Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Combining competition assays with genetic complementation strategies to dissect mouse embryonic stem cell self-renewal and pluripotency

Abstract

Substantial scientific interest has been dedicated recently to the crucial factors that control the pluripotent state of stem cells. To gain a comprehensive understanding of the molecular mechanisms regulating mouse embryonic stem cell (mESC) self-renewal and lineage differentiation, we have developed a robust method for studying the role of a particular gene in these processes. This protocol describes detailed procedures for the design and generation of the complementation rescue system and its application in dissecting the network of pluripotency-associated factors, using mESCs as a model. Specifically, three main procedures are described: (i) screening pluripotency-associated factors by competition assay; (ii) setting up an inducible complementation rescue system; and (iii) dynamically studying the pluripotency network response to target depletion. Completion of the competition assay and complementation rescue system takes 35 and 30 d, respectively, and an additional 16 d to study the dynamic molecular effects of a gene of interest in the pluripotency network.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fluorescence-based competition assay and mESC pluripotency characterization.
Figure 2: Genetic complementation system setup and overview of steps involved in screening and expanding rescue clones.
Figure 3: Dynamic knockdown of Nanog impairs mESC pluripotency network.

Similar content being viewed by others

References

  1. Zhang, X. et al. FOXO1 is an essential regulator of pluripotency in human embryonic stem cells. Nat. Cell. Biol. 13, 1092–1099 (2011).

    Article  CAS  Google Scholar 

  2. Ivanova, N. et al. Dissecting self-renewal in stem cells with RNA interference. Nature 442, 533–538 (2006).

    Article  CAS  Google Scholar 

  3. Jiang, H. et al. Role for Dpy-30 in ES cell-fate specification by regulation of H3K4 methylation within bivalent domains. Cell 144, 513–525 (2011).

    Article  CAS  Google Scholar 

  4. Ang, Y.S. et al. Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 145, 183–197 (2011).

    Article  CAS  Google Scholar 

  5. Shen, X. et al. EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol. Cell 32, 491–502 (2008).

    Article  CAS  Google Scholar 

  6. Schaniel, C. et al. Smarcc1/Baf155 couples self-renewal gene repression with changes in chromatin structure in mouse embryonic stem cells. Stem Cells 27, 2979–2991 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Fazzio, T.G., Huff, J.T. & Panning, B. An RNAi screen of chromatin proteins identifies Tip60-p400 as a regulator of embryonic stem cell identity. Cell 134, 162–174 (2008).

    Article  CAS  Google Scholar 

  8. Singhal, N. et al. Chromatin-remodeling components of the BAF complex facilitate reprogramming. Cell 141, 943–955 (2010).

    Article  CAS  Google Scholar 

  9. Sato, N., Meijer, L., Skaltsounis, L., Greengard, P. & Brivanlou, A.H. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat. Med. 10, 55–63 (2004).

    Article  CAS  Google Scholar 

  10. Smith, A.G. et al. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336, 688–690 (1988).

    Article  CAS  Google Scholar 

  11. Williams, R.L. et al. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336, 684–687 (1988).

    Article  CAS  Google Scholar 

  12. Ying, Q.L., Nichols, J., Chambers, I. & Smith, A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115, 281–292 (2003).

    Article  CAS  Google Scholar 

  13. Chen, X. et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133, 1106–1117 (2008).

    Article  CAS  Google Scholar 

  14. Marson, A. et al. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134, 521–533 (2008).

    Article  CAS  Google Scholar 

  15. Loh, Y.H. et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat. Genet. 38, 431–440 (2006).

    Article  CAS  Google Scholar 

  16. Kim, J., Chu, J., Shen, X., Wang, J. & Orkin, S.H. An extended transcriptional network for pluripotency of embryonic stem cells. Cell 132, 1049–1061 (2008).

    Article  CAS  Google Scholar 

  17. Wang, J. et al. A protein interaction network for pluripotency of embryonic stem cells. Nature 444, 364–368 (2006).

    Article  CAS  Google Scholar 

  18. Mathur, D. et al. Analysis of the mouse embryonic stem cell regulatory networks obtained by ChIP-chip and ChIP-PET. Genome Biol. 9, R126 (2008).

    Article  Google Scholar 

  19. Pardo, M. et al. An expanded Oct4 interaction network: implications for stem cell biology, development, and disease. Cell Stem Cell 6, 382–395 (2010).

    Article  CAS  Google Scholar 

  20. van den Berg, D.L. et al. An Oct4-centered protein interaction network in embryonic stem cells. Cell Stem Cell 6, 369–381 (2010).

    Article  CAS  Google Scholar 

  21. Hu, G. et al. A genome-wide RNAi screen identifies a new transcriptional module required for self-renewal. Genes Dev. 23, 837–848 (2009).

    Article  CAS  Google Scholar 

  22. Ho, L. et al. An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency. Proc. Natl. Acad. Sci. USA 106, 5181–5186 (2009).

    Article  CAS  Google Scholar 

  23. Chambers, I. et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643–655 (2003).

    Article  CAS  Google Scholar 

  24. Mitsui, K. et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631–642 (2003).

    Article  CAS  Google Scholar 

  25. Dejosez, M. et al. Ronin is essential for embryogenesis and the pluripotency of mouse embryonic stem cells. Cell 133, 1162–1174 (2008).

    Article  CAS  Google Scholar 

  26. Chia, N.Y. et al. A genome-wide RNAi screen reveals determinants of human embryonic stem cell identity. Nature 468, 316–320 (2010).

    Article  CAS  Google Scholar 

  27. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  CAS  Google Scholar 

  28. Meister, G. & Tuschl, T. Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343–349 (2004).

    Article  CAS  Google Scholar 

  29. Brummelkamp, T.R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002).

    Article  CAS  Google Scholar 

  30. Sharp, P.A. RNAi and double-strand RNA. Genes Dev. 13, 139–141 (1999).

    Article  CAS  Google Scholar 

  31. Schaniel, C. et al. Delivery of short hairpin RNAs—triggers of gene silencing—into mouse embryonic stem cells. Nat. Methods 3, 397–400 (2006).

    Article  CAS  Google Scholar 

  32. Hannon, G.J. & Rossi, J.J. Unlocking the potential of the human genome with RNA interference. Nature 431, 371–378 (2004).

    Article  CAS  Google Scholar 

  33. McCaffrey, A.P. et al. RNA interference in adult mice. Nature 418, 38–39 (2002).

    Article  CAS  Google Scholar 

  34. McManus, M.T., Petersen, C.P., Haines, B.B., Chen, J. & Sharp, P.A. Gene silencing using micro-RNA designed hairpins. RNA 8, 842–850 (2002).

    Article  CAS  Google Scholar 

  35. Paddison, P.J., Caudy, A.A., Bernstein, E., Hannon, G.J. & Conklin, D.S. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 16, 948–958 (2002).

    Article  CAS  Google Scholar 

  36. Paul, C.P., Good, P.D., Winer, I. & Engelke, D.R. Effective expression of small interfering RNA in human cells. Nat. Biotechnol. 20, 505–508 (2002).

    Article  CAS  Google Scholar 

  37. Sui, G. et al. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci. USA 99, 5515–5520 (2002).

    Article  CAS  Google Scholar 

  38. Xia, H., Mao, Q., Paulson, H.L. & Davidson, B.L. siRNA-mediated gene silencing in vitro and in vivo. Nat. Biotechnol. 20, 1006–1010 (2002).

    Article  CAS  Google Scholar 

  39. Yu, J.Y., DeRuiter, S.L. & Turner, D.L. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc. Natl. Acad. Sci. USA 99, 6047–6052 (2002).

    Article  CAS  Google Scholar 

  40. Schaniel, C., Lee, D.F. & Lemischka, I.R. Exploration of self-renewal and pluripotency in ES cells using RNAi. Methods Enzymol. 477, 351–365 (2010).

    Article  CAS  Google Scholar 

  41. Lu, R. et al. Systems-level dynamic analyses of fate change in murine embryonic stem cells. Nature 462, 358–362 (2009).

    Article  CAS  Google Scholar 

  42. Moffat, J. et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 124, 1283–1298 (2006).

    Article  CAS  Google Scholar 

  43. Boheler, K.R. Stem cell pluripotency: a cellular trait that depends on transcription factors, chromatin state and a checkpoint deficient cell cycle. J. Cell Physiol. 221, 10–17 (2009).

    Article  CAS  Google Scholar 

  44. Savatier, P., Huang, S., Szekely, L., Wiman, K.G. & Samarut, J. Contrasting patterns of retinoblastoma protein expression in mouse embryonic stem cells and embryonic fibroblasts. Oncogene 9, 809–818 (1994).

    CAS  PubMed  Google Scholar 

  45. Ting, D.T., Kyba, M. & Daley, G.Q. Inducible transgene expression in mouse stem cells. Methods Mol. Med. 105, 23–46 (2005).

    CAS  PubMed  Google Scholar 

  46. Macarthur, B.D., Ma′ayan, A. & Lemischka, I.R. Systems biology of stem cell fate and cellular reprogramming. Nat. Rev. Mol. Cell Biol. 10, 672–681 (2009).

    Article  CAS  Google Scholar 

  47. Lewis, D.L., Hagstrom, J.E., Loomis, A.G., Wolff, J.A. & Herweijer, H. Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nat. Genet. 32, 107–108 (2002).

    Article  CAS  Google Scholar 

  48. Tam, P.P. & Rossant, J. Mouse embryonic chimeras: tools for studying mammalian development. Development 130, 6155–6163 (2003).

    Article  CAS  Google Scholar 

  49. Conner, D.A. Mouse embryo fibroblast (MEF) feeder cell preparation. Curr. Protoc. Mol. Biol. Chapter 23, Unit 23 22 (2001).

  50. Lachmann, A. et al. ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments. Bioinformatics 26, 2438–2444 (2010).

    Article  CAS  Google Scholar 

  51. Schmittgen, T.D. & Livak, K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3, 1101–1108 (2008).

    Article  CAS  Google Scholar 

  52. Kutner, R.H., Zhang, X.Y. & Reiser, J. Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors. Nat. Protoc. 4, 495–505 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We sincerely acknowledge N. Ivanova for her original development of the rescue strategy. We thank S. Ghaffari, X. Zhang and Y.S. Ang for sharing their results for use in this protocol. We gratefully acknowledge the members of the Lemischka and Moore laboratories for advice and discussions. We thank G. Daley (Children's Hospital Boston) for Ainv15 ESCs. This work was supported by the US National Institutes of Health grant no. 5R01GM078465 (to I.R.L.), and the Empire State Stem Cell Fund through the New York State Department of Health (NYSTEM) grant nos. C024176 (to I.R.L.) and C024410 (to C.S. and I.R.L.). D.-F.L. is a New York Stem Cell Foundation Stanley and Fiona Druckenmiller Fellow.

Author information

Authors and Affiliations

Authors

Contributions

D.-F.L., J.S. and A.S. designed the experiments, carried out the work and wrote the protocol. J.G. edited and modified the protocol design. C.S. helped direct and coordinate research activity, edited and modified the protocol; I.R.L. directed the study and coordinated research activity.

Corresponding authors

Correspondence to Dung-Fang Lee or Ihor R Lemischka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, DF., Su, J., Sevilla, A. et al. Combining competition assays with genetic complementation strategies to dissect mouse embryonic stem cell self-renewal and pluripotency. Nat Protoc 7, 729–748 (2012). https://doi.org/10.1038/nprot.2012.018

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2012.018

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing