Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol Extension
  • Published:

Preparation and implementation of optofluidic neural probes for in vivo wireless pharmacology and optogenetics

Abstract

This Protocol Extension describes the fabrication and technical procedures for implementing ultrathin, flexible optofluidic neural probe systems that provide targeted, wireless delivery of fluids and light into the brains of awake, freely behaving animals. As a Protocol Extension article, this article describes an adaptation of an existing Protocol that offers additional applications. This protocol serves as an extension of an existing Nature Protocol describing optoelectronic devices for studying intact neural systems. Here, we describe additional features of fabricating self-contained platforms that involve flexible microfluidic probes, pumping systems, microscale inorganic LEDs, wireless-control electronics, and power supplies. These small, flexible probes minimize tissue damage and inflammation, making long-term implantation possible. The capabilities include wireless pharmacological and optical intervention for dissecting neural circuitry during behavior. The fabrication can be completed in 1–2 weeks, and the devices can be used for 1–2 weeks of in vivo rodent experiments. To successfully carry out the protocol, researchers should have basic skill sets in photolithography and soft lithography, as well as experience with stereotaxic surgery and behavioral neuroscience practices. These fabrication processes and implementation protocols will increase access to wireless optofluidic neural probes for advanced in vivo pharmacology and optogenetics in freely moving rodents.

This protocol is an extension to: Nat. Protoc. 8, 2413–2428 (2013); doi:10.1038/nprot.2013.158; published online 07 November 2013

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fabrication process for ultrathin, flexible microfluidic channels.
Figure 2: Procedure for creating the optofluidic probe.
Figure 3: Schematic showing fabrication procedure for thermally actuated pumps.
Figure 4: Procedure for drug loading and assembly with an optofluidic probe.
Figure 5: Preparation of IR wireless control modules.
Figure 6: Surgical procedure for implantation of the optofluidic neural probes into the brain.
Figure 7: Device integration for an entirely self-contained wireless drug delivery system.
Figure 8: Example preparation of the behavioral assay for wireless control.
Figure 9: Establishing automated control of the IR remote.
Figure 10: Expected results following optofluidic neural probe implantation.

Similar content being viewed by others

References

  1. Rajasethupathy, P., Ferenczi, E. & Deisseroth, K. Targeting neural circuits. Cell 165, 524–534 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Adamantidis, A.R., Zhang, F., Aravanis, A.M., Deisseroth, K. & de Lecea, L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450, 420–424 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Arenkiel, B.R. et al. In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron 54, 205–218 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Armbruster, B.N., Li, X., Pausch, M.H., Herlitze, S. & Roth, B.L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl. Acad. Sci. USA 104, 5163–5168 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Banghart, M., Borges, K., Isacoff, E., Trauner, D. & Kramer, R.H. Light-activated ion channels for remote control of neuronal firing. Nat. Neurosci. 7, 1381–1386 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Güler, A.D. et al. Transient activation of specific neurons in mice by selective expression of the capsaicin receptor. Nat. Commun. 3, 746 (2012).

    Article  PubMed  CAS  Google Scholar 

  7. Lima, S.Q. & Miesenböck, G. Remote control of behavior through genetically targeted photostimulation of neurons. Cell 121, 141–152 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Zemelman, B.V., Lee, G.A., Ng, M. & Miesenböck, G. Selective photostimulation of genetically chARGed neurons. Neuron 33, 15–22 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Zemelman, B.V., Nesnas, N., Lee, G.A. & Miesenbock, G. Photochemical gating of heterologous ion channels: remote control over genetically designated populations of neurons. Proc. Natl. Acad. Sci. USA 100, 1352–1357 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Siuda, E.R. et al. Spatiotemporal control of opioid signaling and behavior. Neuron 86, 923–935 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yizhar, O., Fenno, L.E., Davidson, T.J., Mogri, M. & Deisseroth, K. Optogenetics in neural systems. Neuron 71, 9–34 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Konermann, S. et al. Optical control of mammalian endogenous transcription and epigenetic states. Nature 500, 472–476 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schindler, S.E. et al. Photo-activatable Cre recombinase regulates gene expression in vivo . Sci. Rep. 5, 13627 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhang, F. et al. Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat. Protoc. 5, 439–456 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cardin, J.A. et al. Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2. Nat. Protoc. 5, 247–254 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sparta, D.R. et al. Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits. Nat. Protoc. 7, 12–23 (2011).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Sternson, S.M. & Roth, B.L. Chemogenetic tools to interrogate brain functions. Annu. Rev. Neurosci. 37, 387–407 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Tye, K.M. & Deisseroth, K. Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat. Rev. Neurosci. 13, 251–266 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zorzos, A.N., Boyden, E.S. & Fonstad, C.G. Multiwaveguide implantable probe for light delivery to sets of distributed brain targets. Opt. Lett. 35, 4133–4135 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zorzos, A.N., Scholvin, J., Boyden, E.S. & Fonstad, C.G. Three-dimensional multiwaveguide probe array for light delivery to distributed brain circuits. Opt. Lett. 37, 4841–4843 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kim, T. et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340, 211–216 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Al-Hasani, R. et al. Distinct subpopulations of nucleus accumbens dynorphin neurons drive aversion and reward. Neuron 87, 1063–1077 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wu, F. et al. Monolithically integrated μLEDs on silicon neural probes for high-resolution optogenetic studies in behaving animals. Neuron 88, 1136–1148 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McAlinden, N., Gu, E., Dawson, M.D., Sakata, S. & Mathieson, K. Optogenetic activation of neocortical neurons in vivo with a sapphire-based micro-scale LED probe. Front. Neural Circuits 9, 25 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Stachniak, T.J., Ghosh, A. & Sternson, S.M. Chemogenetic synaptic silencing of neural circuits localizes a hypothalamus→midbrain pathway for feeding behavior. Neuron 82, 797–808 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Park, S.I. et al. Ultraminiaturized photovoltaic and radio frequency powered optoelectronic systems for wireless optogenetics. J. Neural Eng. 12, 056002 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Montgomery, K.L. et al. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat. Methods 12, 969–974 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Park, S.I. et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat. Biotechnol. 33, 1280–1286 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ameli, R., Mirbozorgi, A., Neron, J.-L., LeChasseur, Y. & Gosselin, B. A wireless and batteryless neural headstage with optical stimulation and electrophysiological recording. in 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 5662–5665 (2013).

  30. Lee, S.T. et al. A miniature, fiber-coupled, wireless, deep-brain optogenetic stimulator. IEEE Trans. Neural Syst. Rehabil. Eng. 23, 655–664 (2015).

    Article  PubMed  Google Scholar 

  31. Rossi, M.A. et al. A wirelessly controlled implantable LED system for deep brain optogenetic stimulation. Front. Integr. Neurosci. 9, 8 (2015).

    PubMed  PubMed Central  Google Scholar 

  32. Iwai, Y., Honda, S., Ozeki, H., Hashimoto, M. & Hirase, H. A simple head-mountable LED device for chronic stimulation of optogenetic molecules in freely moving mice. Neurosci. Res. 70, 124–127 (2011).

    Article  PubMed  Google Scholar 

  33. Wentz, C.T. et al. A wirelessly powered and controlled device for optical neural control of freely-behaving animals. J. Neural Eng. 8, 046021 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Siuda, E.R. et al. Optodynamic simulation of β-adrenergic receptor signalling. Nat. Commun. 6, 8480 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. McCall, J.G. et al. Fabrication and application of flexible, multimodal light-emitting devices for wireless optogenetics. Nat. Protoc. 8, 2413–2428 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jeong, J.-W. et al. Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. Cell 162, 662–674 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Parker, K.E., McCall, J.G. & Will, M.J. Basolateral amygdala opioids contribute to increased high-fat intake following intra-accumbens opioid administration, but not following 24-h food deprivation. Pharmacol. Biochem. Behav. 97, 262–266 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Boschi, G., Launay, N. & Rips, R. Implantation of an intracerebral cannula in the mouse. J. Pharmacol. Methods 6, 193–198 (1981).

    Article  CAS  PubMed  Google Scholar 

  39. Chefer, V.I., Thompson, A.C., Zapata, A. & Shippenberg, T.S. Overview of brain microdialysis. Curr. Protoc. Neurosci. Unit 7.1, supplement 47 (2009).

  40. Ruigrok, T.J.H. & Apps, R. A light microscope-based double retrograde tracer strategy to chart central neuronal connections. Nat. Protoc. 2, 1869–1878 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Conte, W.L., Kamishina, H. & Reep, R.L. Multiple neuroanatomical tract-tracing using fluorescent Alexa Fluor conjugates of cholera toxin subunit B in rats. Nat. Protoc. 4, 1157–1166 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Spieth, S. et al. An intra-cerebral drug delivery system for freely moving animals. Biomed. Microdevices 14, 799–809 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Canales, A. et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo . Nat. Biotechnol. 33, 277–284 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Farra, R. et al. First-in-human testing of a wirelessly controlled drug delivery microchip. Sci. Transl. Med. 4, 122ra21–122ra21 (2012).

    Article  PubMed  CAS  Google Scholar 

  45. Hoare, T. et al. A magnetically triggered composite membrane for on-demand drug delivery. Nano Lett. 9, 3651–3657 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hoare, T. et al. Magnetically triggered nanocomposite membranes: a versatile platform for triggered drug release. Nano Lett. 11, 1395–1400 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Timko, B.P. et al. Near-infrared-actuated devices for remotely controlled drug delivery. Proc. Natl. Acad. Sci. USA 111, 1349–1354 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Minev, I.R. et al. Biomaterials. Electronic dura mater for long-term multimodal neural interfaces. Science 347, 159–163 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Richards, N. & McMahon, S.B. Targeting novel peripheral mediators for the treatment of chronic pain. Br. J. Anaesth. 111, 46–51 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Scheib, J. & Höke, A. Advances in peripheral nerve regeneration. Nat. Rev. Neurol. 9, 668–676 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Banghart, M.R. & Sabatini, B.L. Photoactivatable neuropeptides for spatiotemporally precise delivery of opioids in neural tissue. Neuron 73, 249–259 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kramer, R.H., Mourot, A. & Adesnik, H. Optogenetic pharmacology for control of native neuronal signaling proteins. Nat. Neurosci. 16, 816–823 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Tochitsky, I. et al. Restoring visual function to blind mice with a photoswitch that exploits electrophysiological remodeling of retinal ganglion cells. Neuron 81, 800–813 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Polosukhina, A. et al. Photochemical restoration of visual responses in blind mice. Neuron 75, 271–282 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Myers, M.W., Laughlin, C.A., Jay, F.T. & Carter, B.J. Adenovirus helper function for growth of adeno-associated virus: effect of temperature-sensitive mutations in adenovirus early gene region 2. J. Virol. 35, 65–75 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sinn, P.L., Sauter, S.L. & McCray, P.B. Gene therapy progress and prospects: development of improved lentiviral and retroviral vectors – design, biosafety, and production. Gene Ther. 12, 1089–1098 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Beer, C., Meyer, A., Müller, K. & Wirth, M. The temperature stability of mouse retroviruses depends on the cholesterol levels of viral lipid shell and cellular plasma membrane. Virology 308, 137–146 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Kawai, A. & Takeuchi, K. Temperature-sensitivity of the replication of rabies virus (HEP-flury strain) in BHK-21 cells I. Alteration of viral RNA synthesis at the elevated temperature. Virology 186, 524–532 (1992).

    Article  CAS  PubMed  Google Scholar 

  59. Croughan, W.S. & Behbehani, A.M. Comparative study of inactivation of herpes simplex virus types 1 and 2 by commonly used antiseptic agents. J. Clin. Microbiol. 26, 213–215 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Petr, G. & Jiran, E. The effect of temperature on the hemagglutinin activity of the canine adenovirus (infectious canine hepatitis virus). Zentralbl Veterinärmed B 17, 569–581 (1970).

    Article  CAS  PubMed  Google Scholar 

  61. Merten, O.-W., Gény-Fiamma, C. & Douar, A.M. Current issues in adeno-associated viral vector production. Gene Ther. 12, S51–S61 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Resendez, S.L. et al. Visualization of cortical, subcortical and deep brain neural circuit dynamics during naturalistic mammalian behavior with head-mounted microscopes and chronically implanted lenses. Nat. Protoc. 11, 566–597 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cetin, A., Komai, S., Eliava, M., Seeburg, P.H. & Osten, P. Stereotaxic gene delivery in the rodent brain. Nat. Protoc. 1, 3166–3173 (2007).

    Article  CAS  Google Scholar 

  64. Cui, G. et al. Deep brain optical measurements of cell type-specific neural activity in behaving mice. Nat. Protoc. 9, 1213–1228 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Carlezon, W.A. & Chartoff, E.H. Intracranial self-stimulation (ICSS) in rodents to study the neurobiology of motivation. Nat. Protoc. 2, 2987–2995 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Kim, D.-H. et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9, 511–517 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tao, H. et al. Silk-based conformal, adhesive, edible food sensors. Adv. Mater. 24, 1067–1072 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Hwang, S.-W. et al. A physically transient form of silicon electronics. Science 337, 1640–1644 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Artificial cerebrospinal fluid (ACSF). Cold Spring Harb. Protoc. http://cshprotocols.cshlp.org/content/2011/9/pdb.rec065730.full?text_only=true (2011).

  70. Ting, J., Daigle, T., Chen, Q. & Feng, G. in Patch-Clamp Methods and Protocols (eds. Martina, M. & Taverna, S.) 221–242 (New York: Springer, 2014).

  71. Jeong, J.W. et al. Soft microfluidic neural probes for wireless drug delivery in freely behaving mice. in 2015 Transducers—2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) 2264–2267 (2015).

  72. Walf, A.A. & Frye, C.A. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat. Protoc. 2, 322–328 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Noldus, L.P., Spink, A.J. & Tegelenbosch, R.A. EthoVision: a versatile video tracking system for automation of behavioral experiments. Behav. Res. Methods Instrum. Comput. 33, 398–414 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. de Chaumont, F. et al. Computerized video analysis of social interactions in mice. Nat. Methods 9, 410–417 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. McCall, J.G. et al. CRH engagement of the locus coeruleus noradrenergic system mediates stress-induced anxiety. Neuron 87, 605–620 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Deacon, R.M.J. & Rawlins, J.N.P. T-maze alternation in the rodent. Nat. Protoc. 1, 7–12 (2006).

    Article  PubMed  Google Scholar 

  77. Cunningham, C.L., Gremel, C.M. & Groblewski, P.A. Drug-induced conditioned place preference and aversion in mice. Nat. Protoc. 1, 1662–1670 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Jeong, J.-W. et al. Soft materials in neuroengineering for hard problems in neuroscience. Neuron 86, 175–186 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the EUREKA National Institute on Drug Abuse (NIDA) grant R01DA037152 (to M.R.B.), National Institute of Mental Health grant F31 MH101956 (to J.G.M.), and NIDA grant K99DA038725 (to R.A.). We thank the Bruchas laboratory and the laboratory of R.W. Gereau IV for helpful discussions and support. We thank W.Z. Ray for supporting the facilities for the rat surgery. All biomedical aspects of the device work were supported by a National Security Science and Engineering Faculty Fellowship of Energy (to J.A.R.) and startup funding from the University of Colorado Boulder (to J.-W.J.). The LED development was enabled by funding from the US Department of Energy, Division of Materials Sciences, under award no. DE-FG02-07ER46471 (to J.A.R.), the National Institutes of Health Common Fund National Institute of Neurological Disorders and Stroke grant R01NS081707 (to J.A.R. and M.R.B.), and the Materials Research Laboratory and Center for Microanalysis of Materials (grant DE-FG02-07ER46453 to J.A.R.).

Author information

Authors and Affiliations

Authors

Contributions

J.G.M., R.Q., G.S., S.L., M.H.I., K.-I.J., Y.L., R.A., and J.-W.J. performed the experiments. J.G.M., M.R.B., J.-W.J., and J.A.R. developed the protocol. J.G.M., M.R.B., J.-W.J., and J.A.R. wrote the manuscript.

Corresponding authors

Correspondence to Michael R Bruchas, Jae-Woong Jeong or John A Rogers.

Ethics declarations

Competing interests

J.A.R. and M.R.B. are co-founders of Neurolux, a company that is making wireless optogenetic probes. The devices described here are not yet part of the company's current product portfolio, but we list this information here as a full disclosure.

Integrated supplementary information

Supplementary Figure 1 Fabrication processes for the ultrathin, flexible microfluidic probe.

(A) Immerse a glass substrate in Pt inhibition solution to activate its surface for easy release of PDMS. (B) Rinse the glass substrate with methanol and bake on a hot plate at 70°C. The glass has amine layer on its surface, which prevents PDMS polymerization. (C) Flip the glass substrate in preparation for PDMS press-casting. (D) Prepare a microfluidic channel mold on a silicon wafer using UV-curable epoxy (SU-8 10). (E) Make anti-stiction surface treatment on the mold wafer by evaporating anti-stiction agent (TMCS) in a completely enclosed wafer box. (F) Cast PDMS on the mold. (G) Press and clip the PDMS-casted mold with the glass substrate and cure it at 70°C for 1 hour. (H) Release PDMS glass substrate from the mold, which has ~20-μm-thick microfluidic channel patterns (channel cross-section = 10 μm ×10 μm). (I–J) Prepare a thin flat PDMS layer on the PC sheet for bonding with the patterned PDMS layer in (H). The thickness of PDMS layer can be controlled by adjusting the spinning speed: 2000 rpm for 60 sec results in 20-μm-thick flat PDMS layer. (M) Treat the surface of both PDMS layer in (H) and (L) with oxygen plasma and bond together. This forms ultrathin PDMS microfluidic channels. (N) Remove PC from the bonded PDMS. (O, P) Release the bonded PDMS layer from the glass substrate. The amine group formed on the glass substrate facilitates delamination of PDMS without damage.

Supplementary Figure 2 Technical drawing with dimensions for microfluidic channels.

Supplementary Figure 3 Tools used in fabrication of microfluidic neural probes.

(A) Custom-designed blade tool to create a small (500 μm wide) microfluidic probe (Supplementary Data 2). (B) 3D printed alignment tool for punching (Supplementary Data 3). (C) Punch (Harris Uni-Core, 0.50 mm).

Supplementary Figure 4 Schematic diagram showing the operation principle of microfluidic devices for fluid delivery.

By turning on a heater in the device, the thermally expandable layer becomes expanded and pumps out fluid in the reservoir.

Supplementary Figure 5 Technical drawing with dimensions for micro-heaters.

Supplementary Figure 6 Technical drawing with dimensions for drug reservoirs.

Supplementary Figure 7 Circuit diagrams for IR wireless control modules.

(A) Wireless receiver module. (B) Wireless remote controller.

Supplementary information

Combo PDF

Supplementary Figures 1–7 and the Supplementary Note. (PDF 789 kb)

Supplementary Data 1

AutoCAD file for the design of heaters and microfluidic channels. (ZIP 126 kb)

Supplementary Data 2

SolidWorks part document for the custom-designed blade tool to create a 500-μm-wide microfluidic probe. (ZIP 82 kb)

Supplementary Data 3

STL file for the punch alignment tool. (ZIP 8 kb)

Supplementary Data 4

STL file for the device case. (ZIP 47 kb)

Supplementary Data 5

STL file for the case lid. (ZIP 5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCall, J., Qazi, R., Shin, G. et al. Preparation and implementation of optofluidic neural probes for in vivo wireless pharmacology and optogenetics. Nat Protoc 12, 219–237 (2017). https://doi.org/10.1038/nprot.2016.155

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.155

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing