Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Parkinson's disease and cancer: two wars, one front

Abstract

Parkinson's disease is caused by the premature death of neurons in the midbrain. By contrast, cancer spawns from cells that refuse to die. We would therefore expect their pathogenic mechanisms to be very different. However, recent genetic studies and emerging functional work show that strikingly similar and overlapping pathways are involved in both diseases. We consider these areas of convergence and discuss how insights from one disease can inform us about, and possibly help us to treat, the other.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The complexity of overlapping pathways in Parkinson's disease and cancer.
Figure 2: Protein handling in Parkinson's disease and cancer.

Similar content being viewed by others

References

  1. Jankovic, J. Parkinson's disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatr. 79, 368–376 (2008).

    Article  CAS  Google Scholar 

  2. Doshay, L. J. Problem situations in the treatment of paralysis agitans. J. Am. Med. Assoc. 156, 680–684 (1954).

    Article  CAS  PubMed  Google Scholar 

  3. Polymeropoulos, M. H. et al. Mutation in the α-synuclein gene identified in families with Parkinson's disease. Science 276, 2045–2047 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Spillantini, M. G. et al. α-synuclein in Lewy bodies. Nature 388, 839–840 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Braak, H. & Braak, E. Pathoanatomy of Parkinson's disease. J. Neurol. 247 (Suppl. 2), II3–10 (2000).

    PubMed  Google Scholar 

  6. Satake, W. et al. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease. Nature Genet. 41, 1303–1307 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Simon-Sanchez, J. et al. Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nature Genet. 41, 1308–1312 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Hardy, J. Genetic analysis of pathways to Parkinson disease. Neuron 68, 201–206 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Greenman, C. et al. Patterns of somatic mutation in human cancer genomes. Nature 446, 153–158 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rubinsztein, D. C. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443, 780–786 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Schulz, J. B. & Falkenburger, B. H. Neuronal pathology in Parkinson's disease. Cell Tissue Res. 318, 135–147 (2004).

    Article  PubMed  Google Scholar 

  13. McNaught, K. S., Belizaire, R., Isacson, O., Jenner, P. & Olanow, C. W. Altered proteasomal function in sporadic Parkinson's disease. Exp. Neurol. 179, 38–46 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Scott, M. D. & Frydman, J. Aberrant protein folding as the molecular basis of cancer. Methods Mol. Biol. 232, 67–76 (2003).

    CAS  PubMed  Google Scholar 

  15. Soussi, T. & Wiman, K. G. Shaping genetic alterations in human cancer: the p53 mutation paradigm. Cancer Cell 12, 303–312 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Brooks, C. L. & Gu, W. p53 regulation by ubiquitin. FEBS Lett. 585, 2803–2809 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rotter, V. p53, a transformation-related cellular-encoded protein, can be used as a biochemical marker for the detection of primary mouse tumor cells. Proc. Natl Acad. Sci. USA 80, 2613–2617 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moll, U. M., Riou, G. & Levine, A. J. Two distinct mechanisms alter p53 in breast cancer: mutation and nuclear exclusion. Proc. Natl Acad. Sci. USA 89, 7262–7266 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gannon, J. V., Greaves, R., Iggo, R. & Lane, D. P. Activating mutations in p53 produce a common conformational effect. A monoclonal antibody specific for the mutant form. EMBO J. 9, 1595–1602 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu, J. et al. Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nature Chem. Biol. 7, 285–295 (2011).

    Article  CAS  Google Scholar 

  21. Kim, C. H. et al. Role of reactive oxygen species-dependent protein aggregation in metabolic stress-induced necrosis. Int. J. Oncol. 37, 97–102 (2010).

    CAS  PubMed  Google Scholar 

  22. Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Shimura, H. et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nature Genet. 25, 302–305 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Tanaka, K., Suzuki, T., Hattori, N. & Mizuno, Y. Ubiquitin, proteasome and parkin. Biochim. Biophys. Acta 1695, 235–247 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Chung, K. K. et al. S-nitrosylation of parkin regulates ubiquitination and compromises parkin's protective function. Science 304, 1328–1331 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. LaVoie, M. J., Ostaszewski, B. L., Weihofen, A., Schlossmacher, M. G. & Selkoe, D. J. Dopamine covalently modifies and functionally inactivates parkin. Nature Med. 11, 1214–1221 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Winklhofer, K. F., Henn, I. H., Kay-Jackson, P. C., Heller, U. & Tatzelt, J. Inactivation of parkin by oxidative stress and C-terminal truncations: a protective role of molecular chaperones. J. Biol. Chem. 278, 47199–47208 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Ziviani, E., Tao, R. N. & Whitworth, A. J. Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc. Natl Acad. Sci. USA 107, 5018–5023 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gegg, M. E. et al. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum. Mol. Genet. 19, 4861–4870 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rakovic, A. et al. Mutations in PINK1 and Parkin impair ubiquitination of Mitofusins in human fibroblasts. PLoS ONE 6, e16746 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Saito, S. et al. Definition of a commonly deleted region in ovarian cancers to a 300-kb segment of chromosome 6q27. Cancer Res. 56, 5586–5589 (1996).

    CAS  PubMed  Google Scholar 

  32. Orphanos, V. et al. Allelic imbalance of chromosome 6q in ovarian tumours. Br. J. Cancer 71, 666–669 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kong, F. M., Anscher, M. S., Washington, M. K., Killian, J. K. & Jirtle, R. L. M6P/IGF2R is mutated in squamous cell carcinoma of the lung. Oncogene 19, 1572–1578 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Negrini, M. et al. Suppression of tumorigenicity of breast cancer cells by microcell-mediated chromosome transfer: studies on chromosomes 6 and 11. Cancer Res. 54, 1331–1336 (1994).

    CAS  PubMed  Google Scholar 

  35. Cesari, R. et al. Parkin, a gene implicated in autosomal recessive juvenile parkinsonism, is a candidate tumor suppressor gene on chromosome 6q25-q27. Proc. Natl Acad. Sci. USA 100, 5956–5961 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Veeriah, S. et al. Somatic mutations of the Parkinson's disease-associated gene PARK2 in glioblastoma and other human malignancies. Nature Genet. 42, 77–82 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Klein, C., Lohmann-Hedrich, K., Rogaeva, E., Schlossmacher, M. G. & Lang, A. E. Deciphering the role of heterozygous mutations in genes associated with parkinsonism. Lancet Neurol. 6, 652–662 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Tay, S. P. et al. Parkin enhances the expression of cyclin-dependent kinase 6 and negatively regulates the proliferation of breast cancer cells. J. Biol. Chem. 285, 29231–29238 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. da Costa, C. A. et al. Transcriptional repression of p53 by parkin and impairment by mutations associated with autosomal recessive juvenile Parkinson's disease. Nature Cell Biol. 11, 1370–1375 (2009).

    Article  PubMed  CAS  Google Scholar 

  40. Rodriguez-Gonzalez, A. et al. Role of the aggresome pathway in cancer: targeting histone deacetylase 6-dependent protein degradation. Cancer Res. 68, 2557–2560 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Olzmann, J. A. & Chin, L. S. Parkin-mediated K63-linked polyubiquitination: a signal for targeting misfolded proteins to the aggresome-autophagy pathway. Autophagy 4, 85–87 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Kawaguchi, Y. et al. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115, 727–738 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Tang, M. et al. Interactions of Wnt/β-catenin signaling and sonic hedgehog regulate the neurogenesis of ventral midbrain dopamine neurons. J. Neurosci. 30, 9280–9291 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cicero, S. & Herrup, K. Cyclin-dependent kinase 5 is essential for neuronal cell cycle arrest and differentiation. J. Neurosci. 25, 9658–9668 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nguyen, M. D., Mushynski, W. E. & Julien, J. P. Cycling at the interface between neurodevelopment and neurodegeneration. Cell Death Differ. 9, 1294–1306 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Simon, D. K. et al. Somatic mitochondrial DNA mutations in cortex and substantia nigra in aging and Parkinson's disease. Neurobiol. Aging 25, 71–81 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Bender, A. et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nature Genet. 38, 515–517 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Yang, J. L., Weissman, L., Bohr, V. A. & Mattson, M. P. Mitochondrial DNA damage and repair in neurodegenerative disorders. DNA Repair 7, 1110–1120 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ikeda, Y., Matsunaga, Y., Takiguchi, M. & Ikeda, M. A. Expression of cyclin E in postmitotic neurons during development and in the adult mouse brain. Gene Expr. Patterns 11, 64–71 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Staropoli, J. F. et al. Parkin is a component of an SCF-like ubiquitin ligase complex and protects postmitotic neurons from kainate excitotoxicity. Neuron 37, 735–749 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Lopes, J. P. & Agostinho, P. Cdk5: multitasking between physiological and pathological conditions. Prog. Neurobiol. 94, 49–63 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Hoglinger, G. U. et al. The pRb/E2F cell-cycle pathway mediates cell death in Parkinson's disease. Proc. Natl Acad. Sci. USA 104, 3585–3590 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ko, H. S. et al. Accumulation of the authentic parkin substrate aminoacyl-tRNA synthetase cofactor, p38/JTV-1, leads to catecholaminergic cell death. J. Neurosci. 25, 7968–7978 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Di Fonzo, A. et al. FBXO7 mutations cause autosomal recessive, early-onset parkinsonian-pyramidal syndrome. Neurology 72, 240–245 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Jackson, P. K. & Eldridge, A. G. The SCF ubiquitin ligase: an extended look. Mol. Cell 9, 923–925 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Laman, H. et al. Transforming activity of Fbxo7 is mediated specifically through regulation of cyclin D/cdk6. EMBO J. 24, 3104–3116 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chang, Y. F., Cheng, C. M., Chang, L. K., Jong, Y. J. & Yuo, C. Y. The F-box protein Fbxo7 interacts with human inhibitor of apoptosis protein cIAP1 and promotes cIAP1 ubiquitination. Biochem. Biophys. Res. Commun. 342, 1022–1026 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Bonifati, V. et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299, 256–259 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Bretaud, S., Allen, C., Ingham, P. W. & Bandmann, O. p53-dependent neuronal cell death in a DJ-1-deficient zebrafish model of Parkinson's disease. J. Neurochem. 100, 1626–1635 (2007).

    CAS  PubMed  Google Scholar 

  60. Fan, J. et al. DJ-1 decreases Bax expression through repressing p53 transcriptional activity. J. Biol. Chem. 283, 4022–4030 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Giaime, E. et al. Loss of function of DJ-1 triggered by Parkinson's disease-associated mutation is due to proteolytic resistance to caspase-6. Cell Death Differ. 17, 158–169 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Healy, D. G. et al. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson's disease: a case-control study. Lancet Neurol. 7, 583–590 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ambros, V. The functions of animal microRNAs. Nature 431, 350–355 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Gehrke, S., Imai, Y., Sokol, N. & Lu, B. Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression. Nature 466, 637–641 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Garzon, R., Marcucci, G. & Croce, C. M. Targeting microRNAs in cancer: rationale, strategies and challenges. Nature Rev. Drug Discov. 9, 775–789 (2010).

    Article  CAS  Google Scholar 

  66. Langston, J. W., Ballard, P., Tetrud, J. W. & Irwin, I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219, 979–980 (1983).

    Article  CAS  PubMed  Google Scholar 

  67. Schapira, A. H. et al. Mitochondrial complex I deficiency in Parkinson's disease. Lancet 1, 1269 (1989).

    Article  CAS  PubMed  Google Scholar 

  68. Betarbet, R. et al. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nature Neurosci. 3, 1301–1306 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).

    Article  CAS  PubMed  Google Scholar 

  70. Gargini, R., Garcia-Escudero, V. & Izquierdo, M. Therapy mediated by mitophagy abrogates tumor progression. Autophagy 7, 466–476 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Kim, J. H. et al. Involvement of mitophagy in oncogenic K-Ras-induced transformation: overcoming a cellular energy deficit from glucose deficiency. Autophagy 7 (2011).

  72. Valente, E. M. et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304, 1158–1160 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Pridgeon, J. W., Olzmann, J. A., Chin, L. S. & Li, L. PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biol. 5, e172 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Park, J. et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441, 1157–1161 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Clark, I. E. et al. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441, 1162–1166 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Exner, N. et al. Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin. J. Neurosci. 27, 12413–12418 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Narendra, D., Tanaka, A., Suen, D. F. & Youle, R. J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795–803 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Martin, S. A., Hewish, M., Sims, D., Lord, C. J. & Ashworth, A. Parallel high-throughput RNA interference screens identify PINK1 as a potential therapeutic target for the treatment of DNA mismatch repair-deficient cancers. Cancer Res. 71, 1836–1848 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Kim, R. H. et al. Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyrindine (MPTP) and oxidative stress. Proc. Natl Acad. Sci. USA 102, 5215–5220 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Shendelman, S., Jonason, A., Martinat, C., Leete, T. & Abeliovich, A. DJ-1 is a redox-dependent molecular chaperone that inhibits α-synuclein aggregate formation. PLoS Biol. 2, e362 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Clements, C. M., McNally, R. S., Conti, B. J., Mak, T. W. & Ting, J. P. DJ-1, a cancer- and Parkinson's disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2. Proc. Natl Acad. Sci. USA 103, 15091–15096 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. van der Brug, M. P. et al. RNA binding activity of the recessive parkinsonism protein DJ-1 supports involvement in multiple cellular pathways. Proc. Natl Acad. Sci. USA 105, 10244–10249 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Irrcher, I. et al. Loss of the Parkinson's disease-linked gene DJ-1 perturbs mitochondrial dynamics. Hum. Mol. Genet. 19, 3734–3746 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Kamp, F. et al. Inhibition of mitochondrial fusion by α-synuclein is rescued by PINK1, Parkin and DJ-1. EMBO J. 29, 3571–3589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Xiong, H. et al. Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation. J. Clin. Invest. 119, 650–660 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yang, Y. et al. Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc. Natl Acad. Sci. USA 103, 10793–10798 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nagakubo, D. et al. DJ-1, a novel oncogene which transforms mouse NIH3T3 cells in cooperation with ras. Biochem. Biophys. Res. Commun. 231, 509–513 (1997).

    Article  CAS  PubMed  Google Scholar 

  88. Hay, N. & Sonenberg, N. Upstream and downstream of mTOR. Genes Dev. 18, 1926–1945 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Liu, P., Cheng, H., Roberts, T. M. & Zhao, J. J. Targeting the phosphoinositide 3-kinase pathway in cancer. Nature Rev. Drug Discov. 8, 627–644 (2009).

    Article  CAS  Google Scholar 

  90. Paisan-Ruiz, C. LRRK2 gene variation and its contribution to Parkinson disease. Hum. Mutat. 30, 1153–1160 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Cookson, M. R. The role of leucine-rich repeat kinase 2 (LRRK2) in Parkinson's disease. Nature Rev. Neurosci. 11, 791–797 (2010).

    Article  CAS  Google Scholar 

  92. Imai, Y. et al. Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. EMBO J. 27, 2432–2443 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Syntichaki, P., Troulinaki, K. & Tavernarakis, N. eIF4E function in somatic cells modulates ageing in Caenorhabditis elegans. Nature 445, 922–926 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Kumar, A. et al. The Parkinson's disease associated LRRK2 exhibits weaker in vitro phosphorylation of 4E-BP compared to autophosphorylation. PLoS ONE 5, e8730 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Ohta, E., Kawakami, F., Kubo, M. & Obata, F. LRRK2 directly phosphorylates Akt1 as a possible physiological substrate: impairment of the kinase activity by Parkinson's disease-associated mutations. FEBS Lett. 585, 2165–2170 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Looyenga, B. D. et al. Chromosomal amplification of leucine-rich repeat kinase-2 (LRRK2) is required for oncogenic MET signaling in papillary renal and thyroid carcinomas. Proc. Natl Acad. Sci. USA 108, 1439–1444 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Gera, J. F. et al. AKT activity determines sensitivity to mammalian target of rapamycin (mTOR) inhibitors by regulating cyclin D1 and c-myc expression. J. Biol. Chem. 279, 2737–2746 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Tain, L. S. et al. Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss. Nature Neurosci. 12, 1129–1135 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Murata, H. et al. A new cytosolic pathway from a Parkinson disease-associated kinase, BRPK/PINK1: activation of AKT via mTORC2. J. Biol. Chem. 286, 7182–7189 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Unoki, M. & Nakamura, Y. Growth-suppressive effects of BPOZ and EGR2, two genes involved in the PTEN signaling pathway. Oncogene 20, 4457–4465 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Liaw, D. et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nature Genet. 16, 64–67 (1997).

    Article  CAS  PubMed  Google Scholar 

  102. MacKeigan, J. P. et al. Proteomic profiling drug-induced apoptosis in non-small cell lung carcinoma: identification of RS/DJ-1 and RhoGDIα. Cancer Res. 63, 6928–6934 (2003).

    CAS  PubMed  Google Scholar 

  103. Kim, R. H. et al. DJ-1, a novel regulator of the tumor suppressor PTEN. Cancer Cell 7, 263–273 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Yang, Y. et al. Inactivation of Drosophila DJ-1 leads to impairments of oxidative stress response and phosphatidylinositol 3-kinase/Akt signaling. Proc. Natl Acad. Sci. USA 102, 13670–13675 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Aleyasin, H. et al. DJ-1 protects the nigrostriatal axis from the neurotoxin MPTP by modulation of the AKT pathway. Proc. Natl Acad. Sci. USA 107, 3186–3191 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Qian, B. Z. & Pollard, J. W. Macrophage diversity enhances tumor progression and metastasis. Cell 141, 39–51 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Grivennikov, S. I., Greten, F. R. & Karin, M. Immunity, inflammation, and cancer. Cell 140, 883–899 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Beutler, E. Gaucher disease: new molecular approaches to diagnosis and treatment. Science 256, 794–799 (1992).

    Article  CAS  PubMed  Google Scholar 

  109. Shiran, A., Brenner, B., Laor, A. & Tatarsky, I. Increased risk of cancer in patients with Gaucher disease. Cancer 72, 219–224 (1993).

    Article  CAS  PubMed  Google Scholar 

  110. de Fost, M. et al. Increased incidence of cancer in adult Gaucher disease in Western Europe. Blood Cells Mol. Dis. 36, 53–58 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Shoenfeld, Y. et al. Gaucher's disease: a disease with chronic stimulation of the immune system. Arch. Pathol. Lab. Med. 106, 388–391 (1982).

    CAS  PubMed  Google Scholar 

  112. Allen, M. J., Myer, B. J., Khokher, A. M., Rushton, N. & Cox, T. M. Pro-inflammatory cytokines and the pathogenesis of Gaucher's disease: increased release of interleukin-6 and interleukin-10. QJM 90, 19–25 (1997).

    Article  CAS  PubMed  Google Scholar 

  113. Velayati, A., Yu, W. H. & Sidransky, E. The role of glucocerebrosidase mutations in Parkinson disease and Lewy body disorders. Curr. Neurol. Neurosci. Rep. 10, 190–198 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Neumann, J. et al. Glucocerebrosidase mutations in clinical and pathologically proven Parkinson's disease. Brain 132, 1783–1794 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Ron, I. & Horowitz, M. ER retention and degradation as the molecular basis underlying Gaucher disease heterogeneity. Hum. Mol. Genet. 14, 2387–2398 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Cuervo, A. M., Stefanis, L., Fredenburg, R., Lansbury, P. T. & Sulzer, D. Impaired degradation of mutant α-synuclein by chaperone-mediated autophagy. Science 305, 1292–1295 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Mazzulli, J. R. et al. Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 146, 37–52 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Manning-Bog, A. B., Schule, B. & Langston, J. W. α-synuclein-glucocerebrosidase interactions in pharmacological Gaucher models: a biological link between Gaucher disease and parkinsonism. Neurotoxicology 30, 1127–1132 (2009).

    Article  CAS  PubMed  Google Scholar 

  119. McGeer, P. L., Itagaki, S., Boyes, B. E. & McGeer, E. G. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology 38, 1285–1291 (1988).

    Article  CAS  PubMed  Google Scholar 

  120. Depino, A. M. et al. Microglial activation with atypical proinflammatory cytokine expression in a rat model of Parkinson's disease. Eur. J. Neurosci. 18, 2731–2742 (2003).

    Article  PubMed  Google Scholar 

  121. Burguillos, M. A. et al. Caspase signalling controls microglia activation and neurotoxicity. Nature 472, 319–324 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. Swanton, C. et al. Regulators of mitotic arrest and ceramide metabolism are determinants of sensitivity to paclitaxel and other chemotherapeutic drugs. Cancer Cell 11, 498–512 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Falkenburger, B. H. & Schulz, J. B. Limitations of cellular models in Parkinson's disease research. J. Neural Transm. Suppl. 70, 261–268 (2006).

    Article  CAS  Google Scholar 

  124. Han, S. S., Williams, L. A. & Eggan, K. C. Constructing and deconstructing stem cell models of neurological disease. Neuron 70, 626–644 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Beck, J. A. et al. Somatic and germline mosaicism in sporadic early-onset Alzheimer's disease. Hum. Mol. Genet. 13, 1219–1224 (2004).

    Article  CAS  PubMed  Google Scholar 

  126. Rowe, I. F., Ridler, M. A. & Gibberd, F. B. Presenile dementia associated with mosaic trisomy 21 in a patient with a Down syndrome child. Lancet 2, 229 (1989).

    Article  CAS  PubMed  Google Scholar 

  127. Post, B., Merkus, M. P., de Haan, R. J. & Speelman, J. D. Prognostic factors for the progression of Parkinson's disease: a systematic review. Mov. Disord. 22, 1839–1851; quiz 1988 (2007).

    Article  PubMed  Google Scholar 

  128. Newell, G. R., Spitz, M. R. & Sider, J. G. Cancer and age. Semin. Oncol. 16, 3–9 (1989).

    CAS  PubMed  Google Scholar 

  129. Gilbert, W. Origins of Life: the RNA world. Nature 319, 618 (1986).

    Article  Google Scholar 

  130. Gapstur, S. M. & Thun, M. J. Progress in the war on cancer. JAMA 303, 1084–1085 (2010).

    Article  PubMed  Google Scholar 

  131. Haber, D. A., Gray, N. S. & Baselga, J. The evolving war on cancer. Cell 145, 19–24 (2011).

    Article  CAS  PubMed  Google Scholar 

  132. Jansson, B. & Jankovic, J. Low cancer rates among patients with Parkinson's disease. Ann. Neurol. 17, 505–509 (1985).

    Article  CAS  PubMed  Google Scholar 

  133. Moller, H., Mellemkjaer, L., McLaughlin, J. K. & Olsen, J. H. Occurrence of different cancers in patients with Parkinson's disease. BMJ 310, 1500–1501 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Minami, Y., Yamamoto, R., Nishikouri, M., Fukao, A. & Hisamichi, S. Mortality and cancer incidence in patients with Parkinson's disease. J. Neurol. 247, 429–434 (2000).

    Article  CAS  PubMed  Google Scholar 

  135. Hernan, M. A., Takkouche, B., Caamano-Isorna, F. & Gestal-Otero, J. J. A meta-analysis of coffee drinking, cigarette smoking, and the risk of Parkinson's disease. Ann. Neurol. 52, 276–284 (2002).

    Article  PubMed  Google Scholar 

  136. Olsen, J. H. et al. Atypical cancer pattern in patients with Parkinson's disease. Br. J. Cancer 92, 201–205 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Bajaj, A., Driver, J. A. & Schernhammer, E. S. Parkinson's disease and cancer risk: a systematic review and meta-analysis. Cancer Causes Control 21, 697–707 (2010).

    Article  PubMed  Google Scholar 

  138. Liu, R., Gao, X., Lu, Y. & Chen, H. Meta-analysis of the relationship between Parkinson disease and melanoma. Neurology 76, 2002–2009 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Malagelada, C., Jin, Z. H., Jackson-Lewis, V., Przedborski, S. & Greene, L. A. Rapamycin protects against neuron death in in vitro and in vivo models of Parkinson's disease. J. Neurosci. 30, 1166–1175 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhang, J., Yang, P. L. & Gray, N. S. Targeting cancer with small molecule kinase inhibitors. Nature Rev. Cancer 9, 28–39 (2009).

    Article  CAS  Google Scholar 

  141. Lee, B. D. et al. Inhibitors of leucine-rich repeat kinase-2 protect against models of Parkinson's disease. Nature Med. 16, 998–1000 (2010).

    Article  CAS  PubMed  Google Scholar 

  142. Nair, B. C., Vallabhaneni, S., Tekmal, R. R. & Vadlamudi, R. K. Roscovitine confers tumor suppressive effect on therapy-resistant breast tumor cells. Breast Cancer Res. 13, R80 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Smith, P. D. et al. Cyclin-dependent kinase 5 is a mediator of dopaminergic neuron loss in a mouse model of Parkinson's disease. Proc. Natl Acad. Sci. USA 100, 13650–13655 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Chico, L. K., Van Eldik, L. J. & Watterson, D. M. Targeting protein kinases in central nervous system disorders. Nature Rev. Drug Discov. 8, 892–909 (2009).

    Article  CAS  Google Scholar 

  145. Sittler, A. et al. Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington's disease. Hum. Mol. Genet. 10, 1307–1315 (2001).

    Article  CAS  PubMed  Google Scholar 

  146. McLean, P. J., Klucken, J., Shin, Y. & Hyman, B. T. Geldanamycin induces Hsp70 and prevents α-synuclein aggregation and toxicity in vitro. Biochem. Biophys. Res. Commun. 321, 665–669 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Riedel, M., Goldbaum, O., Schwarz, L., Schmitt, S. & Richter-Landsberg, C. 17-AAG induces cytoplasmic α-synuclein aggregate clearance by induction of autophagy. PLoS ONE 5, e8753 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Geisler, S. et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nature Cell Biol. 12, 119–131 (2010).

    Article  CAS  PubMed  Google Scholar 

  149. Pandey, N., Strider, J., Nolan, W. C., Yan, S. X. & Galvin, J. E. Curcumin inhibits aggregation of α-synuclein. Acta Neuropathol. 115, 479–489 (2008).

    Article  CAS  PubMed  Google Scholar 

  150. Kawashima, M., Suzuki, S. O., Doh-ura, K. & Iwaki, T. α-Synuclein is expressed in a variety of brain tumors showing neuronal differentiation. Acta Neuropathol. 99, 154–160 (2000).

    Article  CAS  PubMed  Google Scholar 

  151. Matsuo, Y. & Kamitani, T. Parkinson's disease-related protein, α-synuclein, in malignant melanoma. PLoS ONE 5, e10481 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Bruening, W. et al. Synucleins are expressed in the majority of breast and ovarian carcinomas and in preneoplastic lesions of the ovary. Cancer 88, 2154–2163 (2000).

    Article  CAS  PubMed  Google Scholar 

  153. Li, L. et al. The tumor suppressor UCHL1 forms a complex with p53/MDM2/ARF to promote p53 signaling and is frequently silenced in nasopharyngeal carcinoma. Clin. Cancer Res. 16, 2949–2958 (2010).

    Article  CAS  PubMed  Google Scholar 

  154. Okochi-Takada, E. et al. Silencing of the UCHL1 gene in human colorectal and ovarian cancers. Int. J. Cancer 119, 1338–1344 (2006).

    Article  CAS  PubMed  Google Scholar 

  155. Kagara, I. et al. CpG hypermethylation of the UCHL1 gene promoter is associated with pathogenesis and poor prognosis in renal cell carcinoma. J. Urol. 180, 343–351 (2008).

    Article  CAS  PubMed  Google Scholar 

  156. Hod, Y. Differential control of apoptosis by DJ-1 in prostate benign and cancer cells. J. Cell. Biochem. 92, 1221–1233 (2004).

    Article  CAS  PubMed  Google Scholar 

  157. Parkinson, J. An essay on the shaking palsy. 1817. J. Neuropsychiatry Clin. Neurosci. 14, 223–236; discussion 222 (2002).

    Article  PubMed  Google Scholar 

  158. Lewy, F. H. in Handbuch der Neurologie (ed. Lewandowsky, M.) 920–933 (Springer, Berlin, 1912).

    Google Scholar 

  159. Tretiakoff, C. Contribution a l'etude de l'anatomie pathologique du locus niger de Soemmering avec quelques deductions relatives a la athogenie des troubles du tonus musculaire et de la maladie de Parkinson (Jouve and Co, Paris, 1919).

    Google Scholar 

  160. Carlsson, A., Lindqvist, M. & Magnusson, T. 3, 4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature 180, 1200 (1957).

    Article  CAS  PubMed  Google Scholar 

  161. Ehringer, H. & Hornykiewicz, O. [Distribution of noradrenaline and dopamine (3-hydroxytyramine) in the human brain and their behavior in diseases of the extrapyramidal system]. Klin. Wochenschr. 38, 1236–1239 (1960).

    Article  CAS  PubMed  Google Scholar 

  162. Birkmayer, W. & Hornykiewicz, O. [The L-3, 4-dioxyphenylalanine (DOPA)-effect in Parkinson-akinesia]. Wien. Klin. Wochenschr. 73, 787–788 (1961).

    CAS  PubMed  Google Scholar 

  163. Cotzias, G. C., Papavasiliou, P. S. & Gellene, R. Modification of Parkinsonism--chronic treatment with L-dopa. N. Engl. J. Med. 280, 337–345 (1969).

    Article  CAS  PubMed  Google Scholar 

  164. Leroy, E. et al. The ubiquitin pathway in Parkinson's disease. Nature 395, 451–452 (1998).

    Article  CAS  PubMed  Google Scholar 

  165. Zimprich, A. et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44, 601–607 (2004).

    Article  CAS  PubMed  Google Scholar 

  166. Paisan-Ruiz, C. et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron 44, 595–600 (2004).

    Article  CAS  PubMed  Google Scholar 

  167. Lwin, A., Orvisky, E., Goker-Alpan, O., LaMarca, M. E. & Sidransky, E. Glucocerebrosidase mutations in subjects with parkinsonism. Mol. Genet. Metab. 81, 70–73 (2004).

    Article  CAS  PubMed  Google Scholar 

  168. Ramirez, A. et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nature Genet. 38, 1184–1191 (2006).

    Article  CAS  PubMed  Google Scholar 

  169. Nalls, M. A. et al. Imputation of sequence variants for identification of genetic risks for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet 377, 641–649 (2011).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The work was funded by a Wellcome Trust Medical Research Council (MRC) Parkinson's Disease Consortium grant to University College London Institute of Neurology, the University of Sheffield and the MRC Protein Phosphorylation Unit at the University of Dundee (grant number WT089698). H.P-F. is funded by the MRC (award number G0700183).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas W. Wood.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Nicholas W. Wood's homepage

COSMIC

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devine, M., Plun-Favreau, H. & Wood, N. Parkinson's disease and cancer: two wars, one front. Nat Rev Cancer 11, 813–823 (2011). https://doi.org/10.1038/nrc3150

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3150

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer