Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Modeling and correction of structural variations in patient-derived iPSCs using CRISPR/Cas9

Abstract

Genome engineering technology using engineered nucleases has been rapidly developing, enabling the efficient correction of simple mutations. However, the precise correction of structural variations (SVs) such as large inversions remains limited. Here we describe a detailed procedure for the modeling or correction of large chromosomal rearrangements and short nucleotide repeat expansions using engineered nucleases in human induced pluripotent stem cells (hiPSCs) from a healthy donor and patients with SVs. This protocol includes the delivery of engineered nucleases with no donor template to hiPSCs, and genotyping and derivation/characterization of gene-manipulated hiPSC clones. With engineered nucleases, genomic inversions, reversions, and deletions of short nucleotide expansions can be identified in 2 weeks, and desired clones can be generated in as little as 3–4 weeks. This protocol enables the correction of large inverted segments and short nucleotide repeat expansions in diseases such as hemophilia A, fragile X syndrome, Hunter syndrome, and Friedreich's ataxia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NHEJ-dependent genome engineering strategies.
Figure 2: HDR-dependent genome engineering strategies.
Figure 3: Targeting strategies and PCR-based screening.
Figure 4: Harvest of colonies for genotype screening.
Figure 5: Corrected expression of F8 and FMR1.

Similar content being viewed by others

References

  1. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Robinton, D.A. & Daley, G.Q. The promise of induced pluripotent stem cells in research and therapy. Nature 481, 295–305 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Watanabe, K. et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat. Biotechnol. 25, 681–686 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Ludwig, T.E. et al. Feeder-independent culture of human embryonic stem cells. Nat. Methods 3, 637–646 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Kim, Y.G., Cha, J. & Chandrasegaran, S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. USA 93, 1156–1160 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Miller, J.C. et al. A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 29, 143–148 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hendriks, W.T., Warren, C.R. & Cowan, C.A. Genome editing in human pluripotent stem cells: approaches, pitfalls, and solutions. Cell Stem Cell 18, 53–65 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Symington, L.S. & Gautier, J. Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 45, 247–271 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Alkan, C., Coe, B.P. & Eichler, E.E. Genome structural variation discovery and genotyping. Nat. Rev. Genet. 12, 363–376 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stankiewicz, P. & Lupski, J.R. Structural variation in the human genome and its role in disease. Annu. Rev. Med. 61, 437–455 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Weischenfeldt, J., Symmons, O., Spitz, F. & Korbel, J.O. Phenotypic impact of genomic structural variation: insights from and for human disease. Nat. Rev. Genet. 14, 125–138 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Forster, A. et al. Chromosomal translocation engineering to recapitulate primary events of human cancer. Cold Spring Harb. Symp. Quant. Biol. 70, 275–282 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Park, C.Y., Sung, J.J. & Kim, D.W. Genome editing of structural variations: modeling and gene correction. Trends Biotechnol. 34, 548–561 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Kim, H. & Kim, J.S. A guide to genome engineering with programmable nucleases. Nat. Rev. Genet. 15, 321–334 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Mojica, F.J., Diez-Villasenor, C., Garcia-Martinez, J. & Almendros, C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155, 733–740 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Hou, Z. et al. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc. Natl. Acad. Sci. USA 110, 15644–15649 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fonfara, I. et al. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res. 42, 2577–2590 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Kleinstiver, B.P. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481–485 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Slaymaker, I.M. et al. Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84–88 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Kleinstiver, B.P. et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490–495 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ran, F.A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cox, D.B., Platt, R.J. & Zhang, F. Therapeutic genome editing: prospects and challenges. Nat. Med. 21, 121–131 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hockemeyer, D. & Jaenisch, R. Induced pluripotent stem cells meet genome editing. Cell Stem Cell 18, 573–586 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xue, W. et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514, 380–384 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sanchez-Rivera, F.J. et al. Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Nature 516, 428–431 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Park, C.Y. et al. Functional correction of large factor VIII gene chromosomal inversions in hemophilia A patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell 17, 213–220 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Park, C.Y. et al. Reversion of FMR1 methylation and silencing by editing the triplet repeats in fragile X iPSC-derived neurons. Cell Rep. 13, 234–241 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Mills, A.A. & Bradley, A. From mouse to man: generating megabase chromosome rearrangements. Trends Genet. 17, 331–339 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Brunet, E. et al. Chromosomal translocations induced at specified loci in human stem cells. Proc. Natl. Acad. Sci. USA 106, 10620–10625 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lee, H.J., Kim, E. & Kim, J.S. Targeted chromosomal deletions in human cells using zinc finger nucleases. Genome Res. 20, 81–89 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee, H.J., Kweon, J., Kim, E., Kim, S. & Kim, J.S. Targeted chromosomal duplications and inversions in the human genome using zinc finger nucleases. Genome Res. 22, 539–548 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Carlson, D.F. et al. Efficient TALEN-mediated gene knockout in livestock. Proc. Natl. Acad. Sci. USA 109, 17382–17387 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Li, J. et al. Efficient inversions and duplications of mammalian regulatory DNA elements and gene clusters by CRISPR/Cas9. J. Mol. Cell Biol. 7, 284–298 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kraft, K. et al. Deletions, inversions, duplications: engineering of structural variants using CRISPR/Cas in mice. Cell Rep. 10, 833–839 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Ota, S., Hisano, Y., Ikawa, Y. & Kawahara, A. Multiple genome modifications by the CRISPR/Cas9 system in zebrafish. Genes Cells 19, 555–564 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Liu, Y. et al. Highly efficient multiplex targeted mutagenesis and genomic structure variation in Bombyx mori cells using CRISPR/Cas9. Insect Biochem. Mol. Biol. 49, 35–42 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Richard, G.F. Shortening trinucleotide repeats using highly specific endonucleases: a possible approach to gene therapy? Trends Genet. 31, 177–186 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Gatchel, J.R. & Zoghbi, H.Y. Diseases of unstable repeat expansion: mechanisms and common principles. Nat. Rev. Genet. 6, 743–755 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Mittelman, D. et al. Zinc-finger directed double-strand breaks within CAG repeat tracts promote repeat instability in human cells. Proc. Natl. Acad. Sci. USA 106, 9607–9612 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Liu, G., Chen, X., Bissler, J.J., Sinden, R.R. & Leffak, M. Replication-dependent instability at (CTG) x (CAG) repeat hairpins in human cells. Nat. Chem. Biol. 6, 652–659 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huang, W., Zheng, J., He, Y. & Luo, C. Tandem repeat modification during double-strand break repair induced by an engineered TAL effector nuclease in zebrafish genome. PLoS One 8, e84176 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Richard, G.F. et al. Highly specific contractions of a single CAG/CTG trinucleotide repeat by TALEN in yeast. PLoS One 9, e95611 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Piganeau, M. et al. Cancer translocations in human cells induced by zinc finger and TALE nucleases. Genome Res. 23, 1182–1193 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Blasco, R.B. et al. Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology. Cell Rep. 9, 1219–1227 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Choi, P.S. & Meyerson, M. Targeted genomic rearrangements using CRISPR/Cas technology. Nat. Commun. 5, 3728 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Maddalo, D. et al. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 516, 423–427 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Torres, R. et al. Engineering human tumour-associated chromosomal translocations with the RNA-guided CRISPR-Cas9 system. Nat. Commun. 5, 3964 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Park, C.Y. et al. Targeted inversion and reversion of the blood coagulation factor 8 gene in human iPS cells using TALENs. Proc. Natl. Acad. Sci. USA 111, 9253–9258 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Urnov, F.D. et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435, 646–651 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Porteus, M.H. & Baltimore, D. Chimeric nucleases stimulate gene targeting in human cells. Science 300, 763 (2003).

    Article  PubMed  Google Scholar 

  54. Rouet, P., Smih, F. & Jasin, M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell. Biol. 14, 8096–8106 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Byrne, S.M., Ortiz, L., Mali, P., Aach, J. & Church, G.M. Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells. Nucleic Acids Res. 43, e21 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Hockemeyer, D. et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat. Biotechnol. 27, 851–857 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Platt, R.J. et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159, 440–455 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wu, Y. et al. In situ genetic correction of F8 intron 22 inversion in hemophilia A patient-specific iPSCs. Sci. Rep. 6, 18865 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Xia, G. et al. Genome modification leads to phenotype reversal in human myotonic dystrophy type 1 induced pluripotent stem cell-derived neural stem cells. Stem Cells 33, 1829–1838 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Meier, I.D. et al. Short DNA sequences inserted for gene targeting can accidentally interfere with off-target gene expression. FASEB J. 24, 1714–1724 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Vasquez, K.M., Marburger, K., Intody, Z. & Wilson, J.H. Manipulating the mammalian genome by homologous recombination. Proc. Natl. Acad. Sci. USA 98, 8403–8410 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yoshimi, K. et al. ssODN-mediated knock-in with CRISPR-Cas for large genomic regions in zygotes. Nat. Commun. 7, 10431 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ran, F.A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhou, T. et al. Generation of human induced pluripotent stem cells from urine samples. Nat. Protoc. 7, 2080–2089 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Muchkaeva, I.A. et al. Generation of iPS cells from human hair follice dermal papilla cells. Acta Naturae 6, 45–53 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kim, H. et al. Surrogate reporters for enrichment of cells with nuclease-induced mutations. Nat. Methods 8, 941–943 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Ramakrishna, S. et al. Surrogate reporter-based enrichment of cells containing RNA-guided Cas9 nuclease-induced mutations. Nat. Commun. 5, 3378 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Urbach, A., Bar-Nur, O., Daley, G.Q. & Benvenisty, N. Differential modeling of fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells. Cell Stem Cell 6, 407–411 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Okita, K. et al. A more efficient method to generate integration-free human iPS cells. Nat. Methods 8, 409–412 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Guschin, D.Y. et al. A rapid and general assay for monitoring endogenous gene modification. Methods Mol. Biol. 649, 247–256 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Wyvekens, N., Tsai, S.Q. & Joung, J.K. Genome editing in human cells using CRISPR/Cas nucleases. Curr. Protoc. Mol. Biol. 112, 31.3.1–31.3.18 (2015).

    Article  Google Scholar 

  72. Hendriks, W.T., Jiang, X., Daheron, L. & Cowan, C.A. TALEN- and CRISPR/Cas9-mediated gene editing in human pluripotent stem cells using lipid-based transfection. Curr. Protoc. Stem Cell Biol. 34, 5B.3.1–5B.3.25 (2015).

    Article  Google Scholar 

  73. Cho, S.W. et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 24, 132–141 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Koo, T., Lee, J. & Kim, J.S. Measuring and reducing off-target activities of programmable nucleases including CRISPR-Cas9. Mol. Cells 38, 475–481 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yang, L., Yang, J.L., Byrne, S., Pan, J. & Church, G.M. CRISPR/Cas9-directed genome editing of cultured cells. Curr. Protoc. Mol. Biol. 107, 31.1.1–17 (2014).

    Article  Google Scholar 

  76. Tsai, S.Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33, 187–197 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Kim, D. et al. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat. Methods 12, 237–243 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Fu, Y., Sander, J.D., Reyon, D., Cascio, V.M. & Joung, J.K. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32, 279–284 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liu, J. et al. Efficient delivery of nuclease proteins for genome editing in human stem cells and primary cells. Nat. Protoc. 10, 1842–1859 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Fusaki, N., Ban, H., Nishiyama, A., Saeki, K. & Hasegawa, M. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc. Jpn Acad. Ser B Phys. Biol. Sci. 85, 348–362 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Marti, M. et al. Characterization of pluripotent stem cells. Nat. Protoc. 8, 223–253 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Ohnuki, M., Takahashi, K. & Yamanaka, S. Generation and characterization of human induced pluripotent stem cells. Curr. Protoc. Stem Cell Biol. Chapter 4 Unit 4A 2 (2009).

  83. Beers, J. et al. Passaging and colony expansion of human pluripotent stem cells by enzyme-free dissociation in chemically defined culture conditions. Nat. Protoc. 7, 2029–2040 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D.-S. Jang from the Medical Research Support Section, Yonsei University College of Medicine, for assistance with graphics. D.-W.K. was supported by grants from the National Research Foundation of Korea (the Bio and Medical Technology Development Program, grant nos. 2012M3A9B4028631 and 2012M3A9C7050126) and from the Korean Ministry of Health and Welfare (grant no. HI15C0916). I.-H.P. was supported in part by the NIH (grant nos. GM0099130-01 and GM111667-01) and the CSCRF (grant nos. 12-SCB-YALE-11 and 13-SCB-YALE-06).

Author information

Authors and Affiliations

Authors

Contributions

C.-Y.P. conceived and developed the protocol. C.-Y.P. and J.J.S. optimized the protocol, performed the experiments, and wrote the manuscript. S.-H.C. and D.R.L. helped with optimization of the protocol and manuscript preparation. I.-H.P. and D.-W.K. supervised the experiments and wrote the manuscript.

Corresponding authors

Correspondence to In-Hyun Park or Dong-Wook Kim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, CY., Sung, J., Choi, SH. et al. Modeling and correction of structural variations in patient-derived iPSCs using CRISPR/Cas9. Nat Protoc 11, 2154–2169 (2016). https://doi.org/10.1038/nprot.2016.129

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.129

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing