Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cartilage tumours and bone development: molecular pathology and possible therapeutic targets

Key Points

  • Benign cartilage lesions (enchondromas and osteochondromas) can result from the deregulation of the hedgehog signalling pathway, which is involved in normal bone development.

  • Malignant chondrosarcomas can derive from benign cartilage lesions, with enchondromas developing into central chondrosarcomas and osteochondromas developing into peripheral chondrosarcomas.

  • Peripheral chondrosarcomas have different molecular abnormalities from central chondrosarcomas.

  • The progression from benign to malignant cartilage tumours is not driven by hedgehog signalling, but blocking this pathway may be a potential therapeutic target by inducing tumour cartilage cell differentiation.

  • Genetically modified mice show that p53 and insulin-like growth factor are deregulated when enchondromas progress to central chondrosarcomas.

  • Cytogenetic studies show that cyclin-dependent kinase 4, hypoxia-inducible factor, matrix metalloproteinases, SRC and AKT are activated in central chondrosarcomas, suggesting potential new therapeutic approaches.

Abstract

As a group, cartilage tumours are the most common primary bone lesions. They range from benign lesions, such as enchondromas and osteochondromas, to malignant chondrosarcoma. The benign lesions result from the deregulation of the hedgehog signalling pathway, which is involved in normal bone development. These lesions can be the precursors of malignant chondrosarcomas, which are notoriously resistant to conventional chemotherapy and radiotherapy. Cytogenetic studies and mouse models are beginning to identify genes and signalling pathways that have roles in tumour progression, such as hedgehog, p53, insulin-like growth factor, cyclin-dependent kinase 4, hypoxia-inducible factor, matrix metalloproteinases, SRC and AKT, suggesting potential new therapeutic approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bone development.
Figure 2: Development of benign cartilaginous tumours and their progression to chondrosarcoma.

Similar content being viewed by others

References

  1. Fletcher, C. D. M., Unni, K. K. & Mertens, F. (eds). in World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Soft Tissue and Bone. 234–257 (IARC Press, Lyon. France, 2002).

    Google Scholar 

  2. Kronenberg, H. M. Developmental regulation of the growth plate. Nature 423, 332–336 (2003).

    CAS  PubMed  Google Scholar 

  3. Tiet, T. D. & Alman, B. A. Developmental pathways in musculoskeletal neoplasia: involvement of the Indian Hedgehog-parathyroid hormone-related protein pathway. Pediatr. Res. 53, 539–543 (2003).

    CAS  PubMed  Google Scholar 

  4. Pathi, S., Rutenberg, J. B., Johnson, R. L. & Vortkamp, A. Interaction of Ihh and BMP/Noggin signaling during cartilage differentiation. Dev. Biol. 209, 239–253 (1999).

    CAS  PubMed  Google Scholar 

  5. Lyons, K. M., Pelton, R. W. & Hogan, B. L. Patterns of expression of murine Vgr-1 and BMP-2a RNA suggest that transforming growth factor-beta-like genes coordinately regulate aspects of embryonic development. Genes Dev. 3, 1657–1668 (1989).

    CAS  PubMed  Google Scholar 

  6. Bitgood, M. J. & McMahon, A. P. Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo. Dev. Biol. 172, 126–138 (1995).

    CAS  PubMed  Google Scholar 

  7. St-Jacques, B., Hammerschmidt, M. & McMahon, A. P. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 13, 2072–2086 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Minina, E. et al. BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation. Development 128, 4523–4534 (2001).

    CAS  PubMed  Google Scholar 

  9. Schwartz, H. S. et al. The malignant potential of enchondromatosis. J. Bone Joint Surg. Am. 69, 269–274 (1987).

    CAS  PubMed  Google Scholar 

  10. Tiet, T. D. et al. Constitutive hedgehog signaling in chondrosarcoma up-regulates tumor cell proliferation. Am. J. Pathol. 168, 321–330 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Schrage, Y. M. et al. Aberrant heparan sulfate proteoglycan localization, despite normal exostosin, in central chondrosarcoma. Am. J. Pathol. 174, 979–988 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hopyan, S. et al. A mutant PTH/PTHrP type I receptor in enchondromatosis. Nature Genet. 30, 306–310 (2002). This study shows that enchondromas are caused by mutations activating hedgehog signalling.

    PubMed  Google Scholar 

  13. Couvineau, A. et al. PTHR1 mutations associated with Ollier disease result in receptor loss of function. Hum. Mol. Genet. 17, 2766–2775 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. van Beerendonk, H. M. et al. Molecular analysis of the INK4A/INK4A-ARF gene locus in conventional (central) chondrosarcomas and enchondromas: indication of an important gene for tumour progression. J. Pathol. 202, 359–366 (2004).

    CAS  PubMed  Google Scholar 

  15. Bovée, J. V. M. G. & Hogendoorn, P. C. W. Multiple osteochondromas. in World Health Organization Classification of Tumours. Pathology and Genetics Of Tumours of Soft Tissue and Bone (eds Fletcher, C. D. M., Unni, K. K. & Mertens, F.) 360–362 (IARC Press, Lyon, France, 2002).

    Google Scholar 

  16. Bovée, J. V. M. G. Multiple osteochondromas. Orphanet. J. Rare Dis. 3, 3 (2008).

    PubMed  PubMed Central  Google Scholar 

  17. Jennes, I. et al. Multiple osteochondromas: mutation update and description of the multiple osteochondromas mutation database (MOdb). Hum. Mutat. 30, 1620–1627 (2009).

    CAS  PubMed  Google Scholar 

  18. Bovée, J. V. M. G. et al. EXT-mutation analysis and loss of heterozygosity in sporadic and hereditary osteochondromas and secondary chondrosarcomas. Am. J. Hum. Genet. 65, 689–698 (1999).

    PubMed  PubMed Central  Google Scholar 

  19. Hameetman, L. et al. The Role of EXT1 in non hereditary osteochondroma: identification of homozygous deletions. J. Natl Cancer Inst. 99, 396–406 (2007).

    CAS  PubMed  Google Scholar 

  20. Jones, K. B. et al. A mouse model of osteochondromagenesis from clonal inactivation of Ext1 in chondrocytes. Proc. Natl Acad. Sci. USA 107, 2054–2059 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bovee, J. V. M. G. EXTra hit for mouse osteochondroma. Proc. Natl Acad. Sci. USA 107, 1813–1814 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. McCormick, C. et al. The putative tumour suppressor EXT1 alters the expression of cell-surface heparan sulfate. Nature Genet. 19, 158–161 (1998). This study shows the function of EXT , which is mutated in osteochondromas.

    CAS  PubMed  Google Scholar 

  23. Koziel, L., Kunath, M., Kelly, O. G. & Vortkamp, A. Ext1-dependent heparan sulfate regulates the range of Ihh signaling during endochondral ossification. Dev. Cell 6, 801–813 (2004).

    CAS  PubMed  Google Scholar 

  24. Hameetman, L. et al. Decreased EXT expression and intracellular accumulation of HSPG in osteochondromas and peripheral chondrosarcomas. J. Pathol. 211, 399–409 (2007).

    CAS  PubMed  Google Scholar 

  25. Benoist-Lasselin, C. et al. Defective chondrocyte proliferation and differentiation in osteochondromas of MHE patients. Bone 39, 17–26 (2006).

    CAS  PubMed  Google Scholar 

  26. Clement, A. et al. Regulation of zebrafish skeletogenesis by ext2/dackel and papst1/pinscher. PLoS. Genet. 4, e1000136 (2008).

    PubMed  PubMed Central  Google Scholar 

  27. Fiorenza, F. et al. Risk factors for survival and local control in chondrosarcoma of bone. J. Bone Joint Surg. Br. 84, 93–99 (2002).

    CAS  PubMed  Google Scholar 

  28. Ayala, G., Liu, C., Nicosia, R., Horowitz, S. & Lackman, R. Microvasculature and VEGF expression in cartilaginous tumors. Hum. Pathol. 31, 341–346 (2000).

    CAS  PubMed  Google Scholar 

  29. Geirnaerdt, M. J., Hogendoorn, P. C. W., Bloem, J. L., Taminiau, A. H. M. & Van der Woude, H. J. Cartilaginous tumors: fast contrast-enhanced MR imaging. Radiology 214, 539–546 (2000).

    CAS  PubMed  Google Scholar 

  30. Eefting, D. et al. Assessment of interobserver variability and histologic parameters to improve reliability in classification and grading of central cartilaginous tumors. Am. J. Surg. Pathol. 33, 50–57 (2009).

    PubMed  Google Scholar 

  31. Skeletal Lesions Interobserver Correlation among Expert Diagnosticians (SLICED) Study Group. Reliability of histopathologic and radiologic grading of cartilaginous neoplasms in long bones. J. Bone Joint Surg. Am. 89, 2113–2123 (2007).

  32. Gelderblom, H. et al. The clinical approach towards chondrosarcoma. Oncologist 13, 320–329 (2008).

    PubMed  Google Scholar 

  33. Riedel, R. F. et al. The clinical management of chondrosarcoma. Curr. Treat Options Oncol. 10, 94–106 (2009).

    PubMed  Google Scholar 

  34. Lee, F. Y. et al. Chondrosarcoma of bone: an assessment of outcome. J. Bone Joint Surg. Am. 81, 326–338 (1999).

    CAS  PubMed  Google Scholar 

  35. Hameetman, L. et al. Peripheral chondrosarcoma progression is accompanied by decreased Indian Hedgehog (IHH) signalling. J. Pathol. 209, 501–511 (2006).

    CAS  PubMed  Google Scholar 

  36. Rudin, C. M. et al. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N. Engl. J. Med. 361, 1173–1178 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Von Hoff, D. D. et al. Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N. Engl. J. Med. 361, 1164–1172 (2009).

    CAS  PubMed  Google Scholar 

  38. Alman, B. A. & Wunder, J. S. Parathyroid hormone-related protein regulates glioma-associated oncogene transcriptional activation: lessons learned from bone development and cartilage neoplasia. Ann. NY Acad. Sci. 1144, 36–41 (2008).

    CAS  PubMed  Google Scholar 

  39. Ho, L. et al. Gli2 and p53 cooperate to regulate IGFBP-3- mediated chondrocyte apoptosis in the progression from benign to malignant cartilage tumors. Cancer Cell 16, 126–136 (2009). This study shows that progression from enchondroma to chondrosracoma is associated with the loss of p53 and IGF signalling activation.

    CAS  PubMed  Google Scholar 

  40. Olmos, D. et al. Safety, pharmacokinetics, and preliminary activity of the anti-IGF-1R antibody figitumumab (CP-751,871) in patients with sarcoma and Ewing's sarcoma: a phase 1 expansion cohort study. Lancet Oncol. 2, 129–135 (2010).

    Google Scholar 

  41. Bovée, J. V. M. G. et al. Loss of heterozygosity and DNA ploidy point to a diverging genetic mechanism in the origin of peripheral and central chondrosarcoma. Genes Chromosom. Cancer 26, 237–246 (1999).

    PubMed  Google Scholar 

  42. Tallini, G. et al. Correlation between clinicopathological features and karyotype in 100 cartilaginous and chordoid tumours. A report from the Chromosomes and Morphology (CHAMP) Collaborative Study Group. J. Pathol. 196, 194–203 (2002).

    PubMed  Google Scholar 

  43. Rozeman, L. B. et al. Array-CGH of central chondrosarcoma: identification of RPS6 and CDK4 as candidate target genes for genomic aberrations. Cancer 107, 380–388 (2006).

    CAS  PubMed  Google Scholar 

  44. Schrage, Y.M. et al. Central chondrosarcoma progression is associated with pRb pathway alterations; CDK4 downregulation and p16 overexpression inhibit cell growth in vitro. J. Cell. Mol. Med. 13, 2843–2852 (2009).

    CAS  PubMed  Google Scholar 

  45. Larramendy, M. L. et al. Gains, losses, and amplifications of DNA sequences evaluated by comparative genomic hybridization in chondrosarcomas. Am. J. Pathol. 150, 685–691 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Bovée, J. V. M. G. et al. Chromosome 9 alterations and trisomy 22 in central chondrosarcoma: a cytogenetic and DNA flow cytometric analysis of chondrosarcoma subtypes. Diagn. Mol. Pathol. 10, 228–236 (2001).

    PubMed  Google Scholar 

  47. Asp, J. et al. Changes of the p16 gene but not the p53 gene in human chondrosarcoma tissues. Int. J. Cancer 85, 782–786 (2000).

    CAS  PubMed  Google Scholar 

  48. Asp, J., Inerot, S., Block, J. A. & Lindahl, A. Alterations in the regulatory pathway involving p16, pRb and cdk4 in human chondrosarcoma. J. Orthop. Res. 19, 149–154 (2001).

    CAS  PubMed  Google Scholar 

  49. Rozeman, L. B. et al. Absence of IHH and retention of PTHrP signalling in enchondromas and central chondrosarcomas. J. Pathol. 205, 476–482 (2005).

    CAS  PubMed  Google Scholar 

  50. Schrage, Y. M. et al. Kinome profiling of chondrosarcoma reveals Src-pathway activity and dasatinib as option for treatment. Cancer Res. 69, 6216–6222 (2009). This study, which uses kinome profiling in human tumours, suggests several potential therapeutic options.

    CAS  PubMed  Google Scholar 

  51. Jang, J. H. & Chung, C. P. Tenascin-C promotes cell survival by activation of Akt in human chondrosarcoma cell. Cancer Lett. 229, 101–105 (2005).

    CAS  PubMed  Google Scholar 

  52. Engelman, J. A. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nature Rev. Cancer 9, 550–562 (2009).

    CAS  Google Scholar 

  53. Bussink, J., van der Kogel, A. J. & Kaanders, J. H. Activation of the PI3-K/AKT pathway and implications for radioresistance mechanisms in head and neck cancer. Lancet Oncol. 9, 288–296 (2008).

    CAS  PubMed  Google Scholar 

  54. Lin, C., Meitner, P. A. & Terek, R. M. PTEN mutation is rare in chondrosarcoma. Diagn. Mol. Pathol. 11, 22–26 (2002).

    PubMed  Google Scholar 

  55. Lin, C., McGough, R., Aswad, B., Block, J. A. & Terek, R. Hypoxia induces HIF-1α and VEGF expression in chondrosarcoma cells and chondrocytes. J. Orthop. Res. 22, 1175–1181 (2004).

    CAS  PubMed  Google Scholar 

  56. Kalinski, T. et al. Differential expression of VEGF-A and angiopoietins in cartilage tumors and regulation by interleukin-1beta. Cancer 106, 2028–2038 (2006).

    CAS  PubMed  Google Scholar 

  57. McGough, R. L., Lin, C., Meitner, P., Aswad, B. I. & Terek, R. M. Angiogenic cytokines in cartilage tumors. Clin. Orthop. 397, 62–69 (2002).

    Google Scholar 

  58. Kubo, T. et al. Expression of hypoxia-inducible factor-1α and its relationship to tumour angiogenesis and cell proliferation in cartilage tumours. J. Bone Joint Surg. Br. 90, 364–370 (2008).

    CAS  PubMed  Google Scholar 

  59. Bovée, J. V. M. G., Van den Broek, L. J. C. M., Cleton-Jansen, A. M. & Hogendoorn, P. C. W. Up-regulation of PTHrP and Bcl-2 expression characterizes the progression of osteochondroma towards peripheral chondrosarcoma and is a late event in central chondrosarcoma. Lab. Invest. 80, 1925–1933 (2000). This is one of several studies showing different molecular pathways dysregulated in peripheral and central chondrosarcomas.

    PubMed  Google Scholar 

  60. Moussavi-Harami, F. et al. Intrinsic radiation resistance in human chondrosarcoma cells. Biochem. Biophys. Res. Commun. 346, 379–385 (2006).

    CAS  PubMed  Google Scholar 

  61. Boeuf, S., Bovee, J. V. M. G., Lehner, B., Hogendoorn, P. C. W. & Richter, W. Correlation of hypoxic signalling to histological grade and outcome in cartilage tumours. Histopathology 56, 641–651 (2009).

    Google Scholar 

  62. Rozeman, L. B. et al. cDNA expression profiling of central chondrosarcomas: Ollier disease resembles solitary tumors and alteration in genes coding for energy metabolism with increasing grade. J. Pathol. 207, 61–71 (2005).

    CAS  PubMed  Google Scholar 

  63. Wyman, J. J. et al. Multidrug resistance-1 and p-glycoprotein in human chondrosarcoma cell lines: expression correlates with decreased intracellular doxorubicin and in vitro chemoresistance. J. Orthop. Res. 17, 935–940 (1999).

    CAS  PubMed  Google Scholar 

  64. Terek, R. M. et al. Chemotherapy and P-glycoprotein expression in chondrosarcoma. J. Orthop. Res. 16, 585–590 (1998).

    CAS  PubMed  Google Scholar 

  65. Rosier, R. N. et al. P-glycoprotein expression in cartilaginous tumors. J. Surg. Oncol. 65, 95–105 (1997).

    CAS  PubMed  Google Scholar 

  66. Kim, D. W. et al. siRNA-based targeting of antiapoptotic genes can reverse chemoresistance in P-glycoprotein expressing chondrosarcoma cells. Mol. Cancer 8, 28 (2009).

    PubMed  PubMed Central  Google Scholar 

  67. Jiang, X. et al. siRNA mediated inhibition of MMP-1 reduces invasive potential of a human chondrosarcoma cell line. J. Cell. Physiol. 202, 723–730 (2005).

    CAS  PubMed  Google Scholar 

  68. Bovée, J. V. M. G. et al. Near-haploidy and subsequent polyploidization characterize the progression of peripheral chondrosarcoma. Am. J. Pathol. 157, 587–1595 (2000).

    Google Scholar 

  69. Schrage, Y. M. et al. COX-2 expression in chondrosarcoma: a role for celecoxib treatment? Eur. J. Cancer 46, 616–624 (2010).

    CAS  PubMed  Google Scholar 

  70. Geirnardt, M. J. et al. Usefullness of radiography in differentiating enchondroma from central grade I chondrosarcoma. Am. J. Roentgenol. 169, 1097–1104 (1997).

    Google Scholar 

  71. Mulder, J. D., Schütte, H. E., Kroon, H. M. & Taconis, W. K. Radiologic Atlas of Bone Tumors. 2nd edn (Elsevier, Amsterdam, 1993).

    Google Scholar 

  72. Miyaji, T. et al. Monoclonal antibody to parathyroid hormone-related protein induces differentiation and apoptosis of chondrosarcoma cells. Cancer Lett. 199, 147–155 (2003).

    CAS  PubMed  Google Scholar 

  73. Cleton-Jansen, A. M. et al. Estrogen signaling is active in cartilaginous tumors: implications for antiestrogen therapy as treatment option of metastasized or irresectable chondrosarcoma. Clin. Cancer Res. 11, 8028–8035 (2005).

    CAS  PubMed  Google Scholar 

  74. Fong, Y. C. et al. 2-methoxyestradiol induces apoptosis and cell cycle arrest in human chondrosarcoma cells. J. Orthop. Res. 25, 1106–1114 (2007).

    CAS  PubMed  Google Scholar 

  75. Klenke, F. M. et al. Tyrosine kinase inhibitor SU6668 represses chondrosarcoma growth via antiangiogenesis in vivo. BMC Cancer 7, 49 (2007).

    PubMed  PubMed Central  Google Scholar 

  76. Sakimura, R. et al. The effects of histone deacetylase inhibitors on the induction of differentiation in chondrosarcoma cells. Clin. Cancer Res. 13, 275–282 (2007).

    CAS  PubMed  Google Scholar 

  77. Yamamoto, S. et al. Suberoylanilide hydroxamic acid (SAHA) induces apoptosis or autophagy-associated cell death in chondrosarcoma cell lines. Anticancer Res. 28, 1585–1591 (2008).

    CAS  PubMed  Google Scholar 

  78. Shen, Z. N. et al. Suppression of chondrosarcoma cells by 15-deoxy-Δ12,14-prostaglandin J2 is associated with altered expression of Bax/Bcl-xL and p21. Biochem. Biophys. Res. Commun. 328, 375–382 (2005).

    CAS  PubMed  Google Scholar 

  79. Lai, T. J. et al. Alendronate inhibits cell invasion and MMP-2 secretion in human chondrosarcoma cell line. Acta Pharmacol. Sin. 28, 1231–1235 (2007).

    CAS  PubMed  Google Scholar 

  80. Kubo, T. et al. Inhibitory effects of a new bisphosphonate, minodronate, on proliferation and invasion of a variety of malignant bone tumor cells. J. Orthop. Res. 24, 1138–1144 (2006).

    CAS  PubMed  Google Scholar 

  81. Parsch, D., Brassat, U., Brummendorf, T. H. & Fellenberg, J. Consequences of telomerase inhibition by BIBR1532 on proliferation and chemosensitivity of chondrosarcoma cell lines. Cancer Invest. 26, 590–596 (2008).

    CAS  PubMed  Google Scholar 

  82. Tomek, S. et al. Trail-induced apoptosis and interaction with cytotoxic agents in soft tissue sarcoma cell lines. Eur. J. Cancer 39, 1318–1329 (2003).

    CAS  PubMed  Google Scholar 

  83. Sun, X., Wei, L., Chen, Q. & Terek, R. M. CXCR4/SDF1 mediate hypoxia induced chondrosarcoma cell invasion through ERK signaling and increased MMP1 expression. Mol. Cancer 9, 17 (2010).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Y. Schrage and L. Hameetman for their help with the tables. J.V.M.G.B was financially supported by The Netherlands Organization for Scientific Research (917-76-315).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin A. Alman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1

Mouse models to study the formation of cartilaginous tumours with respect to EXT and growth plate signalling (PDF 185 kb)

Supplementary information S2

Model organisms to study the formation of cartilaginous tumours with respect to EXT and growth plate signalling (PDF 188 kb)

Related links

Related links

FURTHER INFORMATION

Benjamin A. Alman's homepages

Benjamin A. Alman's homepages

Glossary

Long bone

A bone that is longer than it is wide; for example, the femur in the thigh and the humerus in the upper arm.

Osteoblast

A cell responsible for bone formation. It expresses bone sialoprotein and osteocalcin and produces osteoid, which is composed mainly of Type I collagen.

Growth plate

A specialized region of cartilage, located near the ends of bone, which is responsible for the longitudinal growth of long bones.

Epiphysis

The rounded end of a long bone, located closest to the adjacent joint.

Metaphysis

The wider portion of a long bone adjacent to the growth plate, but closer to the middle of the bone.

Muco-myxoid matrix

Increase of mucopolysaccharides in the extracellular matrix, resulting in pale-to-lightly basophilic staining using haematoxylin and eosin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bovée, J., Hogendoorn, P., Wunder, J. et al. Cartilage tumours and bone development: molecular pathology and possible therapeutic targets. Nat Rev Cancer 10, 481–488 (2010). https://doi.org/10.1038/nrc2869

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2869

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer