Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Innate and adaptive immune cells in the tumor microenvironment

Abstract

Most tumor cells express antigens that can mediate recognition by host CD8+ T cells. Cancers that are detected clinically must have evaded antitumor immune responses to grow progressively. Recent work has suggested two broad categories of tumor escape based on cellular and molecular characteristics of the tumor microenvironment. One major subset shows a T cell–inflamed phenotype consisting of infiltrating T cells, a broad chemokine profile and a type I interferon signature indicative of innate immune activation. These tumors appear to resist immune attack through the dominant inhibitory effects of immune system–suppressive pathways. The other major phenotype lacks this T cell–inflamed phenotype and appears to resist immune attack through immune system exclusion or ignorance. These two major phenotypes of tumor microenvironment may require distinct immunotherapeutic interventions for maximal therapeutic effect.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Working model for the segregation of tumors based on immune system regulatory pathways in the tumor microenvironment.

Marina Corral Spence

Figure 2: Therapeutic interventions being investigated that target immune inhibitory pathways in the tumor microenvironment.

Marina Corral Spence

Figure 3: Therapeutic strategies being considered that may promote appropriate inflammation and/or innate immune activation in the tumor microenvironment.

Similar content being viewed by others

References

  1. van der Bruggen, P. et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254, 1643–1647 (1991).

    CAS  PubMed  Google Scholar 

  2. Topalian, S.L. et al. Recognition of shared melanoma antigens by human tumor-infiltrating lymphocytes. J. Immunother. 12, 203–206 (1992).

    CAS  PubMed  Google Scholar 

  3. Monach, P.A., Meredith, S.C., Siegel, C.T. & Schreiber, H. A unique tumor antigen produced by a single amino acid substitution. Immunity 2, 45–59 (1995).

    CAS  PubMed  Google Scholar 

  4. Hodi, F.S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brichard, V.G. & Lejeune, D. GSK's antigen-specific cancer immunotherapy programme: pilot results leading to Phase III clinical development. Vaccine 25 (suppl. 2), B61–B71 (2007).

    CAS  PubMed  Google Scholar 

  6. Boon, T., Gajewski, T.F. & Coulie, P.G. From defined human tumor antigens to effective immunization? Immunol. Today 16, 334–336 (1995).

    CAS  PubMed  Google Scholar 

  7. Bos, R., Marquardt, K.L., Cheung, J. & Sherman, L.A. Functional differences between low- and high-affinity CD8+ T cells in the tumor environment. OncoImmunology 1, 1239–1247 (2012).

    PubMed  PubMed Central  Google Scholar 

  8. Engels, B. et al. Relapse or eradication of cancer is predicted by peptide-major histocompatibility complex affinity. Cancer Cell 23, 516–526 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Matsushita, H. et al. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482, 400–404 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Robbins, P.F. et al. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat. Med. 19, 747–752 (2013). This is the first study to define mutated antigens through exome sequencing as the major targets for tumor-infiltrating lymphocytes in human melanoma patients.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Nielsen, M. et al. NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence. PLoS ONE 2, e796 (2007).

    PubMed  PubMed Central  Google Scholar 

  12. Pages, F. et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N. Engl. J. Med. 353, 2654–2666 (2005).

    CAS  PubMed  Google Scholar 

  13. Galon, J. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960–1964 (2006). These data suggest that activated CD8+ T cells in the tumor microenvironment can have powerful prognostic importance in patients with colorectal cancer.

    CAS  PubMed  Google Scholar 

  14. Mlecnik, B. et al. Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction. J. Clin. Oncol. 29, 610–618 (2011).

    PubMed  Google Scholar 

  15. Galon, J. et al. Cancer classification using the Immunoscore: a worldwide task force. J. Transl. Med. 10, 205 (2012).

    PubMed  PubMed Central  Google Scholar 

  16. Azimi, F. et al. Tumor-infiltrating lymphocyte grade is an independent predictor of sentinel lymph node status and survival in patients with cutaneous melanoma. J. Clin. Oncol. 30, 2678–2683 (2012).

    PubMed  Google Scholar 

  17. Kreike, B. et al. Gene expression profiling and histopathological characterization of triple-negative/basal-like breast carcinomas. Breast Cancer Res. 9, R65 (2007).

    PubMed  PubMed Central  Google Scholar 

  18. Mahmoud, S.M. et al. Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J. Clin. Oncol. 29, 1949–1955 (2011).

    PubMed  Google Scholar 

  19. Zhang, L. et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N. Engl. J. Med. 348, 203–213 (2003).

    CAS  PubMed  Google Scholar 

  20. Rusakiewicz, S. et al. Immune infiltrates are prognostic factors in localized gastrointestinal stromal tumors. Cancer Res. 73, 3499–3510 (2013).

    CAS  PubMed  Google Scholar 

  21. Curiel, T.J. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med. 10, 942–949 (2004).

    CAS  PubMed  Google Scholar 

  22. Bui, J.D. & Schreiber, R.D. Cancer immunosurveillance, immunoediting and inflammation: independent or interdependent processes? Curr. Opin. Immunol. 19, 203–208 (2007).

    CAS  PubMed  Google Scholar 

  23. Pufnock, J.S. & Rothstein, J.L. Oncoprotein signaling mediates tumor-specific inflammation and enhances tumor progression. J. Immunol. 182, 5498–5506 (2009).

    CAS  PubMed  Google Scholar 

  24. Russell, J.P. et al. Tyrosine kinase oncoprotein, RET/PTC3, induces the secretion of myeloid growth and chemotactic factors. Oncogene 22, 4569–4577 (2003).

    CAS  PubMed  Google Scholar 

  25. Harlin, H., Kuna, T.V., Peterson, A.C., Meng, Y. & Gajewski, T.F. Tumor progression despite massive influx of activated CD8+ T cells in a patient with malignant melanoma ascites. Cancer Immunol. Immunother. 55, 1185–1197 (2006).

    CAS  PubMed  Google Scholar 

  26. Mortarini, R. et al. Lack of terminally differentiated tumor-specific CD8+ T cells at tumor site in spite of antitumor immunity to self-antigens in human metastatic melanoma. Cancer Res. 63, 2535–2545 (2003).

    CAS  PubMed  Google Scholar 

  27. Appay, V. et al. New generation vaccine induces effective melanoma-specific CD8+ T cells in the circulation but not in the tumor site. J. Immunol. 177, 1670–1678 (2006).

    CAS  PubMed  Google Scholar 

  28. Rosenberg, S.A. & Dudley, M.E. Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr. Opin. Immunol. 21, 233–240 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gajewski, T.F. Failure at the effector phase: immune barriers at the level of the melanoma tumor microenvironment. Clin. Cancer Res. 13, 5256–5261 (2007).

    CAS  PubMed  Google Scholar 

  30. Spranger, S. et al. Upregulation of PD-L1, IDO and Tregs in the melanoma tumor microenvironment is driven by CD8+ T cells. Sci. Transl. Med. (in the press).

  31. Chen, L. et al. Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4. Cell 71, 1093–1102 (1992).

    CAS  PubMed  Google Scholar 

  32. Brown, I.E., Blank, C., Kline, J., Kacha, A.K. & Gajewski, T.F. Homeostatic proliferation as an isolated variable reverses CD8+ T cell anergy and promotes tumor rejection. J. Immunol. 177, 4521–4529 (2006).

    CAS  PubMed  Google Scholar 

  33. Zheng, Y. et al. Egr2-dependent gene expression profiling and ChIP-seq reveal novel biologic targets in T cell anergy. Mol. Immunol. 55, 283–291 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Fuertes, M.B. et al. Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8{alpha}+ dendritic cells. J. Exp. Med. 208, 2005–2016 (2011). This study first described the requirement for host type I interferon signaling in the innate immune sensing of cancer as a bridge to a spontaneous adaptive immune response.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Fuertes, M.B., Woo, S.R., Burnett, B., Fu, Y.X. & Gajewski, T.F. Type I interferon response and innate immune sensing of cancer. Trends Immunol. 34, 67–73 (2013).

    CAS  PubMed  Google Scholar 

  36. Diamond, M.S. et al. Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J. Exp. Med. 208, 1989–2003 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Dunn, G.P. et al. A critical function for type I interferons in cancer immunoediting. Nat. Immunol. 6, 722–729 (2005).

    CAS  PubMed  Google Scholar 

  38. Hildner, K. et al. Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity. Science 322, 1097–1100 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Gajewski, T.F., Fuertes, M.B. & Woo, S.R. Innate immune sensing of cancer: clues from an identified role for type I IFNs. Cancer Immunol. Immunother. 61, 1343–1347 (2012).

    CAS  PubMed  Google Scholar 

  40. Barber, G.N. Cytoplasmic DNA innate immune pathways. Immunol. Rev. 243, 99–108 (2011).

    CAS  PubMed  Google Scholar 

  41. Sancho, D. et al. Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type lectin. J. Clin. Invest. 118, 2098–2110 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sancho, D. et al. Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature 458, 899–903 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Zelenay, S. et al. The dendritic cell receptor DNGR-1 controls endocytic handling of necrotic cell antigens to favor cross-priming of CTLs in virus-infected mice. J. Clin. Invest. 122, 1615–1627 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ahrens, S. et al. F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells. Immunity 36, 635–645 (2012).

    CAS  PubMed  Google Scholar 

  45. Wei, S. et al. Plasmacytoid dendritic cells induce CD8+ regulatory T cells in human ovarian carcinoma. Cancer Res. 65, 5020–5026 (2005).

    CAS  PubMed  Google Scholar 

  46. Lou, Y. et al. Plasmacytoid dendritic cells synergize with myeloid dendritic cells in the induction of antigen-specific antitumor immune responses. J. Immunol. 178, 1534–1541 (2007).

    CAS  PubMed  Google Scholar 

  47. Liu, C. et al. Plasmacytoid dendritic cells induce NK cell-dependent, tumor antigen-specific T cell cross-priming and tumor regression in mice. J. Clin. Invest. 118, 1165–1175 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Demoulin, S., Herfs, M., Delvenne, P. & Hubert, P. Tumor microenvironment converts plasmacytoid dendritic cells into immunosuppressive/tolerogenic cells: insight into the molecular mechanisms. J. Leukoc. Biol. 93, 343–352 (2013).

    CAS  PubMed  Google Scholar 

  49. Sisirak, V. et al. Impaired IFN-alpha production by plasmacytoid dendritic cells favors regulatory T-cell expansion that may contribute to breast cancer progression. Cancer Res. 72, 5188–5197 (2012).

    CAS  PubMed  Google Scholar 

  50. Chen, W., Liang, X., Peterson, A.J., Munn, D.H. & Blazar, B.R. The indoleamine 2,3-dioxygenase pathway is essential for human plasmacytoid dendritic cell-induced adaptive T regulatory cell generation. J. Immunol. 181, 5396–5404 (2008).

    CAS  PubMed  Google Scholar 

  51. Watkins, S.K. et al. FOXO3 programs tumor-associated DCs to become tolerogenic in human and murine prostate cancer. J. Clin. Invest. 121, 1361–1372 (2011).

    PubMed  PubMed Central  Google Scholar 

  52. Poulin, L.F. et al. Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells. J. Exp. Med. 207, 1261–1271 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Poulin, L.F. et al. DNGR-1 is a specific and universal marker of mouse and human Batf3-dependent dendritic cells in lymphoid and non-lymphoid tissues. Blood 119, 6052–6062 (2012).

    CAS  PubMed  Google Scholar 

  54. Messina, J.L. et al. 12-Chemokine gene signature identifies lymph node-like structures in melanoma: potential for patient selection for immunotherapy? Sci Rep 2, 765 (2012).

    PubMed  PubMed Central  Google Scholar 

  55. Martinet, L. et al. High endothelial venules (HEVs) in human melanoma lesions: major gateways for tumor-infiltrating lymphocytes. OncoImmunology 1, 829–839 (2012).

    PubMed  PubMed Central  Google Scholar 

  56. Harlin, H. et al. Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment. Cancer Res. 69, 3077–3085 (2009). This study defined the two broad phenotypes of human melanoma, largely based on the presence or absence of T cell markers and chemokine transcripts.

    CAS  PubMed  Google Scholar 

  57. Mortarini, R. et al. Constitutive expression and costimulatory function of LIGHT/TNFSF14 on human melanoma cells and melanoma-derived microvesicles. Cancer Res. 65, 3428–3436 (2005).

    CAS  PubMed  Google Scholar 

  58. Yu, P. et al. Priming of naive T cells inside tumors leads to eradication of established tumors. Nat. Immunol. 5, 141–149 (2004). This work demonstrated that introduction of the TNF superfamily member LIGHT into the tumor microenvironment could be sufficient to cause tumor rejection in vivo.

    CAS  PubMed  Google Scholar 

  59. de Visser, K.E., Korets, L.V. & Coussens, L.M. De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 7, 411–423 (2005).

    CAS  PubMed  Google Scholar 

  60. Daniel, D. et al. Immune enhancement of skin carcinogenesis by CD4+ T cells. J. Exp. Med. 197, 1017–1028 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Shields, J.D., Kourtis, I.C., Tomei, A.A., Roberts, J.M. & Swartz, M.A. Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21. Science 328, 749–752 (2010).

    CAS  PubMed  Google Scholar 

  62. Guerra, N. et al. NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity 28, 571–580 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Mishra, R., Chen, A.T., Welsh, R.M. & Szomolanyi-Tsuda, E. NK cells and gammadelta T cells mediate resistance to polyomavirus-induced tumors. PLoS Pathog. 6, e1000924 (2010).

    PubMed  PubMed Central  Google Scholar 

  64. Smyth, M.J. et al. NKG2D function protects the host from tumor initiation. J. Exp. Med. 202, 583–588 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Fine, J.H. et al. Chemotherapy-induced genotoxic stress promotes sensitivity to natural killer cell cytotoxicity by enabling missing-self recognition. Cancer Res. 70, 7102–7113 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Jung, H., Hsiung, B., Pestal, K., Procyk, E. & Raulet, D.H. RAE-1 ligands for the NKG2D receptor are regulated by E2F transcription factors, which control cell cycle entry. J. Exp. Med. 209, 2409–2422 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu, R.B. et al. Densely granulated murine NK cells eradicate large solid tumors. Cancer Res. 72, 1964–1974 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Delahaye, N.F. et al. Alternatively spliced NKp30 isoforms affect the prognosis of gastrointestinal stromal tumors. Nat. Med. 17, 700–707 (2011).

    CAS  PubMed  Google Scholar 

  69. Zhang, T., Lemoi, B.A. & Sentman, C.L. Chimeric NK-receptor-bearing T cells mediate antitumor immunotherapy. Blood 106, 1544–1551 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Barber, A., Rynda, A. & Sentman, C.L. Chimeric NKG2D expressing T cells eliminate immunosuppression and activate immunity within the ovarian tumor microenvironment. J. Immunol. 183, 6939–6947 (2009).

    CAS  PubMed  Google Scholar 

  71. Groh, V., Wu, J., Yee, C. & Spies, T. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419, 734–738 (2002).

    CAS  PubMed  Google Scholar 

  72. Jinushi, M., Hodi, F.S. & Dranoff, G. Therapy-induced antibodies to MHC class I chain-related protein A antagonize immune suppression and stimulate antitumor cytotoxicity. Proc. Natl. Acad. Sci. USA 103, 9190–9195 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kabelitz, D., Wesch, D., Pitters, E. & Zoller, M. Characterization of tumor reactivity of human V gamma 9V delta 2 gamma delta T cells in vitro and in SCID mice in vivo. J. Immunol. 173, 6767–6776 (2004).

    CAS  PubMed  Google Scholar 

  74. Mattarollo, S.R., Kenna, T., Nieda, M. & Nicol, A.J. Chemotherapy and zoledronate sensitize solid tumour cells to Vgamma9Vdelta2 T cell cytotoxicity. Cancer Immunol. Immunother. 56, 1285–1297 (2007).

    CAS  PubMed  Google Scholar 

  75. Marcu-Malina, V. et al. Redirecting alphabeta T cells against cancer cells by transfer of a broadly tumor-reactive gammadeltaT-cell receptor. Blood 118, 50–59 (2011).

    CAS  PubMed  Google Scholar 

  76. Di Carlo, E. et al. Mechanisms of the antitumor activity of human Vgamma9Vdelta2 T cells in combination with zoledronic acid in a preclinical model of neuroblastoma. Mol. Ther. 21, 1034–1043 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kobayashi, H., Tanaka, Y., Yagi, J., Minato, N. & Tanabe, K. Phase I/II study of adoptive transfer of gammadelta T cells in combination with zoledronic acid and IL-2 to patients with advanced renal cell carcinoma. Cancer Immunol. Immunother. 60, 1075–1084 (2011).

    CAS  PubMed  Google Scholar 

  78. Peng, G. et al. Tumor-infiltrating gammadelta T cells suppress T and dendritic cell function via mechanisms controlled by a unique toll-like receptor signaling pathway. Immunity 27, 334–348 (2007).

    CAS  PubMed  Google Scholar 

  79. Moreno, M. et al. IFN-gamma-producing human invariant NKT cells promote tumor-associated antigen-specific cytotoxic T cell responses. J. Immunol. 181, 2446–2454 (2008).

    CAS  PubMed  Google Scholar 

  80. Swann, J.B. et al. Type I natural killer T cells suppress tumors caused by p53 loss in mice. Blood 113, 6382–6385 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Paget, C., Chow, M.T., Duret, H., Mattarollo, S.R. & Smyth, M.J. Role of gammadelta T cells in alpha-galactosylceramide-mediated immunity. J. Immunol. 188, 3928–3939 (2012).

    CAS  PubMed  Google Scholar 

  82. Terabe, M. et al. NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway. Nat. Immunol. 1, 515–520 (2000).

    CAS  PubMed  Google Scholar 

  83. Shimizu, K. et al. Vaccination with antigen-transfected, NKT cell ligand-loaded, human cells elicits robust in situ immune responses by dendritic cells. Cancer Res. 73, 62–73 (2013).

    CAS  PubMed  Google Scholar 

  84. Richter, J. et al. Clinical regressions and broad immune activation following combination therapy targeting human NKT cells in myeloma. Blood 121, 423–430 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Singh, S., Ross, S.R., Acena, M., Rowley, D.A. & Schreiber, H. Stroma is critical for preventing or permitting immunological destruction of antigenic cancer cells. J. Exp. Med. 175, 139–146 (1992).

    CAS  PubMed  Google Scholar 

  86. Kraman, M. et al. Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha. Science 330, 827–830 (2010). This study revealed the critical role for FAP-expressing fibroblasts in tumor support and also in impeding antitumor immunity.

    CAS  PubMed  Google Scholar 

  87. Wen, Y. et al. Immunotherapy targeting fibroblast activation protein inhibits tumor growth and increases survival in a murine colon cancer model. Cancer Sci. 101, 2325–2332 (2010).

    CAS  PubMed  Google Scholar 

  88. Edosada, C.Y. et al. Selective inhibition of fibroblast activation protein protease based on dipeptide substrate specificity. J. Biol. Chem. 281, 7437–7444 (2006).

    CAS  PubMed  Google Scholar 

  89. Narra, K. et al. Phase II trial of single agent Val-boroPro (Talabostat) inhibiting fibroblast activation protein in patients with metastatic colorectal cancer. Cancer Biol. Ther. 6, 1691–1699 (2007).

    CAS  PubMed  Google Scholar 

  90. Salmon, H. et al. Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. J. Clin. Invest. 122, 899–910 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Buckanovich, R.J. et al. Endothelin B receptor mediates the endothelial barrier to T cell homing to tumors and disables immune therapy. Nat. Med. 14, 28–36 (2008).

    CAS  PubMed  Google Scholar 

  92. Mukai, S., Kagamu, H., Shu, S. & Plautz, G.E. Critical role of CD11a (LFA-1) in therapeutic efficacy of systemically transferred antitumor effector T cells. Cell. Immunol. 192, 122–132 (1999).

    CAS  PubMed  Google Scholar 

  93. Strasly, M. et al. IL-12 inhibition of endothelial cell functions and angiogenesis depends on lymphocyte-endothelial cell cross-talk. J. Immunol. 166, 3890–3899 (2001).

    CAS  PubMed  Google Scholar 

  94. Johnson, L.A. et al. An inflammation-induced mechanism for leukocyte transmigration across lymphatic vessel endothelium. J. Exp. Med. 203, 2763–2777 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Dengel, L.T. et al. Interferons induce CXCR3-cognate chemokine production by human metastatic melanoma. J. Immunother. 33, 965–974 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Kunz, M. et al. Strong expression of the lymphoattractant C–X-C chemokine Mig is associated with heavy infiltration of T cells in human malignant melanoma. J. Pathol. 189, 552–558 (1999).

    CAS  PubMed  Google Scholar 

  97. Quatromoni, J.G. & Eruslanov, E. Tumor-associated macrophages: function, phenotype, and link to prognosis in human lung cancer. Am. J. Transl. Res. 4, 376–389 (2012).

    PubMed  PubMed Central  Google Scholar 

  98. Rodriguez, P.C. et al. L-arginine consumption by macrophages modulates the expression of CD3zeta chain in T lymphocytes. J. Immunol. 171, 1232–1239 (2003).

    CAS  PubMed  Google Scholar 

  99. Nagaraj, S. et al. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat. Med. 13, 828–835 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhang, B. et al. Equilibrium between host and cancer caused by effector T cells killing tumor stroma. Cancer Res. 68, 1563–1571 (2008). This was the first study to demonstrate that immune system–mediated targeting of tumor stroma alone could control tumor growth in vivo.

    CAS  PubMed  Google Scholar 

  101. Beatty, G.L. et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331, 1612–1616 (2011). This work revealed a surprising mechanism of action of anti-CD40 monoclonal antibody in vivo , through macrophage-dependent remodeling of tumor stroma.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Brose, M.S. et al. BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res. 62, 6997–7000 (2002).

    CAS  PubMed  Google Scholar 

  103. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).

    CAS  PubMed  Google Scholar 

  104. Flaherty, K.T. et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363, 809–819 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Messina, J.L. et al. Activated stat-3 in melanoma. Cancer Control 15, 196–201 (2008).

    PubMed  Google Scholar 

  106. Niu, G. et al. Roles of activated Src and Stat3 signaling in melanoma tumor cell growth. Oncogene 21, 7001–7010 (2002).

    CAS  PubMed  Google Scholar 

  107. Zhou, X.P. et al. Epigenetic PTEN silencing in malignant melanomas without PTEN mutation. Am. J. Pathol. 157, 1123–1128 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Massi, D. et al. Evidence for differential expression of Notch receptors and their ligands in melanocytic nevi and cutaneous malignant melanoma. Mod. Pathol. 19, 246–254 (2006).

    CAS  PubMed  Google Scholar 

  109. Larue, L. & Delmas, V. The WNT/Beta-catenin pathway in melanoma. Front. Biosci. 11, 733–742 (2006).

    CAS  PubMed  Google Scholar 

  110. Delmas, V. et al. Beta-catenin induces immortalization of melanocytes by suppressing p16INK4a expression and cooperates with N-Ras in melanoma development. Genes Dev. 21, 2923–2935 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Burdelya, L. et al. Stat3 activity in melanoma cells affects migration of immune effector cells and nitric oxide-mediated antitumor effects. J. Immunol. 174, 3925–3931 (2005).

    CAS  PubMed  Google Scholar 

  112. Ugurel, S. et al. Impact of the CCR5 gene polymorphism on the survival of metastatic melanoma patients receiving immunotherapy. Cancer Immunol. Immunother. 57, 685–691 (2008).

    CAS  PubMed  Google Scholar 

  113. Uccellini, L. et al. IRF5 gene polymorphisms in melanoma. J. Transl. Med. 10, 170 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Ivanov, I.I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Wu, H.J. et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32, 815–827 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Gajewski, T.F., Louahed, J. & Brichard, V.G. Gene signature in melanoma associated with clinical activity: a potential clue to unlock cancer immunotherapy. Cancer J. 16, 399–403 (2010). This paper summarized the early data suggesting, for the first time, that a T cell and chemokine-rich tumor microenvironment might define a predictive biomarker for response to immunotherapies, particularly vaccines.

    CAS  PubMed  Google Scholar 

  117. Hamid, O. et al. A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma. J. Transl. Med. 9, 204 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Ji, R.R. et al. An immune-active tumor microenvironment favors clinical response to ipilimumab. Cancer Immunol. Immunother. 61, 1019–1031 (2012).

    CAS  PubMed  Google Scholar 

  119. Sullivan, R.J. et al. A single center experience with high-dose IL-2 treatment for patients with advanced melanoma and pilot investigation of a novel gene expression signature as a predictor of response. J. Clin. Oncol. 27:15S, abstract 9003 (2009).

    Google Scholar 

  120. Brahmer, J.R. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366, 2455–2465 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Topalian, S.L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012). These first-in-man results of an anti–PD-1 monoclonal antibody revealed impressive clinical activity in patients with melanoma, lung cancer and kidney cancer.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Taube, J.M. et al. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl. Med. 4, 127ra137 (2012).

    Google Scholar 

  123. Liu, X. et al. Selective inhibition of IDO1 effectively regulates mediators of antitumor immunity. Blood 115, 3520–3530 (2010).

    CAS  PubMed  Google Scholar 

  124. Rasku, M.A. et al. Transient T cell depletion causes regression of melanoma metastases. J. Transl. Med. 6, 12 (2008).

    PubMed  PubMed Central  Google Scholar 

  125. Telang, S. et al. Phase II trial of the regulatory T cell–depleting agent, denileukin diftitox, in patients with unresectable stage IV melanoma. BMC Cancer 11, 515 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Attia, P., Maker, A.V., Haworth, L.R., Rogers-Freezer, L. & Rosenberg, S.A. Inability of a fusion protein of IL-2 and diphtheria toxin (Denileukin Diftitox, DAB389IL-2, ONTAK) to eliminate regulatory T lymphocytes in patients with melanoma. J. Immunother. 28, 582–592 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Rech, A.J. et al. CD25 blockade depletes and selectively reprograms regulatory T cells in concert with immunotherapy in cancer patients. Sci. Transl. Med. 4, 134ra162 (2012).

    Google Scholar 

  128. Boussiotis, V.A. et al. Prevention of T cell anergy by signaling through the gamma c chain of the IL-2 receptor. Science 266, 1039–1042 (1994).

    CAS  PubMed  Google Scholar 

  129. Sportes, C. et al. Phase I study of recombinant human interleukin-7 administration in subjects with refractory malignancy. Clin. Cancer Res. 16, 727–735 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Kim-Schulze, S., Kim, H.S., Fan, Q., Kim, D.W. & Kaufman, H.L. Local IL-21 promotes the therapeutic activity of effector T cells by decreasing regulatory T cells within the tumor microenvironment. Mol. Ther. 17, 380–388 (2009).

    CAS  PubMed  Google Scholar 

  131. Petrella, T.M. et al. Interleukin-21 has activity in patients with metastatic melanoma: a phase II study. J. Clin. Oncol. 30, 3396–3401 (2012).

    CAS  PubMed  Google Scholar 

  132. Tan, J.T. et al. Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype CD4+ cells. J. Exp. Med. 195, 1523–1532 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Gattinoni, L. et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J. Exp. Med. 202, 907–912 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Kline, J. et al. Homeostatic proliferation plus regulatory T-cell depletion promotes potent rejection of B16 melanoma. Clin. Cancer Res. 14, 3156–3167 (2008).

    CAS  PubMed  Google Scholar 

  135. Woo, S.R. et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 72, 917–927 (2012).

    CAS  PubMed  Google Scholar 

  136. Curran, M.A., Montalvo, W., Yagita, H. & Allison, J.P. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc. Natl. Acad. Sci. USA 107, 4275–4280 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Burnette, B., Fu, Y.X. & Weichselbaum, R.R. The confluence of radiotherapy and immunotherapy. Front. Oncol. 2, 143 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Yu, P. et al. Targeting the primary tumor to generate CTL for the effective eradication of spontaneous metastases. J. Immunol. 179, 1960–1968 (2007).

    CAS  PubMed  Google Scholar 

  139. Burnette, B.C. et al. The efficacy of radiotherapy relies upon induction of type i interferon-dependent innate and adaptive immunity. Cancer Res. 71, 2488–2496 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Rakhra, K. et al. CD4(+) T cells contribute to the remodeling of the microenvironment required for sustained tumor regression upon oncogene inactivation. Cancer Cell 18, 485–498 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Balachandran, V.P. et al. Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of Ido. Nat. Med. 17, 1094–1100 (2011). This important study demonstrated that the therapeutic effect of the kinase inhibitor imatinib in the setting of GIST worked, in part, through an immunologic mechanism.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Frederick, D.T. et al. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin. Cancer Res. 19, 1225–1231 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Apetoh, L. et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med. 13, 1050–1059 (2007). This pivotal study demonstrated that host innate immune sensing through TLR signals had a critical role in the therapeutic effect of several chemotherapy drugs.

    CAS  PubMed  Google Scholar 

  144. Ghiringhelli, F. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta–dependent adaptive immunity against tumors. Nat. Med. 15, 1170–1178 (2009).

    CAS  PubMed  Google Scholar 

  145. Michaud, M. et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334, 1573–1577 (2011).

    CAS  PubMed  Google Scholar 

  146. Ma, Y. et al. Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. Immunity 38, 729–741 (2013).

    CAS  PubMed  Google Scholar 

  147. Liang, H. et al. Radiation-induced equilibrium is a balance between tumor cell proliferation and T cell-mediated killing. J. Immunol. 190, 5874–5881 (2013).

    CAS  PubMed  Google Scholar 

  148. Zeng, J. et al. Anti–PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int. J. Radiat. Oncol. Biol. Phys. 86, 343–349 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas F Gajewski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gajewski, T., Schreiber, H. & Fu, YX. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 14, 1014–1022 (2013). https://doi.org/10.1038/ni.2703

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2703

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer