Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes

Abstract

Sodium gadolinium fluoride (NaGdF4) is an ideal host material for the incorporation of luminescent lanthanide ions because of its high photochemical stability, low vibrational energy and its ability to mediate energy exchanges between the lanthanide dopants. This protocol describes the detailed experimental procedure for synthesizing core-shell NaGdF4 nanoparticles that incorporate lanthanide ions into different layers for efficiently converting a single-wavelength, near-IR excitation into a tunable visible emission. These nanoparticles can then be used as luminescent probes in biological samples, in 3D displays, in solar energy conversion and in photodynamic therapy. The NaGdF4 nanoparticles are grown through co-precipitation in a binary solvent mixture of oleic acid and 1-octadecene. Doping by lanthanides with controlled compositions and concentrations can be achieved concomitantly with particle growth. The lanthanide-doped NaGdF4 nanoparticles then serve as seed crystals for subsequent epitaxial growth of shell layers comprising different lanthanide dopants. The entire procedure for the preparation and isolation of the core-shell nanoparticles comprising two epitaxial shell layers requires 15 h for completion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of the co-precipitation strategy for the synthesis of lanthanide-doped NaGdF4 and its core-shell nanocrystals.
Figure 2: Photograph of the experimental setup for the preparation of the NaGdF4 nanocrystals.
Figure 3: Photograph of the experimental setup for the measurement of upconversion emission spectra.
Figure 4: Photographs of the reaction mixture at various stages of the preparation.
Figure 5: Characterization of the NaGdF4 nanocrystals.
Figure 6: Size-tuning of the NaGdF4 nanocrystals.

Similar content being viewed by others

References

  1. Haase, M. & Schäfer, H. Upconverting nanoparticles. Angew. Chem. Int. Ed. 50, 5808–5829 (2011).

    Article  CAS  Google Scholar 

  2. Blasse, G. & Grabmaier, B.C. Luminescent Materials (Springer, 1994).

  3. Auzel, F. Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 104, 139–174 (2004).

    Article  CAS  Google Scholar 

  4. Downing, E., Hesselink, L., Ralston, J. & Macfarlane, R. A three-color, solid-state, three-dimensional display. Science 273, 1185–1189 (1996).

    Article  CAS  Google Scholar 

  5. van der Ende, B.M., Aartsa, L. & Meijerink, A. Lanthanide ions as spectral converters for solar cells. Phys. Chem. Chem. Phys. 11, 11081–11095 (2009).

    Article  CAS  Google Scholar 

  6. Wang, J. et al. Enhancing multiphoton upconversion through energy clustering at sublattice level. Nat. Mater. 13, 157–162 (2014).

    Article  CAS  Google Scholar 

  7. Wang, F. & Liu, X. Recent advances in the chemistry of lanthanide-doped nanoparticles. Chem. Soc. Rev. 38, 976–989 (2009).

    Article  CAS  Google Scholar 

  8. Mader, H.S., Kele, P., Saleh, S.M. & Wofbeis, O.S. Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging. Curr. Opin. Chem. Biol. 14, 582–596 (2010).

    Article  CAS  Google Scholar 

  9. Zhou, J., Liu, Z. & Li, F. Upconversion nanophosphors for small-animal imaging. Chem. Soc. Rev. 41, 1323–1349 (2012).

    Article  CAS  Google Scholar 

  10. Bünzli, J.-C.G. Lanthanide luminescence for biomedical analyses and imaging. Chem. Rev. 110, 2729–2755 (2010).

    Article  Google Scholar 

  11. Liu, Q., Feng, W., Yang, T., Yi, T. & Li, F. Upconversion luminescence imaging of cells and small animals. Nat. Protoc. 8, 2033–2044 (2013).

    Article  CAS  Google Scholar 

  12. Liu, Y., Tu, D., Zhu, H. & Chen, X. Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications. Chem. Soc. Rev. 42, 6924–6958 (2013).

    Article  CAS  Google Scholar 

  13. Wu, S. et al. Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals. Proc. Natl. Acad. Sci. USA 106, 10917–10921 (2009).

    Article  CAS  Google Scholar 

  14. Idris, N.M. et al. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med. 18, 1580–1585 (2012).

    Article  CAS  Google Scholar 

  15. Zhang, Y. et al. Tuning the autophagy-inducing activity of lanthanide-based nanocrystals through specific surface-coating peptides. Nat. Mater. 11, 817–826 (2012).

    Article  CAS  Google Scholar 

  16. Zhou, J. et al. Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties. Biomaterials 31, 3287–3295 (2010).

    Article  CAS  Google Scholar 

  17. Abel, K.A., Boyer, J.C. & van Veggel, F.C.J.M. Hard proof of the NaYF4/NaGdF4 nanocrystals core/shell structure. J. Am. Chem. Soc. 131, 14644–14645 (2009).

    Article  CAS  Google Scholar 

  18. Park, Y. et al. Theranostic probe based on lanthanide-doped nanoparticles for simultaneous in vivo dual-modal imaging and photodynamic therapy. Adv. Mater. 24, 5755–5761 (2012).

    Article  CAS  Google Scholar 

  19. Wang, F., Wang, J. & Liu, X. Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. Angew. Chem. Int. Ed. 49, 7456–7460 (2010).

    Article  CAS  Google Scholar 

  20. Alivisatos, A.P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996).

    Article  CAS  Google Scholar 

  21. Medintz, I.L., Tetsuouyeda, H., Goldman, E.R. & Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4, 435–446 (2005).

    Article  CAS  Google Scholar 

  22. Jin, R. et al. Photoinduced conversion of silver nanospheres to nanoprisms. Science 294, 1901–1903 (2001).

    Article  CAS  Google Scholar 

  23. Rosi, N.L. & Mirkin, C.A. Nanostructures in biodiagnostics. Chem. Rev. 105, 1547–1562 (2005).

    Article  CAS  Google Scholar 

  24. Ehlert, O., Thomann, R., Darbandi, M. & Nann, T. A four-color colloidal multiplexing nanoparticle system. ACS Nano 2, 120–124 (2008).

    Article  CAS  Google Scholar 

  25. Wang, F. & Liu, X. Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc. 130, 5642–5643 (2008).

    Article  CAS  Google Scholar 

  26. Wang, F., Xue, X. & Liu, X. Multicolor tuning of (Ln, P)-doped YVO4 nanoparticles by single-wavelength excitation. Angew. Chem. Int. Ed. 47, 906–909 (2008).

    Article  CAS  Google Scholar 

  27. Mahalingam, V., Vetrone, F., Naccache, R., Speghini, A. & Capobianco, J.A. Colloidal Tm3+/Yb3+-doped LiYF4 nanocrystals: multiple luminescence spanning the UV to NIR regions via low-energy excitation. Adv. Mater. 21, 4025–4028 (2009).

    Article  CAS  Google Scholar 

  28. Wong, H.-T., Chan, H.L.W. & Hao, J. Towards pure near-infrared to near-infrared upconversion of multifunctional GdF3:Yb3+,Tm3+ nanoparticles. Opt. Express 18, 6123–6130 (2010).

    Article  CAS  Google Scholar 

  29. Chen, G. et al. Lanthanide-doped ultrasmall yttrium fluoride nanoparticles with enhanced multicolor upconversion photoluminescence. J. Mater. Chem. 22, 20190–20196 (2012).

    Article  CAS  Google Scholar 

  30. Wang, J., Wang, F., Wang, C., Liu, Z. & Liu, X. Single-band upconversion emission in lanthanide-doped KMnF3 nanoparticles. Angew. Chem. Int. Ed. 50, 10369–10372 (2011).

    Article  CAS  Google Scholar 

  31. Chen, G., Liu, H., Somesfalean, G., Liang, H. & Zhang, Z. Upconversion emission tuning from green to red in Yb3+/Ho3+-codoped NaYF4 nanocrystals by tridoping with Ce3+ ions. Nanotechnology 20, 385704 (2009).

    Article  Google Scholar 

  32. Su, Q. et al. The effect of surface coating on energy migration-mediated upconversion. J. Am. Chem. Soc. 134, 20849–20857 (2012).

    Article  CAS  Google Scholar 

  33. Wang, F. et al. Tuning upconversion through energy migration in core–shell nanoparticles. Nat. Mater. 10, 968–973 (2011).

    Article  CAS  Google Scholar 

  34. Qian, H. & Zhang, Y. Synthesis of hexagonal-phase core–shell NaYF4 nanocrystals with tunable upconversion fluorescence. Langmuir 24, 12123–12125 (2008).

    Article  CAS  Google Scholar 

  35. Chen, D., Lei, L., Yang, A., Wang, Z. & Wang, Y. Ultra-broadband near-infrared excitable upconversion core/shell nanocrystals. Chem. Commun. 48, 5898–5900 (2012).

    Article  CAS  Google Scholar 

  36. Chen, F. et al. Positive and negative lattice shielding effects co-existing in Gd (III) ion doped bifunctional upconversion nanoprobes. Adv. Funct. Mater. 21, 4285–4294 (2011).

    Article  CAS  Google Scholar 

  37. Zhang, F. et al. Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: shell thickness dependence in upconverting optical properties. Nano Lett. 12, 2852–2858 (2012).

    Article  CAS  Google Scholar 

  38. Zhang, C. & Lee, J.Y. Prevalence of anisotropic shell growth in rare earth core-shell upconversion nanocrystals. ACS Nano 7, 4393–4402 (2013).

    Article  CAS  Google Scholar 

  39. Yi, G. & Chow, G.M. Water-soluble NaYF4:Yb, Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem. Mater. 19, 341–343 (2007).

    Article  CAS  Google Scholar 

  40. Johnson, N.J.J., Korinek, A., Dong, C. & van Veggel, F.C.J.M. Self-focusing by Ostwald ripening: a strategy for layer-by-layer epitaxial growth on upconverting nanocrystals. J. Am. Chem. Soc. 134, 11068–11071 (2012).

    Article  CAS  Google Scholar 

  41. Sun, S., Murray, C.B., Weller, D., Folks, L. & Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989–1992 (2000).

    Article  CAS  Google Scholar 

  42. Yin, Y. & Alivisatos, A.P. Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437, 664–670 (2005).

    Article  CAS  Google Scholar 

  43. Kwon, S.G. & Hyeon, T. Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods. Small 7, 2685–2702 (2011).

    Article  CAS  Google Scholar 

  44. Wang, X., Zhuang, J., Peng, Q. & Li, Y. A general strategy for nanocrystal synthesis. Nature 437, 121–124 (2005).

    Article  CAS  Google Scholar 

  45. Mai, H. et al. High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. J. Am. Chem. Soc. 128, 6426–6436 (2006).

    Article  CAS  Google Scholar 

  46. Boyer, J.C., Vetrone, F., Cuccia, L.A. & Capobianco, J.A. Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors. J. Am. Chem. Soc. 128, 7444–7445 (2006).

    Article  CAS  Google Scholar 

  47. Li, Z., Zhang, Y. & Jiang, J. Multicolor core/shell-structured upconversion fluorescent nanoparticles. Adv. Mater. 20, 4765–4769 (2008).

    Article  CAS  Google Scholar 

  48. Ye, X. et al. Morphologically controlled synthesis of colloidal upconversion nanophosphors and their shape-directed self-assembly. Proc. Natl. Acad. Sci. USA 107, 22430–22435 (2010).

    Article  CAS  Google Scholar 

  49. Park, Y.I. et al. Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent. Adv. Mater. 21, 4467–4471 (2009).

    Article  CAS  Google Scholar 

  50. Liu, Y. et al. A strategy to achieve efficient dual-mode luminescence of Eu3+ in lanthanides doped multifunctional NaGdF4 nanoparticles. Adv. Mater. 22, 3266–3271 (2010).

    Article  CAS  Google Scholar 

  51. Johnson, N.J.J., Oakden, W., Stanisz, G.J., Prosser, R.S. & van Veggel, F.C.J.M. Size-tunable, ultrasmall NaGdF4 nanoparticles: insights into their T-1 MRI contrast enhancement. Chem. Mater. 23, 3714–3722 (2011).

    Article  CAS  Google Scholar 

  52. Wen, H. et al. Upconverting near-infrared light through energy management in core–shell–shell nanoparticles. Angew. Chem., Int. Ed. 52, 13419–13423 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Agency for Science, Technology and Research (A*STAR), the National Research Foundation and the Economic Development Board (Singapore-Peking-Oxford Research Enterprise, COY-15-EWI-RCFSA/N197-1), and the Ministry of Education (MOE2010-T2-1-083). F.W. acknowledges CityU for a start-up grant.

Author information

Authors and Affiliations

Authors

Contributions

F.W. and R.D. performed the experiments. F.W., R.D. and X.L. developed the protocol. F.W. and X.L. wrote the manuscript.

Corresponding authors

Correspondence to Feng Wang or Xiaogang Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Deng, R. & Liu, X. Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes. Nat Protoc 9, 1634–1644 (2014). https://doi.org/10.1038/nprot.2014.111

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.111

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing