Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Conditional gene expression and RNAi using MEC-8–dependent splicing in C. elegans

Abstract

We describe a method for conditional regulation of gene expression based on the processing of an intron cassette. The RNA processing factor MEC-8 is necessary for the function of the Caenorhabditis elegans touch receptor neurons; mec-8 mutants are touch insensitive. We show here that this insensitivity involves the loss of MEC-8–dependent splicing of mec-2, which encodes a component of the mechanosensory transduction complex. MEC-8 is needed to remove the ninth intron in mec-2 pre-mRNA to form the longest of three mRNAs, mec-2a. Without MEC-8, splicing causes the termination of the transcript. Inclusion of mec-2 intron 9 is sufficient to convey mec-8–dependent regulation on other genes and, in mec-8(u218ts) mutants, resulted in their temperature-dependent expression. Because mec-8 is expressed ubiquitously in embryos and extensively in larvae, this system should produce temperature-sensitive expression for most genes. As an example, we report a strain that exhibits temperature-dependent RNA interference.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: mec-2a mRNA is not produced in mec-8 mutants.
Figure 2: MEC-8 regulates the alternative splicing of mec-2. (a) mec-2 splicing pattern and MEC-2 proteins.
Figure 3: mec-2 intron 9 conveys MEC-8 dependence.
Figure 4: MEC-8–dependent expression of mec-2intron9gfp occurs in many tissues.
Figure 5: mec-2 intron 9–containing strains and strains with missense temperature-sensitive mutations show similar responses to temperature.
Figure 6: Conditional mec-2intron9rde-1(+) expression allows for rapid RNAi.

Similar content being viewed by others

References

  1. Sauer, B. Inducible gene targeting in mice using the Cre/lox system. Methods 14, 381–392 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Dohmen, R.J., Wu, P. & Varshavsky, A. Heat-inducible degron: a method for constructing temperature-sensitive mutants. Science 263, 1273–1276 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Gossen, M. & Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89, 5547–5551 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bacaj, T. & Shaham, S. Temporal control of cell-specific transgene expression in Caenorhabditis elegans. Genetics 176, 2651–2655 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Davis, M.W., Morton, J.J., Carrol, D. & Jorgensen, E.M. Gene activation using FLP recombinase in C. elegans. PLoS Genet. 4, e1000028 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Voutev, R. & Hubbard, A.J. A “FLP-out” system for controlled gene expression in Caenorhabditis elegans. Genetics 180, 103–119 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Horowitz, N.H. & Leupold, U. Some recent studies bearing on the one gene one enzyme hypothesis. Cold Spring Harb. Symp. Quant. Biol. 16, 65–74 (1951).

    Article  CAS  PubMed  Google Scholar 

  8. Epstein, R.H. et al. Physiological studies of conditional lethal mutants of bacteriophage T4D. Cold Spring Harb. Symp. Quant. Biol. 28, 375–394 (1963).

    Article  CAS  Google Scholar 

  9. Chalfie, M. & Au, M. Genetic control of differentiation of the Caenorhabditis elegans touch receptor neurons. Science 243, 1027–1033 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. Chalfie, M. & Sulston, J. Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. Dev. Biol. 82, 358–370 (1981).

    Article  CAS  PubMed  Google Scholar 

  11. Lundquist, E.A. et al. The mec-8 gene of C. elegans encodes a protein with two RNA recognition motifs and regulates alternative splicing of unc-52 transcripts. Development 122, 1601–1610 (1996).

    CAS  PubMed  Google Scholar 

  12. Huang, M., Gu, G., Ferguson, E.L. & Chalfie, M. A stomatin-like protein necessary for mechanosensation in C. elegans. Nature 378, 292–295 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. O'Hagan, R., Chalfie, M. & Goodman, M.B. The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nat. Neurosci. 8, 43–50 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Spike, C.A., Davies, A.G., Shaw, J.E. & Herman, R.K. MEC-8 regulates alternative splicing of unc-52 transcripts in C. elegans hypodermal cells. Development 129, 4999–5008 (2002).

    CAS  PubMed  Google Scholar 

  15. Tavernarakis, N., Driscoll, M. & Kyrpides, N.C. The SPFH domain: implicated in regulating targeted protein turnover in stomatins and other membrane-associated proteins. Trends Biochem. Sci. 24, 425–427 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Davies, A.G., Spike, C.A., Shaw, J.E. & Herman, R.K. Functional overlap between the mec-8 gene and five sym genes in Caenorhabditis elegans. Genetics 153, 117–134 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Tabara, H. et al. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99, 123–132 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Sijen, T., Steiner, F.A., Thijssen, K.L. & Plasterk, R.H. Secondary siRNAs result from unprimed RNA synthesis and form a distinct class. Science 315, 244–247 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Goodman, M.B. et al. MEC-2 regulates C. elegans DEG/ENaC channels needed for mechanosensation. Nature 415, 1039–1042 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Lisbin, M.J., Qiu, J. & White, K. The neuron-specific RNA-binding protein ELAV regulates neuroglian alternative splicing in neurons and binds directly to its pre-mRNA. Genes Dev. 15, 2546–2561 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhou, H.L., Baraniak, A.P. & Lou, H. Role for Fox-1/Fox-2 in mediating the neuronal pathway of calcitonin/calcitonin gene-related peptide alternative RNA processing. Mol. Cell. Biol. 27, 830–841 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Poon, V.Y., Klassen, M.P. & Shen, K. UNC-6/netrin and its receptor UNC-5 locally exclude presynaptic components from dendrites. Nature 455, 669–673 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang, S., Ma, C. & Chalfie, M. Combinatorial marking of cells and organelles with reconstituted fluorescent proteins. Cell 119, 137–144 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Chelur, D.S. & Chalfie, M. Targeted cell killing by reconstituted caspases. Proc. Natl. Acad. Sci. USA 104, 2283–2288 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Poyurovsky, M.V. et al. Nucleotide binding by the Mdm2 RING domain facilitates Arf-independent Mdm2 nucleolar localization. Mol. Cell 12, 875–887 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Yoshimatsu, T. & Nagawa, F. Control of gene expression by artificial introns in Saccharomyces cerevisiae. Science 244, 1346–1348 (1989).

    Article  CAS  PubMed  Google Scholar 

  27. Fu, G. et al. Female-specific insect lethality engineered using alternative splicing. Nat. Biotechnol. 25, 353–357 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Samson, M.L., Lisbin, M.J. & White, K. Two distinct temperature-sensitive alleles at the elav locus of Drosophila are suppressed nonsense mutations of the same tryptophan codon. Genetics 141, 1101–1111 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Soller, M. & White, K. ELAV inhibits 3′-end processing to promote neural splicing of ewg pre-mRNA. Genes Dev. 17, 2526–2538 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jensen, K.B. et al. The tetranucleotide UCAY directs the specific recognition of RNA by the Nova K-homology 3 domain. Proc. Natl. Acad. Sci. USA 97, 5740–5745 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Charlet-B., N., Logan, P., Singh, G. & Cooper, T.A. Dynamic antagonism between ETR-3 and PTB regulates cell type-specific alternative splicing. Mol. Cell 9, 649–658 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Driscoll, M. & Chalfie, M. The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature 349, 588–593 (1991).

    Article  CAS  PubMed  Google Scholar 

  34. Mello, C.C., Kramer, J.M., Stinchcomb, D. & Ambros, V. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959–3970 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Okkema, P.G. & Fire, A. The Caenorhabditis elegans NK-2 class homeoprotein CEH-22 is involved in combinatorial activation of gene expression in pharyngeal muscle. Development 120, 2175–2186 (1994).

    CAS  PubMed  Google Scholar 

  36. Finney, M. & Ruvkun, G. The unc-86 gene product couples cell lineage and cell identity in C. elegans. Cell 63, 895–905 (1990).

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, S. et al. MEC-2 is recruited to the putative mechanosensory complex in C. elegans touch receptor neurons through its stomatin-like domain. Curr. Biol. 14, 1888–1896 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Timmons, L. & Fire, A. Specific interference by ingested dsRNA. Nature 395, 854 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Huang for providing valuable insight in the work with mec-2, and L. Chasin, J. Manley and members of the Chalfie laboratory for helpful discussions and comments on the manuscript. This work was supported by US National Institutes of Health grant GM30997 to M.C.

Author information

Authors and Affiliations

Authors

Contributions

A.C., C.M. and M.C. designed experiments; A.C. performed the experiments; A.C. and M.C. wrote the manuscript.

Corresponding author

Correspondence to Martin Chalfie.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1 (PDF 72 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calixto, A., Ma, C. & Chalfie, M. Conditional gene expression and RNAi using MEC-8–dependent splicing in C. elegans. Nat Methods 7, 407–411 (2010). https://doi.org/10.1038/nmeth.1445

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1445

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing