Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A microfluidic array for large-scale ordering and orientation of embryos

Abstract

Quantitative studies of embryogenesis require the ability to monitor pattern formation and morphogenesis in large numbers of embryos, at multiple time points and in diverse genetic backgrounds. We describe a simple approach that greatly facilitates these tasks for Drosophila melanogaster embryos, one of the most advanced models of developmental genetics. Based on passive hydrodynamics, we developed a microfluidic embryo-trap array that can be used to rapidly order and vertically orient hundreds of embryos. We describe the physical principles of the design and used this platform to quantitatively analyze multiple morphogen gradients in the dorsoventral patterning system. Our approach can also be used for live imaging and, with slight modifications, could be adapted for studies of pattern formation and morphogenesis in other model organisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microfluidic embryo-trap array for high-throughput arraying of vertically oriented Drosophila embryos.
Figure 2: Operating principles of the embryo-trap array.
Figure 3: Spatial extent of the Dl gradient.
Figure 4: Quantitative characterization of signal transduction and morphogen gradients in dorsoventral patterning.
Figure 5: Live imaging of embryos using the embryo array.

Similar content being viewed by others

References

  1. Rushlow, C.A., Han, K.Y., Manley, J.L. & Levine, M. The graded distribution of the Dorsal morphogen is initiated by selective nuclear import transport in Drosophila. Cell 59, 1165–1177 (1989).

    Article  CAS  Google Scholar 

  2. Roth, S., Stein, D. & Nusslein-Volhard, C. A gradient of nuclear localization of the Dorsal protein determines dorsoventral pattern in the Drosophila embryo. Cell 59, 1189–1202 (1989).

    Article  CAS  Google Scholar 

  3. Steward, R. Relocalization of the Dorsal protein from the cytoplasm to the nucleus correlates with its function. Cell 59, 1179–1188 (1989).

    Article  CAS  Google Scholar 

  4. Luengo Hendriks, C.L. et al. Three-dimensional morphology and gene expression in the Drosophila blastoderm at cellular resolution I: data acquisition pipeline. Genome Biol. 7, R123 (2006).

    Article  Google Scholar 

  5. Witzberger, M.M., Fitzpatrick, J.A.J., Crowley, J.C. & Minden, J.S. End-on imaging: a new perspective on dorsoventral development in Drosophila embryos. Dev. Dyn. 237, 3252–3259 (2008).

    Article  Google Scholar 

  6. Kanodia, J.S. et al. Dynamics of the Dorsal morphogen gradient. Proc. Natl. Acad. Sci. USA 106, 21707–21712 (2009).

    Article  CAS  Google Scholar 

  7. Liberman, L.M., Reeves, G.T. & Stathopoulos, A. Quantitative imaging of the Dorsal nuclear gradient reveals limitations to threshold-dependent patterning in Drosophila. Proc. Natl. Acad. Sci. USA 106, 22317–22322 (2009).

    Article  CAS  Google Scholar 

  8. Duffy, D.C., McDonald, J.C., Schueller, O.J.A. & Whitesides, G.M. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70, 4974–4984 (1998).

    Article  CAS  Google Scholar 

  9. Quake, S.R. & Scherer, A. From micro- to nanofabrication with soft materials. Science 290, 1536–1540 (2000).

    Article  CAS  Google Scholar 

  10. Skelley, A.M., Kirak, O., Suh, H., Jaenisch, R. & Voldman, J. Microfluidic control of cell pairing and fusion. Nat. Methods 6, 147–152 (2009).

    Article  CAS  Google Scholar 

  11. Tan, W.H. & Takeuchi, S. A trap-and-release integrated microfluidic system for dynamic microarray applications. Proc. Natl. Acad. Sci. USA 104, 1146–1151 (2007).

    Article  CAS  Google Scholar 

  12. Di Carlo, D., Irimia, D., Tompkins, R.G. & Toner, M. Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc. Natl. Acad. Sci. USA 104, 18892–18897 (2007).

    Article  CAS  Google Scholar 

  13. Gervais, T., El-Ali, J., Gunther, A. & Jensen, K.F. Flow-induced deformation of shallow microfluidic channels. Lab Chip 6, 500–507 (2006).

    Article  CAS  Google Scholar 

  14. Stein, D., Roth, S., Vogelsang, E. & Nüsslein-Volhard, C. The polarity of the dorsoventral axis in the Drosophila embryo is defined by an extracellular signal. Cell 65, 725–735 (1991).

    Article  CAS  Google Scholar 

  15. Govind, S. & Steward, R. Gene regulation: coming to grips with cactus. Curr. Biol. 3, 351–354 (1993).

    Article  CAS  Google Scholar 

  16. Bothma, J.P., Levine, M. & Boettiger, A. Morphogen gradients: limits to signaling or limits to measurement? Curr. Biol. 20, R232–R234 (2010).

    Article  CAS  Google Scholar 

  17. Zinzen, R.P., Senger, K., Levine, M. & Papatsenko, D. Computational models for neurogenic gene expression in the Drosophila embryo. Curr. Biol. 16, 1358–1365 (2006).

    Article  CAS  Google Scholar 

  18. Belu, M. et al. Upright imaging of Drosophila embryos. J. Vis. Exp. 43, 2175 (2010).

    Google Scholar 

  19. Doyle, H.J., Kraut, R. & Levine, M. Spatial regulation of zerknüllt: a dorsal-ventral patterning gene in Drosophila. Genes Dev. 3, 1518–1533 (1989).

    Article  CAS  Google Scholar 

  20. Rushlow, C., Colosimo, P.F., Lin, M.C., Xu, M. & Kirov, N. Transcriptional regulation of the Drosophila gene zen by competing Smad and Brinker inputs. Genes Dev. 15, 340–351 (2001).

    Article  CAS  Google Scholar 

  21. Coppey, M., Boettiger, A.N., Berezhkovskii, A.M. & Shvartsman, S.Y. Nuclear trapping shapes the terminal gradient in the Drosophila embryo. Curr. Biol. 18, 915–919 (2008).

    Article  CAS  Google Scholar 

  22. Hong, J.W., Hendrix, D.A., Papatsenko, D. & Levine, M.S. How the Dorsal gradient works: insights from postgenome technologies. Proc. Natl. Acad. Sci. USA 105, 20072–20076 (2008).

    Article  CAS  Google Scholar 

  23. Mizutani, C.M. et al. Formation of the BMP activity gradient in the Drosophila embryo. Dev. Cell 8, 915–924 (2005).

    Article  CAS  Google Scholar 

  24. Astigarraga, S. et al. A MAPK docking site is critical for downregulation of Capicua by Torso and EGFR RTK signaling. EMBO J. 26, 668–677 (2007).

    Article  CAS  Google Scholar 

  25. Foe, V.E . & Alberts, B.M. Studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis. J. Cell Sci. 61, 31–70 (1983).

    CAS  PubMed  Google Scholar 

  26. Manu et al. Canalization of gene expression in the Drosophila blastoderm by gap gene cross regulation. PLoS Biol. 7, 591–603 (2009).

    Article  Google Scholar 

  27. Jaeger, D.M. Modelling the Drosophila embryo. Mol. Biosyst. 5, 1549–1568 (2009).

    Article  CAS  Google Scholar 

  28. Sanchez, L., van Helden, J. & Thieffry, D. Establishement of the dorso-ventral pattern during embryonic development of Drosophila melanogasater: a logical analysis. J. Theor. Biol. 189, 377–389 (1997).

    Article  CAS  Google Scholar 

  29. Umulis, D.M., Shimmi, O., O'Connor, M.B. & Othmer, H.G. Organism-scale modeling of early Drosophila patterning via bone morphogenetic proteins. Dev. Cell 18, 260–274 (2010).

    Article  CAS  Google Scholar 

  30. Kosman, D. et al. Multiplex detection of RNA expression in Drosophila embryos. Science 305, 846 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge A. Boettiger and M. Levine (University of California, Berkeley) for the antibody to Twist, M. Zhan for technical assistance, A. Boettiger, A. Erives, M. Levine, J. Lippincott-Schwartz, C. Rushlow, M. Serpe and R. Steward for helpful discussions, and M. Osterfield for assistance with live imaging. This work was supported by National Science Foundation (DBI-0649833 to H.L.) and National Institutes of Health grants NS058465 (to H.L.) and GM078079 (to S.Y.S.). H.L. is supported by a Sloan Foundation Research Fellowship and a DuPont Young Professor grant.

Author information

Authors and Affiliations

Authors

Contributions

K.C., E.G. and H.L. designed, fabricated and tested the device. Y.K. tested the device and performed imaging. J.S.K. wrote the image processing and statistical analysis programs for gradient quantification. K.C., Y.K., S.Y.S. and H.L. designed the experiments and wrote the paper.

Corresponding author

Correspondence to Hang Lu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1– 4 (PDF 504 kb)

Supplementary Video 1

Drosophila embryo trapping. This movie shows trapping of the embryos from an embryo suspension. (MOV 2964 kb)

Supplementary Video 2

Contraction of the traps. This movie shows automatic contraction of the traps resulting from the loading pressure being decreased from 6 psi to 0 psi. Notice that embryos in the traps are not secured. (MOV 336 kb)

Supplementary Video 3

Live imaging: early embryo. This movie shows consecutive nuclear divisions in the early embryo. (MOV 3405 kb)

Supplementary Video 4

Live imaging: ventral invagination. This movie shows consecutive nuclear divisions in an embryo undergoing ventral invagination. (MOV 994 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, K., Kim, Y., Kanodia, J. et al. A microfluidic array for large-scale ordering and orientation of embryos. Nat Methods 8, 171–176 (2011). https://doi.org/10.1038/nmeth.1548

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1548

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing