Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechano-tunable chiral metasurfaces via colloidal assembly

Abstract

Dynamic control of circular polarization in chiral metasurfaces is being used in many photonic applications. However, simple fabrication routes to create chiral materials with considerable and fully tunable chiroptical responses at visible and near-infrared wavelengths are scarce. Here, we describe a scalable bottom-up approach to construct cross-stacked nanoparticle chain arrays that have a circular dichroism of up to 11°. Due to their layered design, the strong superchiral fields of the inter-layer region are accessible to chiral analytes, resulting in a tenfold enhanced sensitivity in a chiral sensing proof-of-concept experiment. In situ restacking and local mechanical compression enables full control over the entire set of circular dichroism characteristics, namely sign, magnitude and spectral position. Strain-induced reconfiguration opens up an intriguing route towards actively controlled pixel arrays using local deformation, which fosters continuous polarization engineering and multi-channel detection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chiral assemblies by macroscopic stacking of achiral chain substrates.
Fig. 2: CD tuned by inter-layer rotation.
Fig. 3: Enhanced detection of chiral molecules by exploiting the inter-layer region.
Fig. 4: Strain-induced spectral tuning of CD response.

Similar content being viewed by others

Data availability

We declare that all data supporting the findings of this study are included within the paper and its Supplementary Information files. Source data are available from the corresponding authors upon reasonable request.

References

  1. Hentschel, M., Schäferling, M., Duan, X., Giessen, H. & Liu, N. Chiral plasmonics. Sci. Adv. 3, e1602735 (2017).

    Article  Google Scholar 

  2. Ma, W. et al. Chiral inorganic nanostructures. Chem. Rev. 117, 8041–8093 (2017).

    Article  CAS  Google Scholar 

  3. Ahn, H.-Y. et al. Bioinspired toolkit based on intermolecular encoder toward evolutionary 4D chiral plasmonic materials. Acc. Chem. Res. 52, 2768–2783 (2019).

    Article  CAS  Google Scholar 

  4. Dietrich, K. et al. Elevating optical activity: efficient on-edge lithography of three-dimensional starfish metamaterial. Appl. Phys. Lett. 104, 193107 (2014).

    Article  Google Scholar 

  5. Liu, Z. et al. Fano-enhanced circular dichroism in deformable stereo metasurfaces. Adv. Mater. 32, 1907077 (2020).

    Article  CAS  Google Scholar 

  6. Esposito, M. et al. Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies. ACS Photonics 2, 105–114 (2015).

    Article  CAS  Google Scholar 

  7. Zhao, Y. et al. Chirality detection of enantiomers using twisted optical metamaterials. Nat. Commun. 8, 14180 (2017).

    Article  CAS  Google Scholar 

  8. Hou, Y. et al. Ultrabroadband optical superchirality in a 3D stacked-patch plasmonic metamaterial designed by two-step glancing angle deposition. Adv. Funct. Mater. 26, 7807–7816 (2016).

    Article  CAS  Google Scholar 

  9. Wu, Z., Chen, X., Wang, M., Dong, J. & Zheng, Y. High-performance ultrathin active chiral metamaterials. ACS Nano 12, 5030–5041 (2018).

    Article  CAS  Google Scholar 

  10. Rubin, N. A. et al. Matrix fourier optics enables a compact full-stokes polarization camera. Science 365, eaax1839 (2019).

    Article  CAS  Google Scholar 

  11. Basiri, A. et al. Nature-inspired chiral metasurfaces for circular polarization detection and full-stokes polarimetric measurements. Light Sci. Appl. 8, 78 (2019).

    Article  Google Scholar 

  12. Cheben, P., Halir, R., Schmid, J. H., Atwater, H. A. & Smith, D. R. Subwavelength integrated photonics. Nature 560, 565–572 (2018).

    Article  CAS  Google Scholar 

  13. Neubrech, F., Hentschel, M. & Liu, N. Reconfigurable plasmonic chirality: fundamentals and applications. Adv. Mater. 32, e1905640 (2020).

    Article  Google Scholar 

  14. Li, J. et al. Addressable metasurfaces for dynamic holography and optical information encryption. Sci. Adv. 4, eaar6768 (2018).

    Article  Google Scholar 

  15. Zhang, S. et al. Photoinduced handedness switching in terahertz chiral metamolecules. Nat. Commun. 3, 942 (2012).

    Article  Google Scholar 

  16. Yin, X. et al. Active chiral plasmonics. Nano Lett. 15, 4255–4260 (2015).

    Article  CAS  Google Scholar 

  17. Choi, W. J. et al. Terahertz circular dichroism spectroscopy of biomaterials enabled by Kirigami polarization modulators. Nat. Mater. 18, 820–826 (2019).

    Article  CAS  Google Scholar 

  18. Guo, J. et al. Chemo- and thermomechanically configurable 3D optical metamaterials constructed from colloidal nanocrystal assemblies. ACS Nano 14, 1427–1435 (2019).

    Article  Google Scholar 

  19. Cong, L., Pitchappa, P., Wang, N. & Singh, R. Electrically programmable terahertz diatomic metamolecules for chiral optical control. Research 2019, 11 (2019).

    Article  Google Scholar 

  20. Kim, Y. et al. Reconfigurable chiroptical nanocomposites with chirality transfer from the macro- to the nanoscale. Nat. Mater. 15, 461–468 (2016).

    Article  CAS  Google Scholar 

  21. Duan, X., Kamin, S., Sterl, F., Giessen, H. & Liu, N. Hydrogen-regulated chiral nanoplasmonics. Nano Lett. 16, 1462–1466 (2016).

    Article  CAS  Google Scholar 

  22. Zubritskaya, I., Maccaferri, N., Inchausti Ezeiza, X., Vavassori, P. & Dmitriev, A. Magnetic control of the chiroptical plasmonic surfaces. Nano Lett. 18, 302–307 (2018).

    Article  CAS  Google Scholar 

  23. Song, C. et al. Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures. Nano Lett. 13, 3256–3261 (2013).

    Article  CAS  Google Scholar 

  24. Zhou, C., Duan, X. & Liu, N. A plasmonic nanorod that walks on DNA origami. Nat. Commun. 6, 8102 (2015).

    Article  CAS  Google Scholar 

  25. Wang, M. et al. Reconfigurable plasmonic diastereomers assembled by DNA origami. ACS Nano 13, 13702–13708 (2019).

    Article  CAS  Google Scholar 

  26. Ni, S., Isa, L. & Wolf, H. Capillary assembly as a tool for the heterogeneous integration of micro- and nanoscale objects. Soft Matter 14, 2978–2995 (2018).

    Article  CAS  Google Scholar 

  27. Flauraud, V. et al. Nanoscale topographical control of capillary assembly of nanoparticles. Nat. Nanotechnol. 12, 73–80 (2017).

    Article  CAS  Google Scholar 

  28. Ni, S., Leemann, J., Buttinoni, I., Isa, L. & Wolf, H. Programmable colloidal molecules from sequential capillarity-assisted particle assembly. Sci. Adv. 2, e1501779 (2016).

    Article  Google Scholar 

  29. Gupta, V. et al. Mechanotunable surface lattice resonances in the visible optical range by soft lithography templates and directed self-assembly. ACS Appl. Mater. Interfaces 11, 28189–28196 (2019).

    Article  CAS  Google Scholar 

  30. Hanske, C. et al. Strongly coupled plasmonic modes on macroscopic areas via template-assisted colloidal self-assembly. Nano Lett. 14, 6863–6871 (2014).

    Article  CAS  Google Scholar 

  31. Zhang, Q. et al. Unraveling the origin of chirality from plasmonic nanoparticle-protein complexes. Science 365, 1475–1478 (2019).

    Article  CAS  Google Scholar 

  32. Hendry, E. et al. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat. Nanotechnol. 5, 783–787 (2010).

    Article  CAS  Google Scholar 

  33. Mayer, M. et al. Direct observation of plasmon band formation and delocalization in quasi-infinite nanoparticle chains. Nano Lett. 19, 3854–3862 (2019).

    Article  CAS  Google Scholar 

  34. Horrer, A. et al. Local optical chirality induced by near-field mode interference in achiral plasmonic metamolecules. Nano Lett. 20, 509–516 (2020).

    Article  CAS  Google Scholar 

  35. Li, C. & Wang, Q. Challenges and opportunities for intravital near-infrared fluorescence imaging technology in the second transparency window. ACS Nano 12, 9654–9659 (2018).

    Article  CAS  Google Scholar 

  36. Steiner, A. M. et al. Macroscopic strain-induced transition from quasi-infinite gold nanoparticle chains to defined plasmonic oligomers. ACS Nano 11, 8871–8880 (2017).

    Article  CAS  Google Scholar 

  37. Matricardi, C. et al. Gold nanoparticle plasmonic superlattices as surface-enhanced Raman spectroscopy substrates. ACS Nano 12, 8531–8539 (2018).

    Article  CAS  Google Scholar 

  38. Ni, S., Wolf, H. & Isa, L. Programmable assembly of hybrid nanoclusters. Langmuir 34, 2481–2488 (2018).

    Article  CAS  Google Scholar 

  39. Ni, S., Klein, M. J. K., Spencer, N. D. & Wolf, H. Cascaded assembly of complex multiparticle patterns. Langmuir 30, 90–95 (2014).

    Article  CAS  Google Scholar 

  40. Wolf, A. J. et al. Origination of nano- and microstructures on large areas by interference lithography. Microelectron. Eng. 98, 293–296 (2012).

    Article  CAS  Google Scholar 

  41. Chung, J. Y., Nolte, A. J. & Stafford, C. M. Surface wrinkling: a versatile platform for measuring thin-film properties. Adv. Mater. 23, 349–368 (2011).

    Article  CAS  Google Scholar 

  42. Fery, A., Glatz, B. & Knapp, A. Oberflächenstrukturierte polymerkörper und verfahren zu ihrer herstellung. DE patent 102017218363A1 (2017).

  43. Fery, A., Glatz, B. & Knapp, A. Oberflächenstrukturierte polymerkörper und verfahren zu ihrer herstellung. EP patent 3470456 (2017).

  44. Fery, A., Glatz, B. & Knapp, A. Surface-structured polymer bodies and method for the fabrication thereof. US patent 0111610A1 (2018).

  45. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. Nih image to imagej: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  Google Scholar 

  46. Nečas, D. & Klapetek, P. Gwyddion: an open-source software for SPM data analysis. Centr. Eur. J. Phys. 10, 181–188 (2012).

    Google Scholar 

  47. Bindokas, V. & Mascalchi, P. White balance correction v.1.0. Github https://github.com/pmascalchi/ImageJ_Auto-white-balance-correction (2017).

  48. Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B. 6, 4370–4379 (1972).

    Article  CAS  Google Scholar 

  49. Schäferling, M., Dregely, D., Hentschel, M. & Giessen, H. Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures. Phys. Rev. 2, 031010 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This project was financially supported by the Volkswagen Foundation through a Freigeist Fellowship to T.A.F.K. A.F. and A.M.S. acknowledge financial support from the German Research Foundation (DFG) through the project no. 407193529 ‘Immobilization of ordered plasmonic nanostructures at surfaces of polymeric melts’. The elite study programme Macromolecular Science organized by Elitenetzwerk Bayern and University of Bayreuth is acknowledged for support to P.T.P. Z.Z. thanks the Alexander von Humboldt foundation for support. G.K.A. acknowledges financial support by the DFG through project no. 265191195 ‘Interaction between Transport and Wetting Processes’ (CRC 1194, A06). We thank A. Spickenheuer for advice in mechanical simulations as well as M. Müller and B. Urban for attenuated total reflection Fourier-transform infrared spectroscopy measurements. M. Schubert, C. Ng and Y. Yu are acknowledged for helpful discussions in preparation of this work.

Author information

Authors and Affiliations

Authors

Contributions

P.T.P., M.M., G.K.A., T.A.F.K. and A.F. contributed to the design, data analysis and preparation of the manuscript. T.A.F.K. and A.F. made a considerable contribution to the conception and design of the work. V.G. and P.T.P. designed and prepared the templates used for colloidal assembly. A.M.S. synthesized the nanoparticles. P.T.P. carried out the assembly experiments and characterized the samples using scanning electron microscopy, atomic force microscopy and vis-NIR spectroscopy. M.M. acquired and evaluated the spectroscopic ellipsometry data. Z.Z. carried out the initial measurements using conventional CD spectroscopy. M.M. and P.T.P. performed electromagnetic and mechanical simulations, respectively. All authors provided critical feedback and helped shape the research, analysis and manuscript.

Corresponding authors

Correspondence to Tobias A. F. König or Andreas Fery.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Comparison of active chiral plasmonic systems.

This plot is based on the values summarized in Supplementary Table 1. The modulation depth of CD magnitude is represented by the diameter of the bubbles (determined at the wavelength of the original CD peak). Examples that show active spectral tuning are shown as crosses. The empty circle indicates a system switching between two discrete enantiomorphs without intermediate configurations. The colour code describes whether the system is able to switch the sign of CD response at a specific wavelength (green) or not (black). The values found for the system presented in this work are depicted in blue (modes CD1 through CD5 as indicated in Fig. 2a).

Extended Data Fig. 2 Gold nanoparticle lines assembled inside nanochannels over macroscopic areas.

a, Representative scanning electron overview micrograph. b, Polarized photographs of a particle chain substrate illuminated with linear polarization perpendicular/parallel to the particle chains. The excitation of transversal/longitudinal plasmon mode allows only the complementary colour (magenta/green) to be transmitted (cf. Supplementary Fig. 4). c, Scanning electron micrographs measured at the spots indicated in b. The filling rates were calculated from zoomed in micrographs where single particles could be resolved (see Supplementary Fig. 3 for calculation). Only far away from the initial particle front (left edge) the filling rate decreased (S3). The scanning electron micrographs show material contrast (ESB detector) to capture particles as bright pixels. Scale bar in a and c, 2 µm. Scale bar in b, 2 mm.

Extended Data Fig. 3 Details on CD derived from spectroscopic ellipsometry data.

a,b, Measured circularly polarized and unpolarized extinction spectra of samples stacked at ±10° (a) and ±45° (b). c,d, g-factor \(g = 2\left( {Ext_{{\mathrm{LCP}}} - Ext_{{\mathrm{RCP}}}} \right)/\left( {Ext_{{\mathrm{LCP}}} + Ext_{{\mathrm{RCP}}}} \right)\) (c) and CD (d) calculated from extinction spectra of aforementioned samples. ‘a.u.’, arbitrary units.

Extended Data Fig. 4 Simulated field distribution for mode CD1 for a −45° stack excited by LCP/RCP light.

a,b, Contour plots and selected cross sections (insets) of electric (a) and magnetic fields (b). As visualized in a, this mode has a clear longitudinal character, with a predominant electric field orientation along the particle chains.

Extended Data Fig. 5 Simulated field distribution for mode CD4 for a −45° stack excited by LCP/RCP light.

a,b,c, Contour plots and selected cross sections (insets) of electric (a), magnetic (b) and superchiral fields (c). As visualized in a, this mode has a clear transversal character, with a predominant electric field orientation perpendicular to the particle chains.

Supplementary information

Supplementary Information

Supplementary Notes 1–4, Figs. 1–12 and Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Probst, P.T., Mayer, M., Gupta, V. et al. Mechano-tunable chiral metasurfaces via colloidal assembly. Nat. Mater. 20, 1024–1028 (2021). https://doi.org/10.1038/s41563-021-00991-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-00991-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing