Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Microfluidic trap array for massively parallel imaging of Drosophila embryos

Abstract

Here we describe a protocol for the fabrication and use of a microfluidic device to rapidly orient >700 Drosophila embryos in parallel for end-on imaging. The protocol describes master microfabrication (1 d), polydimethylsiloxane molding (few hours), system setup and device operation (few minutes) and imaging (depending on application). Our microfluidics-based approach described here is one of the first to facilitate rapid orientation for end-on imaging, and it is a major breakthrough for quantitative studies on Drosophila embryogenesis. The operating principle of the embryo trap is based on passive hydrodynamics, and it does not require direct manipulation of embryos by the user; biologists following the protocol should be able to repeat these procedures. The compact design and fabrication materials used allow the device to be used with traditional microscopy setups and do not require specialized fixtures. Furthermore, with slight modification, this array can be applied to the handling of other model organisms and oblong objects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Device and protocol overview.
Figure 2: Equipment setup.
Figure 3: Microfabrication of SU-8 master.
Figure 4: Common problems.
Figure 5: Fabrication of the PDMS device.
Figure 6: Device loading.

Similar content being viewed by others

References

  1. Bier, E. Drosophila, the golden bug, emerges as a tool for human genetics. Nat. Rev. Genet. 6, 9–23 (2005).

    Article  CAS  Google Scholar 

  2. Adams, M.D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2195 (2000).

    Article  Google Scholar 

  3. Gurdon, J.B. & Bourillot, P.Y. Morphogen gradient interpretation. Nature 413, 797–803 (2001).

    Article  CAS  Google Scholar 

  4. Frohnhofer, H.G. & Nusslein-Volhard, C. Organization of anterior pattern in the Drosophila embryo by the maternal gene bicoid. Nature 324, 120–125 (1986).

    Article  Google Scholar 

  5. Roth, S., Stein, D. & Nusslein-Volhard, C. A gradient of nuclear localization of the dorsal protein determines dorsoventral pattern in the Drosophila embryo. Cell 59, 1189–1202 (1989).

    Article  CAS  Google Scholar 

  6. Steward, R. Relocalization of the Dorsal protein from the cytoplasm to the nucleus correlates with its function. Cell 59, 1179–1188 (1989).

    Article  CAS  Google Scholar 

  7. Rushlow, C.A. & Shvartsman, S.Y. Temporal dynamics, spatial range, and transcriptional interpretation of the Dorsal morphogen gradient. Curr. Opin. Genet. Dev. 22, 542–546 (2012).

    Article  CAS  Google Scholar 

  8. Chung, K. et al. A microfluidic array for large-scale ordering and orientation of embryos. Nat. Methods 8, 171–176 (2011).

    Article  CAS  Google Scholar 

  9. Kanodia, J.S. et al. A computational statistics approach for estimating the spatial range of morphogen gradients. Development 138, 4867–4874 (2011).

    Article  CAS  Google Scholar 

  10. Kanodia, J.S. et al. Pattern formation by graded and uniform signals in the early Drosophila embryo. Biophys. J. 102, 427–433 (2012).

    Article  CAS  Google Scholar 

  11. Helman, A. et al. RTK signaling modulates the Dorsal gradient. Development 139, 3032–3039 (2012).

    Article  CAS  Google Scholar 

  12. Kim, Y. et al. Gene regulation by MAPK substrate competition. Dev. Cell 20, 880–887 (2011).

    Article  CAS  Google Scholar 

  13. Crane, M.M., Chung, K. & Lu, H. Computer-enhanced high-throughput genetic screens of C. elegans in a microfluidic system. Lab Chip 9, 38–40 (2009).

    Article  CAS  Google Scholar 

  14. Chung, K., Crane, M.M. & Lu, H. Automated on-chip rapid microscopy, phenotyping and sorting of C. elegans. Nat. Methods 5, 637–643 (2008).

    Article  CAS  Google Scholar 

  15. Crane, M.M., Chung, K., Stirman, J. & Lu, H. Microfluidics-enabled phenotyping, imaging, and screening of multicellular organisms. Lab Chip 10, 1509–1517 (2010).

    Article  CAS  Google Scholar 

  16. Liang, H.L. et al. The zinc-finger protein Zelda is a key activator of the early zygotic genome in Drosophila. Nature 456, 400–403 (2008).

    Article  CAS  Google Scholar 

  17. Li, X.Y. et al. Transcription factors bind thousands of active and inactive regions in the Drosophila blastoderm. PLoS Biol. 6, e27 (2008).

    Article  Google Scholar 

  18. Reeves, G.T. et al. Dorsal-ventral gene expression in the Drosophila embryo reflects the dynamics and precision of the dorsal nuclear gradient. Dev. Cell 22, 544–557 (2012).

    Article  CAS  Google Scholar 

  19. Chung, K.H., Rivet, C.A., Kemp, M.L. & Lu, H. Imaging single-cell signaling dynamics with a deterministic high-density single-cell trap array. Anal. Chem. 83, 7044–7052 (2011).

    Article  CAS  Google Scholar 

  20. Akagi, J. et al. Miniaturized embryo array for automated trapping, immobilization and microperfusion of zebrafish embryos. PLoS ONE 7, 36630 (2012).

    Article  Google Scholar 

  21. Kohli, V. et al. An alternative method for delivering exogenous material into developing zebrafish embryos. Biotechnol. Bioeng. 98, 1230–1241 (2007).

    Article  CAS  Google Scholar 

  22. Samara, C. et al. Large-scale in vivo femtosecond laser neurosurgery screen reveals small-molecule enhancer of regeneration. Proc. Natl Acad. Sci. USA 107, 18342–18347 (2010).

    Article  CAS  Google Scholar 

  23. Tomer, R., Khairy, K., Amat, F. & Keller, P.J. Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy. Nat. Methods 9, 755–U181 (2012).

    Article  CAS  Google Scholar 

  24. Keller, P.J., Schmidt, A.D., Wittbrodt, J. & Stelzer, E.H.K. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322, 1065–1069 (2008).

    Article  CAS  Google Scholar 

  25. Fakhoury, J.R., Sisson, J.C. & Zhang, X. Microsystems for controlled genetic perturbation of live Drosophila embryos: RNA interference, development robustness and drug screening. Microfluid. Nanofluid. 6, 299–313 (2009).

    Article  CAS  Google Scholar 

  26. Haywood, A.F. & Staveley, B.E. Parkin counteracts symptoms in a Drosophila model of Parkinson's disease. BMC Neurosci. 5, 14 (2004).

    Article  Google Scholar 

  27. Liberman, L.M., Reeves, G.T. & Stathopoulos, A. Quantitative imaging of the Dorsal nuclear gradient reveals limitations to threshold-dependent patterning in Drosophila. Proc. Natl Acad. Sci. USA 106, 22317–22322 (2009).

    Article  CAS  Google Scholar 

  28. Kanodia, J.S. et al. Dynamics of the Dorsal morphogen gradient. Proc. Natl Acad. Sci. USA 106, 21707–21712 (2009).

    Article  CAS  Google Scholar 

  29. Witzberger, M.M., Fitzpatrick, J.A., Crowley, J.C. & Minden, J.S. End-on imaging: a new perspective on dorsoventral development in Drosophila embryos. Dev. Dyn. 237, 3252–3259 (2008).

    Article  Google Scholar 

  30. Markow, T.A., Beall, S. & Matzkin, L.M. Egg size, embryonic development time and ovoviviparity in Drosophila species. J. Evolution. Biol. 22, 430–434 (2009).

    Article  CAS  Google Scholar 

  31. Aboobaker, A.A., Tomancak, P., Patel, N., Rubin, G.M. & Lai, E.C. Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development. Proc. Natl Acad. Sci. USA 102, 18017–18022 (2005).

    Article  CAS  Google Scholar 

  32. Ashburner, M. Grape-apple juice agar plates. In Drosophila Protocols (eds. Ashburner, M., Hawley, R.S. & Sullivan, W.) 658 (Cold Spring Harbor Laboratory Press, 2000).

Download references

Acknowledgements

This work was supported by the US National Science Foundation (DBI-0649833 to H.L., EFRI 1136913 to S.Y.S. and H.L.) and the US National Institutes of Health (grant nos. NS058465 to H.L. and GM078079 to S.Y.S.). H.L. is a DuPont Young Professor and a Sloan Research Fellow. We thank J. Ding for technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

T.J.L. and M.Z. fabricated the devices and tested the protocol. H.L. and S.Y.S. oversaw the project. T.J.L. wrote the paper. All authors (T.J.L., M.Z.,B.L., S.Y.S. and H.L.) contributed to the design of the experiments and edited the manuscript.

Corresponding author

Correspondence to Hang Lu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Microfluidic device layout and specifications (PDF 465 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levario, T., Zhan, M., Lim, B. et al. Microfluidic trap array for massively parallel imaging of Drosophila embryos. Nat Protoc 8, 721–736 (2013). https://doi.org/10.1038/nprot.2013.034

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.034

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing