Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Automated solid-phase microextraction and thin-film microextraction for high-throughput analysis of biological fluids and ligand–receptor binding studies

Abstract

This protocol describes how to perform automated solid-phase microextraction (SPME) and thin-film microextraction (TFME) in a 96-well plate format for high-throughput analysis of drugs, metabolites and any other analytes of interest in biological fluids using liquid chromatography–electrospray tandem mass spectrometry. Sample preparation time required is typically 1 min per sample; hence, the throughput achievable with automated SPME/TFME is comparable with automated 96-well liquid–liquid extraction and solid-phase extraction methods, but greater than most online solid-phase extraction methods. The technique is applicable to complex samples such as whole blood without additional pretreatment. The amount of analyte extracted by SPME/TFME is proportional to the free (unbound) concentration of the analyte; hence, SPME/TFME can be used to determine both total and free concentrations of analytes from a single biofluid sample and to perform automated ligand–receptor binding studies in order to determine binding affinity and/or overall extent of ligand binding to a complex biofluid.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Concept 96 autosampler from PAS Technology.
Figure 2: Automated SPME workflow.
Figure 3
Figure 4: Development of high-throughput SPME bioanalytical methods.
Figure 5: Evaluation of the success of coating procedure.
Figure 6: Example linear regression calibration curves for determination of free and total concentration using automated SPME.
Figure 7: Example chromatograms obtained using automated SPME for the analysis of benzodiazepines in whole blood.
Figure 8: Example binding isotherm obtained for the binding between diazepam and human serum albumin.

Similar content being viewed by others

References

  1. Maurer, H.H. Advances in analytical toxicology: the current role of liquid chromatography–mass spectrometry in drug quantification in blood and oral fluid. Anal. Bioanal. Chem. 381, 110–118 (2005).

    Article  CAS  Google Scholar 

  2. Saint-Marcoux, F., Sauvage, F. & Marquet, P. Current role of LC–MS in therapeutic drug monitoring. Anal. Bioanal. Chem. 388, 1327–1349 (2007).

    Article  CAS  Google Scholar 

  3. Srinivas, N.R. Changing need for bioanalysis during drug development. Biomed. Chromatogr. 22, 235 (2008).

    Article  CAS  Google Scholar 

  4. Niessen, W.A. Liquid Chromatography—Mass Spectrometry (ed. Niessen, W.A.) 1–600 (Taylor & Francis, Boca Raton, Florida, 2006).

  5. Chang, M.S., Ji, Q., Zhang, J. & El-Shourbagy, T.A. Historical review of sample preparation for chromatographic bioanalysis: pros and cons. Drug Dev. Res. 68, 107–133 (2007).

    Article  CAS  Google Scholar 

  6. Wells, D.A. Sample preparation for drug discovery bioanalysis. In Integrated Strategies for Drug Discovery using Mass Spectrometry (ed. Lee, M.S.) 477–542 (Wiley-Interscience, Hoboken, New Jersey, 2005).

    Chapter  Google Scholar 

  7. Niessen, W.M.A., Manini, P. & Andreoli, R. Matrix effects in quantitative pesticide analysis using liquid chromatography–mass spectrometry. Mass Spectrom. Rev. 25, 881–899 (2006).

    Article  CAS  Google Scholar 

  8. Tonidandel, L. & Seraglia, R. Matrix effect, signal suppression and enhancement in LC-ESI-MS. In Advances in LC–MS Instrumentation (ed. Cappiello, A.) 193–210 (Elsevier, Amsterdam, The Netherlands, 2007).

  9. Bakhtiar, R. & Majumdar, T.K. Tracking problems and possible solutions in the quantitative determination of small molecule drugs and metabolites in biological fluids using liquid chromatography–mass spectrometry. J. Pharmacol. Toxicol. Methods 55, 227–243 (2007).

    Article  Google Scholar 

  10. Niessen, W.A. Atmospheric pressure ionization. In Liquid Chromatography–Mass Spectrometry (ed. Niessen, W.A.) 141–176 (Taylor & Francis, Boca Raton, Florida, 2006).

  11. Niessen, W.A. Quantitative bioanalysis using LC–MS. In Liquid Chromatography–Mass Spectrometry (ed. Niessen W.A.) 289–330 (Taylor & Francis, Boca Raton, Florida, 2006).

  12. Wells, D.A. High Throughput Bioanalytical Sample Preparation: Methods and Automation Strategies (ed. Wells, D.A.) 1–610 (Elsevier, UK, 2003).

  13. Souverain, S., Rudaz, S. & Veuthey, J.L. Restricted access materials and large particle supports for on-line sample preparation: an attractive approach for biological fluids analysis. J. Chromatogr. B 801, 141–156 (2004).

    Article  CAS  Google Scholar 

  14. Arthur, C.L. & Pawliszyn, J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem. 62, 2145–2148 (1990).

    Article  CAS  Google Scholar 

  15. Solid Phase Microextraction, Theory and Practice (ed. Pawliszyn, J.) (Wiley-WCH, New York, 1997).

  16. Musteata, F.M. & Pawliszyn, J. Bioanalytical applications of solid-phase microextraction. Trends Analyt. Chem. 26, 36–45 (2007).

    Article  CAS  Google Scholar 

  17. Kumazawa, T., Lee, X., Sato, K. & Suzuki, O. Solid-phase microextraction and liquid chromatography/mass spectrometry in drug analysis. Anal. Chim. Acta 492, 49–67 (2003).

    Article  CAS  Google Scholar 

  18. Cudjoe, E., Vuckovic, D., Hein, D. & Pawliszyn, J. Investigation of the effect of the extraction phase geometry on the performance of automated solid-phase microextraction. Anal. Chem. 81, 4226–4232 (2009).

    Article  CAS  Google Scholar 

  19. Vuckovic, D., Cudjoe, E., Hein, D. & Pawliszyn, J. Automation of solid-phase microextraction in high-throughput format and applications to drug analysis. Anal. Chem. 80, 6870–6880 (2008).

    Article  CAS  Google Scholar 

  20. Vatinno, R., Vuckovic, D., Zambonin, C.G. & Pawliszyn, J. Automated high-throughput method using solid-phase microextraction–liquid chromatography–tandem mass spectrometry for the determination of ochratoxin A in human urine. J. Chromatogr. A 1201, 215–221 (2008).

    Article  CAS  Google Scholar 

  21. Alves, C., Santos-Neto, A.J., Fernandes, C., Rodrigues, J.C. & Lancas, F.M. Analysis of tricyclic antidepressant drugs in plasma by means of solid-phase microextraction–liquid chromatography–mass spectrometry. J. Mass Spec. 42, 1342–1347 (2007).

    Article  CAS  Google Scholar 

  22. Volmer, D.A. & Hui, J.P.M. Rapid determination of corticosteroids in urine by combined solid phase microextraction/liquid chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 11, 1926–1934 (1997).

    Article  CAS  Google Scholar 

  23. Balakrishnan, V.K., Terry, K.A. & Toito, J. Determination of sulfonamide antibiotics in wastewater: a comparison of solid phase microextraction and solid phase extraction methods. J. Chromatogr. A 1131, 1–10 (2006).

    Article  CAS  Google Scholar 

  24. Kataoka, H., Matsuura, E. & Mitani, K. Determination of cortisol in human saliva by automated in-tube solid-phase microextraction coupled with liquid chromatography–mass spectrometry. J. Pharm. Biomed. Anal. 44, 160–165 (2007).

    Article  CAS  Google Scholar 

  25. Musteata, F.M., Walles, M. & Pawliszyn, J. Fast assay of angiotensin 1 from whole blood by cation-exchange restricted-access solid-phase microextraction. Anal. Chim. Acta 537, 231–237 (2005).

    Article  CAS  Google Scholar 

  26. Walles, M. et al. Verapamil drug metabolism studies by automated in-tube solid phase microextraction. J. Pharm. Biomed. Anal. 30, 307–319 (2002).

    Article  CAS  Google Scholar 

  27. Kataoka, H., Narimatsu, S., Lord, H.L. & Pawliszyn, J. Automated in-tube solid-phase microextraction coupled with liquid chromatography/electrospray ionization mass spectrometry for the determination of b-blockers and metabolites in urine and serum samples. Anal. Chem. 71, 4237–4244 (1999).

    Article  CAS  Google Scholar 

  28. Wu, J., Lord, H.L., Pawliszyn, J. & Kataoka, H. Polypyrrole-coated capillary in-tube solid phase microextraction coupled with liquid chromatography–electrospray ionization mass spectrometry for the determination of b-blockers in urine and serum samples. J. Microcolumn Sep. 12, 255–266 (2000).

    Article  CAS  Google Scholar 

  29. Sagratini, G., Manes, J., Giardina, D., Damiani, P. & Pico, Y. Analysis of carbamate and phenylurea pesticide residues in fruit juices by solid-phase microextraction and liquid chromatography–mass spectrometry. J. Chromatogr. A 1147, 135–143 (2007).

    Article  CAS  Google Scholar 

  30. Blasco, C., Font, G. & Pico, Y. Solid-phase microextraction–liquid chromatography–mass spectrometry applied to the analysis of insecticides in honey. Food Addit. Contam. Part A Chem. Anal., Control Expo. Risk Assess 25, 59–69 (2008).

    Article  CAS  Google Scholar 

  31. Musteata, F.M. & Pawliszyn, J. Study of ligand–receptor binding using SPME: investigation of receptor, free, and total ligand concentrations. J. Proteome Res. 4, 789–800 (2005).

    Article  CAS  Google Scholar 

  32. Heringa, M.B. & Hermens, J.L.M. Measurement of free concentrations using negligible depletion-solid phase microextraction (nd-SPME). Trends Analyt. Chem. 22, 575–587 (2003).

    Article  CAS  Google Scholar 

  33. Heringa, M.B., Pastor, D., Algra, J., Vaes, W.H.J . & Hermens, J.L.M . Negligible depletion solid-phase microextraction with radiolabeled analytes to study free concentrations and protein binding: an example with [3H]estradiol. Anal. Chem. 74, 5993–5997 (2002).

    Article  CAS  Google Scholar 

  34. Vuckovic, D. & Pawliszyn, J. Automated study of ligand–receptor binding using solid-phase microextraction. J. Pharm. Biomed. Anal. 50, 550–553 (2008).

    Article  Google Scholar 

  35. Musteata, F.M., Pawliszyn, J., Qian, M.G., Wu, J. & Miwa, G.T. Determination of drug plasma protein binding by solid phase microextraction. J. Pharm. Sci. 95, 1712–1722 (2006).

    Article  CAS  Google Scholar 

  36. Zhou, S.N., Oakes, K.D., Servos, M.R. & Pawliszyn, J. Application of solid-phase microextraction for in vivo laboratory and field sampling of pharmaceuticals in fish. Env. Sci. Tech. 42, 6073–6079 (2008).

    Article  CAS  Google Scholar 

  37. Musteata, F.M. & Pawliszyn, J. Assay of stability, free and total concentration of chlorhexidine in saliva by solid phase microextraction. J. Pharm. Biomed. Anal. 37, 1015–1024 (2005).

    Article  CAS  Google Scholar 

  38. Hage, D.S. & Tweed, S.A. Recent advances in chromatographic and electrophoretic methods for the study of drug-protein interactions. J. Chromatogr. B 699, 499–525 (1997).

    Article  CAS  Google Scholar 

  39. Musteata, F.M. & Pawliszyn, J. In vivo sampling with solid phase microextraction. J. Biochem. Biophys. Methods 70, 181–193 (2007).

    Article  CAS  Google Scholar 

  40. Liu, Z., Li, F. & Yuesheng, H. Determination of unbound drug concentration and protein-drug binding fraction in plasma. Biomed. Chromatogr. 13, 262–266 (1999).

    Article  CAS  Google Scholar 

  41. Bertucci, C. & Domenici, E. Reversible and covalent binding of drugs to human serum albumin: methodological approaches and physiological relevance. Curr. Med. Chem. 9, 1463–1481 (2002).

    Article  CAS  Google Scholar 

  42. Seedher, N. & Bhatia, S. Mechanism of interaction of the non-steroidal antiinflammatory drugs meloxicam and nimesulfide with serum albumin. J. Pharm. Biomed. Anal. 39, 257–262 (2005).

    Article  CAS  Google Scholar 

  43. Huang, S., Tsai, T., Yeh, P. & Tsai, T. Measurement of unbound ranitidine in blood and bile of anesthesized rats using microdialysis coupled to liquid chromatography and its pharmacokinetic application. J. Chromatogr. A 1073, 297–302 (2005).

    Article  CAS  Google Scholar 

  44. Zhang, Y., Leonessa, F., Clarke, R. & Wainer, I.W. Development of an immobilized P-glycoprotein stationary phase for on-line liquid chromatographic determination of drug-binding affinities. J. Chromatogr. B 739, 33–37 (2000).

    Article  CAS  Google Scholar 

  45. Ng, E.S.M., Chan, N.W.C., Lewis, D.F., Hindsgaul, O. & Schriemer, D.C. Frontal affinity chromatography–mass spectrometry. Nat. Protoc. 2, 1907–1917 (2007).

    Article  CAS  Google Scholar 

  46. Ostergaard, J., Schou, C., Larsen, C. & Heegaard, N.H.H. Evaluation of capillary electrophoresis-frontal analysis for the study of low molecular weight drug–human serum albumin interactions. Electrophoresis 23, 2842–2853 (2002).

    Article  CAS  Google Scholar 

  47. Martinez-Pla, J.J. et al. High-throughput capillary electrophoresis frontal analysis method for the study of drug interactions with human serum albumin at near physiological conditions. Electrophoresis 25, 3176–3185 (2004).

    Article  CAS  Google Scholar 

  48. Berger, G. & Girault, G. Macromolecule-ligand binding studied by the Hummel and Dreyer method: current state of the methodology. J. Chromatogr. B 797, 51–61 (2003).

    Article  CAS  Google Scholar 

  49. Moaddel, R., Lu, L., Baynham, M. & Wainer, I.W. Immobilized receptor- and transporter-based liquid chromatographic phases for on-line pharmacological and biochemical studies: a mini-review. J. Chromatogr. B: Anal. Techn. Biomed. Life Sci. 768, 41–53 (2002).

    Article  CAS  Google Scholar 

  50. Wan, H. & Bergstroem, F. High throughput screening of drug-protein binding in drug discovery. J. Liq. Chromatogr. Rel. Technol. 30, 681–700 (2007).

    Article  CAS  Google Scholar 

  51. Banker, M.J., Clark, T.H. & Williams, J.A. Development and validation of a 96-well equilibrium dialysis apparatus for measuring plasma protein binding. J. Pharm. Sci. 92, 967–974 (2003).

    Article  CAS  Google Scholar 

  52. Fung, E.N., Chen, Y. & Lau, Y.Y. Semi-automatic high-throughput determination of plasma protein binding using a 96-well plate filtrate assembly and fast liquid chromatography tandem mass spectrometry. J. Chromatogr. B 795, 187–194 (2003).

    Article  CAS  Google Scholar 

  53. Wan, H. & Rehngren, M. High-throughput screening of protein binding by equilibrium dialysis combined with liquid chromatography and mass spectrometry. J. Chromatogr. A 1102, 125–134 (2006).

    Article  CAS  Google Scholar 

  54. Hutchinson, J.P., Setkova, L. & Pawliszyn, J. Automation of solid-phase microextraction on a 96-well plate format. J. Chromatogr. A 1149, 127–137 (2007).

    Article  CAS  Google Scholar 

  55. Risticevic, S., Lord, H.L., Gorecki, T., Arthur, C.L. & Pawliszyn, J. Protocol for solid phase microextraction method development. Nat. Protoc. 5, 122–139 (2010).

    Article  CAS  Google Scholar 

  56. Cudjoe, E. & Pawliszyn, J. A new approach to the application of solid phase extraction disks with LC–MS/MS for the analysis of drugs on a 96-well plate format. J. Pharm. Biomed. Anal. 50, 556–562 (2008).

    Article  Google Scholar 

  57. Hennion, M.C. Solid-phase extraction: method development, sorbents, and coupling with liquid chromatography. J. Chromatogr. A 856, 3–54 (1999).

    Article  CAS  Google Scholar 

  58. Mullett, W.M. & Pawliszyn, J. Direct determination of benzodiazepines in biological fluids by restricted-access solid-phase microextraction. Anal. Chem. 74, 1081–1087 (2002).

    Article  CAS  Google Scholar 

  59. Lord, H. & Pawliszyn, J. Microextraction of drugs. J. Chromatogr. A 902, 17–63 (2000).

    Article  CAS  Google Scholar 

  60. Zhang, X., Es-Haghi, A., Musteata, F.M., Ouyang, G. & Pawliszyn, J. Quantitative in vivo microsampling for pharmacokinetic studies based on an integrated solid-phase microextraction system. Anal. Chem. 79, 4507–4513 (2007).

    Article  CAS  Google Scholar 

  61. Musteata, F.M., Musteata, M.L. & Pawliszyn, J. Fast in vivo microextraction: a new tool for clinical analysis. Clin. Chem. 52, 708–715 (2006).

    Article  CAS  Google Scholar 

  62. Zhou, S., Song, Q., Tang, Y. & Naidong, W. Critical review of development, validation, and transfer for high throughput bioanalytical LC–MS/MS methods. Curr. Pharm. Anal. 1, 3–14 (2005).

    Article  Google Scholar 

  63. Watson, J.T. & Sparkman, O.D. Liquid chromatography/mass spectrometry. In Introduction to Mass Spectrometry: Instrumentation, Applications, and Strategies for Data Interpretation edn. 4 (eds. Watson, J.T. & Sparkman, O.D.) 639–688 (John Wiley & Sons, Ltd., Chichester, West Sussex, England, 2007).

  64. Food and Drug Administration. Bioanalytical method validation. Guidance for Industry (2001).

  65. Yuan, H. & Pawliszyn, J. Application of solid-phase microextraction in the determination of diazepam binding to human serum albumin. Anal. Chem. 73, 4410–4416 (2001).

    Article  CAS  Google Scholar 

  66. Kramer, N.I., van Eijkeren, J.C.H. & Hermens, J.L.M. Influence of albumin on sorption kinetics in solid-phase microextraction: consequences for chemical analyses and uptake processes. Anal. Chem. 79, 6941–6948 (2007).

    Article  CAS  Google Scholar 

  67. Lord, H.L., Rajabi, M., Safari, S. & Pawliszyn, J. A study of the performance characteristics of immunoaffinity solid phase microextraction probes for extraction of a range of benzodiazepines. J. Pharm. Biomed. Anal. 44, 506–519 (2007).

    Article  CAS  Google Scholar 

  68. Lord, H.L., Rajabi, M., Safari, S. & Pawliszyn, J. Development of immunoaffinity solid phase microextraction probes for analysis of sub ng/ml concentrations of 7-aminoflunitrazepam. J. Pharm. Biomed. Anal. 40, 769–780 (2006).

    Article  CAS  Google Scholar 

  69. Hu, X., Pan, J., Hu, Y., Huo, Y. & Li, G. Preparation and evaluation of solid-phase microextraction fibre based on molecularly imprinted polymers for trace analysis of tetracyclines in complicated samples. J. Chromatogr. A 1188, 97–107 (2008).

    Article  CAS  Google Scholar 

  70. Hu, X., Hu, Y. & Li, G. Development of novel molecularly imprinted solid-phase microextraction fibre and its application for the determination of triazines in complicated samples coupled with high-performance liquid chromatography. J. Chromatogr. A 1147, 1–9 (2007).

    Article  CAS  Google Scholar 

  71. Turiel, E., Tadeo, J.L. & Martin-Esteban, A. Molecularly imprinted polymeric fibres for solid-phase microextraction. Anal. Chem. 79, 3099–3104 (2007).

    Article  CAS  Google Scholar 

  72. Koster, E.H.M., Crescenzi, C., den Hoedt, W., Ensing, K. & de Jong, G.J. Fibres coated with molecularly imprinted polymers for solid-phase microextraction. Anal. Chem. 73, 3140–3145 (2001).

    Article  CAS  Google Scholar 

  73. Mullett, W.M., Martin, P. & Pawliszyn, J. In-tube molecularly imprinted polymer solid-phase microextraction for the selective determination of propranolol. Anal. Chem. 73, 2383–2389 (2001).

    Article  CAS  Google Scholar 

  74. Xu, R.N., Fan, L., Rieser, M.J. & El-Shourbagy, T.A. Recent advances in high-throughput quantitative bioanalysis by LC–MS/MS. J. Pharm. Biomed. Anal. 44, 342–355 (2007).

    Article  CAS  Google Scholar 

  75. Matuszewski, B.K. Standard line slopes as a measure of a relative matrix effect in quantitative HPLC–MS bioanalysis. J. Chromatogr. B: Anal. Techn. Biomed. Life Sci. 830, 293–300 (2006).

    Article  CAS  Google Scholar 

  76. Matuszewski, B.K., Constanzer, M.L. & Chavez-Eng, C.M. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC–MS/MS. Anal. Chem. 75, 3019–3030 (2003).

    Article  CAS  Google Scholar 

  77. Xie, W., Pawliszyn, J., Mullett, W.M. & Matuszewski, B.K. Comparison of solid-phase microextraction and liquid–liquid extraction in 96-well format for the determination of a drug compound in human plasma by liquid chromatography with tandem mass spectrometric detection. J. Pharm. Biomed. Anal. 45, 599–608 (2007).

    Article  CAS  Google Scholar 

  78. Zambonin, C.G. & Aresta, A. SPME-LC with UV detection to study delorazepam–serum albumin interactions. J. Pharm. Biomed. Anal. 29, 895–900 (2002).

    Article  CAS  Google Scholar 

  79. Artola-Garciano, E., Vaes, W.H.J. & Hermens, J.L.M. Validation of negligible depletion solid-phase microextraction as a tool to determine tissue/blood partition coefficients for semivolatile and nonvolatile organic chemicals. Toxicol. Appl. Pharmacol. 166, 138–144 (2000).

    Article  Google Scholar 

  80. Musteata, F.M. & Pawliszyn, J. Determination of free concentration of paclitaxel in liposome formulations. J. Pharm. Pharm. Sci. 9, 231–237 (2006).

    CAS  Google Scholar 

  81. Prosen, H., Fingler, S., Zupancic-Kralj, L. & Drevenkar, V. Partitioning of selected environmental pollutants into organic matter as determined by solid-phase microextraction. Chemosphere 66, 1580–1589 (2007).

    Article  CAS  Google Scholar 

  82. Kosa, T., Maruyama, T. & Otagiri, M. Species differences of serum albumins: I. Drug binding sites. Pharm. Res. 14, 1607–1612 (1997).

    Article  CAS  Google Scholar 

  83. Muller, W.E. & Wollert, U. Characterization of the binding of benzodiazepines to human serum albumin. Naunyn Schmiederbergs Arch. Pharmacol. 280, 229–237 (1973).

    Article  CAS  Google Scholar 

  84. Muller, W.E. & Wollert, U. Influence of pH on the benzodiazepine–human serum albumin complex. Circular dichroism studies. Naunyn Schmiederbergs Arch. Pharmacol. 283, 67–82 (1974).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Natural Sciences and Engineering Research Council of Canada and Supelco for financial support. The authors thank Dietmar Hein (PAS Technology) for collaboration and the design and development of the Concept 96 autosampler.

Author information

Authors and Affiliations

Authors

Contributions

D.V. developed fiber coatings and evaluated performance of Concept 96 using fiber geometry for LC-MS applications, developed high-throughput applications, performed first automated ligand-binding study and wrote the manuscript. E.C. developed and evaluated thin-film configuration and corresponding coatings of the device. F.M.M. developed the theory and experimental workflow for ligand-receptor binding studies regardless of the degree of depletion. J.P. developed the initial idea for this project and supervised the activities in all stages of instrument and experimental design.

Corresponding author

Correspondence to Janusz Pawliszyn.

Supplementary information

Supplementary Methods

A detailed step-by-step procedure to generate in vitro multi-point ligand-receptor binding isotherms using SPME/TFME and a PAS Concept 96 (PDF 59 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vuckovic, D., Cudjoe, E., Musteata, F. et al. Automated solid-phase microextraction and thin-film microextraction for high-throughput analysis of biological fluids and ligand–receptor binding studies. Nat Protoc 5, 140–161 (2010). https://doi.org/10.1038/nprot.2009.180

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.180

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing