, H. et al. L1 retrotransposition occurs mainly in embryogenesis and creates somatic mosaicism. Genes Dev. 23, 1303–1312 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Nagaoka, S. I., Hassold, T. J. & Hunt, P. A. Human aneuploidy: mechanisms and new insights into an age-old problem. Nat. Rev. Genet. 13, 493–504 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Ballif, B. C. et al. Detection of low-level mosaicism by array CGH in routine diagnostic specimens. Am. J. Med. Genet. A 140, 2757–2767 (2006).

    PubMed  Google Scholar 

  152. Bruder, C. E. et al. Phenotypically concordant and discordant monozygotic twins display different DNA copy-number-variation profiles. Am. J. Hum. Genet. 82, 763–771 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Piotrowski, A. et al. Somatic mosaicism for copy number variation in differentiated human tissues. Hum. Mutat. 29, 1118–1124 (2008).

    PubMed  Google Scholar 

  154. Colnaghi, R., Carpenter, G., Volker, M. & O'Driscoll, M. The consequences of structural genomic alterations in humans: genomic disorders, genomic instability and cancer. Semin. Cell Dev. Biol. 22, 875–885 (2011).

    CAS  PubMed  Google Scholar 

  155. Liu, P., Carvalho, C. M., Hastings, P. J. & Lupski, J. R. Mechanisms for recurrent and complex human genomic rearrangements. Curr. Opin. Genet. Dev. 22, 211–220 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Lee, J. A., Carvalho, C. M. & Lupski, J. R. A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell 131, 1235–1247 (2007).

    CAS  PubMed  Google Scholar 

  157. Hastings, P. J., Ira, G. & Lupski, J. R. A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet. 5, e1000327 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Stephens, P. J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Maher, C. A. & Wilson, R. K. Chromothripsis and human disease: piecing together the shattering process. Cell 148, 29–32 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Tuna, M., Knuutila, S. & Mills, G. B. Uniparental disomy in cancer. Trends Mol. Med. 15, 120–128 (2009).

    CAS  PubMed  Google Scholar 

  161. Cohen, A. S., Wilson, S. L., Trinh, J. & Ye, X. C. Detecting somatic mosaicism: considerations and clinical implications. Clin. Genet. 87, 554–562 (2015).

    CAS  PubMed  Google Scholar 

  162. Jonkman, M. F. & Pasmooij, A. M. Realm of revertant mosaicism expanding. J. Invest. Dermatol. 132, 514–516 (2012).

    CAS  PubMed  Google Scholar 

  163. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71 (1999).

    CAS  PubMed  Google Scholar 

  164. Lao, Z., Raju, G. P., Bai, C. B. & Joyner, A. L. MASTR: a technique for mosaic mutant analysis with spatial and temporal control of recombination using conditional floxed alleles in mice. Cell Rep. 2, 386–396 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Schonhuber, N. et al. A next-generation dual-recombinase system for time- and host-specific targeting of pancreatic cancer. Nat. Med. 20, 1340–1347 (2014).

    PubMed  PubMed Central  Google Scholar 

  166. Guerra, C. et al. Tumor induction by an endogenous K-ras oncogene is highly dependent on cellular context. Cancer Cell 4, 111–120 (2003).

    CAS  PubMed  Google Scholar 

  167. Guerra, C. et al. Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 11, 291–302 (2007).

    CAS  PubMed  Google Scholar 

  168. Shibata, H. et al. Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene. Science 278, 120–123 (1997).

    CAS  PubMed  Google Scholar 

  169. Barker, N. et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457, 608–611 (2009).

    CAS  PubMed  Google Scholar 

  170. Schepers, A. G. et al. Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science 337, 730–735 (2012).

    CAS  PubMed  Google Scholar 

  171. Claveria, C., Giovinazzo, G., Sierra, R. & Torres, M. Myc-driven endogenous cell competition in the early mammalian embryo. Nature 500, 39–44 (2013).

    CAS  PubMed  Google Scholar 

  172. Villa del Campo, C., Claveria, C., Sierra, R. & Torres, M. Cell competition promotes phenotypically silent cardiomyocyte replacement in the mammalian heart. Cell Rep. 8, 1741–1751 (2014).

    CAS  PubMed  Google Scholar 

  173. Morata, G. & Ripoll, P. Minutes: mutants of Drosophila autonomously affecting cell division rate. Dev. Biol. 42, 211–221 (1975).

    CAS  PubMed  Google Scholar 

  174. Moreno, E., Basler, K. & Morata, G. Cells compete for decapentaplegic survival factor to prevent apoptosis in Drosophila wing development. Nature 416, 755–759 (2002).

    CAS  PubMed  Google Scholar 

  175. Amoyel, M. & Bach, E. A. Cell competition: how to eliminate your neighbours. Development 141, 988–1000 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Amoyel, M. & Bach, E. A. Functions of the Drosophila JAK-STAT pathway: lessons from stem cells. JAKSTAT 1, 176–183 (2012).

    PubMed  PubMed Central  Google Scholar 

  177. Moreno, E. Is cell competition relevant to cancer? Nat. Rev. Cancer 8, 141–147 (2008).

    CAS  PubMed  Google Scholar 

  178. Hogan, C. et al. Characterization of the interface between normal and transformed epithelial cells. Nat. Cell Biol. 11, 460–467 (2009).

    CAS  PubMed  Google Scholar 

  179. Menendez, J., Perez-Garijo, A., Calleja, M. & Morata, G. A tumor-suppressing mechanism in Drosophila involving cell competition and the Hippo pathway. Proc. Natl Acad. Sci. USA 107, 14651–14656 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Ballesteros-Arias, L., Saavedra, V. & Morata, G. Cell competition may function either as tumour-suppressing or as tumour-stimulating factor in Drosophila. Oncogene 33, 4377–4384 (2013).

    PubMed  Google Scholar 

  181. Wu, M., Pastor-Pareja, J. C. & Xu, T. Interaction between RasV12 and scribbled clones induces tumour growth and invasion. Nature 463, 545–548 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Fan, Y. & Bergmann, A. Distinct mechanisms of apoptosis-induced compensatory proliferation in proliferating and differentiating tissues in the Drosophila eye. Dev. Cell 14, 399–410 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Perez-Garijo, A., Martin, F. A., Struhl, G. & Morata, G. Dpp signaling and the induction of neoplastic tumors by caspase-inhibited apoptotic cells in Drosophila. Proc. Natl Acad. Sci. USA 102, 17664–17669 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Hariharan, I. K. & Bilder, D. Regulation of imaginal disc growth by tumor-suppressor genes in Drosophila. Annu. Rev. Genet. 40, 335–361 (2006).

    CAS  PubMed  Google Scholar 

  185. Snuderl, M. et al. Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma. Cancer Cell 20, 810–817 (2011).

    CAS  PubMed  Google Scholar 

  186. Szerlip, N. J. et al. Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response. Proc. Natl Acad. Sci. USA 109, 3041–3046 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Luks, V. L. et al. Lymphatic and other vascular malformative/overgrowth disorders are caused by somatic mutations in PIK3CA. J. Pediatr. 166, 1048–1054 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Salo-Mullen, E. E. et al. Mosaic partial deletion of the PTEN gene in a patient with Cowden syndrome. Fam. Cancer 13, 459–467 (2014).

    PubMed  Google Scholar 

  189. Altarescu, G. et al. PGD for germline mosaicism. Reprod. Biomed. Online 25, 390–395 (2012).

    CAS  PubMed  Google Scholar 

  190. Tabareau-Delalande, F. et al. Diagnostic value of investigating GNAS mutations in fibro-osseous lesions: a retrospective study of 91 cases of fibrous dysplasia and 40 other fibro-osseous lesions. Mod. Pathol. 26, 911–921 (2013).

    CAS  PubMed  Google Scholar 

  191. Neveling, K., Endt, D., Hoehn, H. & Schindler, D. Genotype–phenotype correlations in Fanconi anemia. Mutat. Res. 668, 73–91 (2009).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank G. Morata, Y. Fujita, F. Notta, L. Pérez-Jurado, A. Toll and E. Wagner for valuable comments on the manuscript. Work in the authors' laboratories was supported by grants BFU2012-31086 and ISCIII-RD12/0019/0005 (ISCIII) to M.T., SAF2011-29530, ISCIII-RD12-0036-0034 and ONCOBIO Consolíder to F.X.R., and the CEL-DD programme from the Comunidad Autónoma de Madrid (to M.T. and F.X.R.). The Centro Nacional de Investigaciones Cardiovasculares (CNIC) is supported by the Government of Spain through the Ministry of Economy and Competitiveness (MINECO) and the Pro-CNIC Foundation. L.C.F. was the recipient of a Marie Curie training grant (FP7-PEOPLE-2010-IEF, project 274946).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miguel Torres or Francisco X. Real.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Age-related clonal haematopoiesis

(ARCH). Defined by comparing genetic findings in blood from patients with leukaemia and from healthy individuals. Mutations found in leukaemia could also be demonstrated at low frequency in DNA from leukocytes of individuals without leukaemia. The prevalence of these mutations increases with age and reflects the expansion of founder clones that only infrequently acquire additional genetic alterations to become leukaemic.

Blaschko's lines

Lines that identify pathways of embryonic cell migration. Skin diseases caused by mosaicism are often characterized by a distribution along Blaschko's lines; these lines cannot be seen in the absence of such lesions.

Cellular heterogeneity

Phenotypic cellular diversity that occurs widely in tissues. Genetic mosaicism is only one of the mechanisms contributing to cellular heterogeneity. Epigenetic and cell-specific transcriptional programmes confer cellular identity through different mechanisms. Many other processes (for example, protein glycosylation) can also contribute to cellular heterogeneity.

Epigenetic mosaicism

A form of mosaicism in which a stable epigenetic modification is clonally transmitted. Epigenetic mosaicism can occur in differentiated cells and can contribute to field cancerization and tumour development. Females are naturally epigenetically mosaic: one X chromosome is active and the second is epigenetically silenced. Clonal selection may favour X inactivation disequilibrium in association with ageing.

Field cancerization

The occurrence of genetic alterations in histologically normal or abnormal — but non-neoplastic — tissues that are shared with an adjacent primary tumour. It is also often used to describe seemingly unrelated patches of cells harbouring genetic changes when they are found in non-neoplastic tissue.

Gonadal mosaicism

The occurrence of two or more genetically distinct cell populations present in the gonads; this phenomenon can give rise to de novo mutations in the human population as determined in blood or tissue DNA from the progeny. It comprises conditions that generally behave with an autosomal dominant pattern of inheritance, the parents being either unaffected or with a mild phenotype.

Guthrie cards

Pre-printed cards used to collect blood spots from newborns to allow testing for phenylketonuria, among other metabolic conditions.

Metazoans

Pluricellular animals composed of cells that have functional specialization.

Neutral drift

A shift in the genetic composition of a cell group (or individual) that originates solely from random fluctuations in the clonal contribution of the progenitor pool. The smaller the founder population, the stronger the effects of neutral drifts.

Selfish clonal expansion

Unequal preferential expansion of genetic clones in tissues or whole organisms at the expense of the surrounding cells.

Somatic mosaicism

The occurrence of two or more genetically distinct cell populations exclusively in somatic cells. Mutations that occur after the first division of the zygote are called postzygotic. When it can be demonstrated that they have occurred during embryonic development, because they give rise to a congenital lesion or because they affect tissues from more than one germ layer (an event that is thought not to take place in vivo after gastrulation), they are considered embryonic. When mosaicism is detected only in cells from adult tissues, it is often impossible to determine when the genetic event leading to mosaicism occurred.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández, L., Torres, M. & Real, F. Somatic mosaicism: on the road to cancer. Nat Rev Cancer 16, 43–55 (2016). https://doi.org/10.1038/nrc.2015.1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc.2015.1

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer