Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hybrid nanocolloids with programmed three-dimensional shape and material composition

Abstract

Tuning the optical1,2, electromagnetic3,4 and mechanical properties of a material requires simultaneous control over its composition and shape5. This is particularly challenging for complex structures at the nanoscale because surface-energy minimization generally causes small structures to be highly symmetric5. Here we combine low-temperature shadow deposition with nanoscale patterning to realize nanocolloids with anisotropic three-dimensional shapes, feature sizes down to 20 nm and a wide choice of materials. We demonstrate the versatility of the fabrication scheme by growing three-dimensional hybrid nanostructures that contain several functional materials with the lowest possible symmetry, and by fabricating hundreds of billions of plasmonic nanohelices, which we use as chiral metafluids with record circular dichroism and tunable chiroptical properties.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fabrication scheme illustrated for nanohooks with C1 symmetry.
Figure 2: Seed size controls the nanostructure’s diameter.
Figure 3: Hybrid nanoparticles with progressively lower symmetry.
Figure 4: The chiroptical response of solutions of Au nanohelices.
Figure 5: Tuning the chiroptical response by composition and shape.

References

  1. Burda, C., Chen, X., Narayanan, R. & El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025–1102 (2005).

    Article  CAS  Google Scholar 

  2. Choi, C. L. & Alivisatos, A. P. From artificial atoms to nanocrystal molecules: Preparation and properties of more complex nanostructures. Annu. Rev. Phys. Chem. 61, 369–389 (2010).

    Article  CAS  Google Scholar 

  3. Albrecht, M. et al. Magnetic multilayers on nanospheres. Nature Mater. 4, 203–206 (2005).

    Article  CAS  Google Scholar 

  4. Hentschel, M., Schäferling, M., Weiss, T., Liu, N. & Giessen, H. Three-dimensional chiral plasmonic oligomers. Nano Lett. 12, 2542–2547 (2012).

    Article  CAS  Google Scholar 

  5. Glotzer, S. C. & Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nature Mater. 6, 557–562 (2007).

    Article  Google Scholar 

  6. Linic, S., Christopher, P. & Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature Mater. 10, 911–921 (2011).

    Article  CAS  Google Scholar 

  7. Sun, S., Murray, C. B., Weller, D., Folks, L. & Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989–1992 (2000).

    Article  CAS  Google Scholar 

  8. Xia, Y., Xiong, Y., Lim, B. & Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem. Int. Ed. 48, 60–103 (2009).

    Article  CAS  Google Scholar 

  9. Mann, S. Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions. Nature Mater. 8, 781–792 (2009).

    Article  CAS  Google Scholar 

  10. Grzybowski, B. A., Wilmer, C. E., Kim, J., Browne, K. P. & Bishop, K. J. M. Self-assembly: From crystals to cells. Soft Matter. 5, 1110–1128 (2009).

    Article  CAS  Google Scholar 

  11. Seddon, A. M., Patel, H. M., Burkett, S. L. & Mann, S. Chiral templating of silica–lipid lamellar mesophase with helical tubular architecture. Angew. Chem. Int. Ed. 41, 2988–2991 (2002).

    Article  CAS  Google Scholar 

  12. Sone, E. D., Zubarev, E. R. & Stupp, S. I. Semiconductor nanohelices templated by supramolecular ribbons. Angew. Chem. Int. Ed. 41, 1705–1709 (2002).

    Article  CAS  Google Scholar 

  13. González, E., Arbiol, J. & Puntes, V. F. Carving at the nanoscale: Sequential galvanic exchange and kirkendall growth at room temperature. Science 334, 1377–1380 (2011).

    Article  Google Scholar 

  14. Qin, L., Park, S., Huang, L. & Mirkin, C. A. On-wire lithography. Science 309, 113–115 (2005).

    Article  CAS  Google Scholar 

  15. Pires, D. et al. Nanoscale three-dimensional patterning of molecular resists by scanning probes. Science 328, 732–735 (2010).

    Article  CAS  Google Scholar 

  16. Glass, R., Möller, M. & Spatz, J. P. Block copolymer micelle nanolithography. Nanotechnology 14, 1153–1160 (2003).

    Article  CAS  Google Scholar 

  17. Spatz, J. P. et al. Ordered deposition of inorganic clusters from micellar block copolymer films. Langmuir 16, 407–415 (1999).

    Article  Google Scholar 

  18. Young, N. O. & Kowal, J. Optically active fluorite films. Nature 183, 104–105 (1959).

    Article  CAS  Google Scholar 

  19. Robbie, K., Friedrich, L. J., Dew, S. K., Smy, T. & Brett, M. J. Fabrication of thin films with highly porous microstructures. J. Vac. Sci. Technol. A 13, 1032–1035 (1995).

    Article  CAS  Google Scholar 

  20. Hawkeye, M. M. & Brett, M. J. Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films. J. Vac. Sci. Technol. A 25, 1317–1335 (2007).

    Article  CAS  Google Scholar 

  21. Robbie, K., Brett, M. J. & Lakhtakia, A. Chiral sculptured thin films. Nature 384, 616–616 (1996).

    Article  CAS  Google Scholar 

  22. Zhao, Y. P., Ye, D. X., Wang, G. C. & Lu, T. M. in Nanotubes and Nanowires 5219 (eds Lakhtakia, A. & Maksimenko, S.) 59–73 (2003).

    Book  Google Scholar 

  23. Mokari, T., Sztrum, C. G., Salant, A., Rabani, E. & Banin, U. Formation of asymmetric one-sided metal-tipped semiconductor nanocrystal dots and rods. Nature Mater. 4, 855–863 (2005).

    Article  CAS  Google Scholar 

  24. Algra, R. E. et al. Twinning superlattices in indium phosphide nanowires. Nature 456, 369–372 (2008).

    Article  CAS  Google Scholar 

  25. Gansel, J. K. et al. Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513–1515 (2009).

    Article  CAS  Google Scholar 

  26. Kuzyk, A. et al. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483, 311–314 (2012).

    Article  CAS  Google Scholar 

  27. Fan, Z. & Govorov, A. O. Chiral nanocrystals: Plasmonic spectra and circular dichroism. Nano Lett. 12, 3283–3289 (2012).

    Article  CAS  Google Scholar 

  28. Zhang, Z. Y. & Zhao, Y. P. Optical properties of helical and multiring Ag nanostructures: The effect of pitch height. J. Appl. Phys. 104, 013517–013517 (2008).

    Article  Google Scholar 

  29. Moore, D. & Tinoco, J. I. The circular dichroism of large helices. A free particle on a helix. J. Chem. Phys. 72, 3396–3400 (1980).

    Article  CAS  Google Scholar 

  30. Draine, B. T. & Flatau, P. J. Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A 11, 1491–1499 (1994).

    Article  Google Scholar 

  31. Bruce, T. & Draine, P. J. F. User Guide for the Discrete Dipole Approximation Code DDSCAT 7.2. arXiv (2012).

Download references

Acknowledgements

We are grateful to C. Miksch and J. P. Spatz for providing us with micellar nanolithographically patterned substrates and for SEM access. We thank the Stuttgart Center for Electron Microscopy for technical support with the TEM imaging. This work was supported by the European Research Council under the ERC Grant agreement 278213.

Author information

Authors and Affiliations

Authors

Contributions

J.G.G. and A.G.M. built the shadow growth set-up, and grew the nanostructures. T-C.L. prepared the nanocolloidal solutions and carried out the TEM imaging. A.M. undertook numerical calculations. P.F. proposed the experiment, and A.G.M., J.G.G., T-C.L. and P.F. analysed the data and wrote the paper.

Corresponding author

Correspondence to Peer Fischer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1512 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mark, A., Gibbs, J., Lee, TC. et al. Hybrid nanocolloids with programmed three-dimensional shape and material composition. Nature Mater 12, 802–807 (2013). https://doi.org/10.1038/nmat3685

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3685

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing