Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The present and future of bispecific antibodies for cancer therapy

Abstract

Bispecific antibodies (bsAbs) enable novel mechanisms of action and/or therapeutic applications that cannot be achieved using conventional IgG-based antibodies. Consequently, development of these molecules has garnered substantial interest in the past decade and, as of the end of 2023, 14 bsAbs have been approved: 11 for the treatment of cancer and 3 for non-oncology indications. bsAbs are available in different formats, address different targets and mediate anticancer function via different molecular mechanisms. Here, we provide an overview of recent developments in the field of bsAbs for cancer therapy. We focus on bsAbs that are approved or in clinical development, including bsAb-mediated dual modulators of signalling pathways, tumour-targeted receptor agonists, bsAb–drug conjugates, bispecific T cell, natural killer cell and innate immune cell engagers, and bispecific checkpoint inhibitors and co-stimulators. Finally, we provide an outlook into next-generation bsAbs in earlier stages of development, including trispecifics, bsAb prodrugs, bsAbs that induce degradation of tumour targets and bsAbs acting as cytokine mimetics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bispecific antibodies in clinical development for cancer therapy.
Fig. 2: Overview of approved bispecific antibodies for cancer therapy.
Fig. 3: Modes of action of bispecific antibodies currently in clinical trials.
Fig. 4: Emerging concepts in the field of bispecific antibodies.

Similar content being viewed by others

References

  1. Brinkmann, U. & Kontermann, R. E. Bispecific antibodies. Science 372, 916–917 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Labrijn, A. F., Janmaat, M. L., Reichert, J. M. & Parren, P. Bispecific antibodies: a mechanistic review of the pipeline. Nat. Rev. Drug. Discov. 18, 585–608 (2019). This review introduces a mechanistic categorization of bsAbs.

    Article  CAS  PubMed  Google Scholar 

  3. Yu, Y. J. et al. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci. Transl. Med. 3, 84ra44 (2011).

    Article  PubMed  Google Scholar 

  4. Niewoehner, J. et al. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron 81, 49–60 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Weber, F. et al. Brain shuttle antibody for Alzheimer’s disease with attenuated peripheral effector function due to an inverted binding mode. Cell Rep. 22, 149–162 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Zhao, P., Zhang, N. & An, Z. Engineering antibody and protein therapeutics to cross the blood–brain barrier. Antib. Ther. 5, 311–331 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Nie, S. et al. Biology drives the discovery of bispecific antibodies as innovative therapeutics. Antib. Ther. 3, 18–62 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Galvez-Cancino, F. et al. Fcγ receptors and immunomodulatory antibodies in cancer. Nat. Rev. Cancer 24, 51–71 (2024). This review provides an overview of the role of Fcγ receptors in the MoA of antibodies.

    Article  CAS  PubMed  Google Scholar 

  9. Schlothauer, T. et al. Novel human IgG1 and IgG4 Fc-engineered antibodies with completely abolished immune effector functions. Protein Eng. Des. Sel. 29, 457–466 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Pyzik, M., Kozicky, L. K., Gandhi, A. K. & Blumberg, R. S. The therapeutic age of the neonatal Fc receptor. Nat. Rev. Immunol. 23, 415–432 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Brinkmann, U. & Kontermann, R. E. The making of bispecific antibodies. mAbs 9, 182–212 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kontermann, R. E. & Brinkmann, U. Bispecific antibodies. Drug. Discov. Today 20, 838–847 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Elshiaty, M., Schindler, H. & Christopoulos, P. Principles and current clinical landscape of multispecific antibodies against cancer. Int. J. Mol. Sci. 22, 5632 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang, S. et al. The state of the art of bispecific antibodies for treating human malignancies. EMBO Mol. Med. 13, e14291 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Antonarelli, G. et al. Research and clinical landscape of bispecific antibodies for the treatment of solid malignancies. Pharmaceuticals 14, 884 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Neijssen, J. et al. Discovery of amivantamab (JNJ-61186372), a bispecific antibody targeting EGFR and MET. J. Biol. Chem. 296, 100641 (2021). This article describes the discovery of amivantamab, the first approved dual RTK-targeting bsAb.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Syed, Y. Y. Amivantamab: first approval. Drugs 81, 1349–1353 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Zhou, C. et al. Amivantamab plus chemotherapy in NSCLC with EGFR exon 20 insertions. N. Engl. J. Med. 389, 2039–2051 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Herpers, B. et al. Functional patient-derived organoid screenings identify MCLA-158 as a therapeutic EGFR × LGR5 bispecific antibody with efficacy in epithelial tumors. Nat. Cancer 3, 418–436 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Schram, A. M. et al. Zenocutuzumab, a HER2 × HER3 bispecific antibody, is effective therapy for tumors driven by NRG1 gene rearrangements. Cancer Discov. 12, 1233–1247 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xue, J. et al. Prediction of human pharmacokinetics and clinical effective dose of SI-B001, an EGFR/HER3 bi-specific monoclonal antibody. J. Pharm. Sci. 109, 3172–3180 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Kast, F. et al. Engineering an anti-HER2 biparatopic antibody with a multimodal mechanism of action. Nat. Commun. 12, 3790 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Oganesyan, V. et al. Structural insights into the mechanism of action of a biparatopic anti-HER2 antibody. J. Biol. Chem. 293, 8439–8448 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Weisser, N. E. et al. An anti-HER2 biparatopic antibody that induces unique HER2 clustering and complement-dependent cytotoxicity. Nat. Commun. 14, 1394 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Scheuer, W. et al. Strongly enhanced antitumor activity of trastuzumab and pertuzumab combination treatment on HER2-positive human xenograft tumor models. Cancer Res. 69, 9330–9336 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Meric-Bernstam, F. et al. Zanidatamab, a novel bispecific antibody, for the treatment of locally advanced or metastatic HER2-expressing or HER2-amplified cancers: a phase 1, dose-escalation and expansion study. Lancet Oncol. 23, 1558–1570 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Huang, S. et al. Structural and functional characterization of MBS301, an afucosylated bispecific anti-HER2 antibody. mAbs 10, 864–875 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang, J. et al. First-in-human HER2-targeted bispecific antibody KN026 for the treatment of patients with HER2-positive metastatic breast cancer: results from a phase I study. Clin. Cancer Res. 28, 618–628 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. Kontermann, R. E. Dual targeting strategies with bispecific antibodies. mAbs 4, 182–197 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Binz, H. K. et al. Design and characterization of MP0250, a tri-specific anti-HGF/anti-VEGF DARPin® drug candidate. mAbs 9, 1262–1269 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Baird, R. D. et al. First-in-human phase I study of MP0250, a first-in-class DARPin drug candidate targeting VEGF and HGF, in patients with advanced solid tumors. J. Clin. Oncol. 39, 145–154 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Hober, S., Lindbo, S. & Nilvebrant, J. Bispecific applications of non-immunoglobulin scaffold binders. Methods 154, 143–152 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Kovalchuk, B. et al. Nintedanib and a bi-specific anti-VEGF/Ang2 nanobody selectively prevent brain metastases of lung adenocarcinoma cells. Clin. Exp. Metastasis 37, 637–648 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hofmann, I. et al. Pharmacodynamic and antitumor activity of BI 836880, a dual VEGF and angiopoietin 2 inhibitor, alone and combined with programmed cell death protein-1 inhibition. J. Pharmacol. Exp. Ther. 384, 331–342 (2022).

    Article  PubMed  Google Scholar 

  35. Kienast, Y. et al. Ang-2-VEGF-A CrossMab, a novel bispecific human IgG1 antibody blocking VEGF-A and Ang-2 functions simultaneously, mediates potent antitumor, antiangiogenic, and antimetastatic efficacy. Clin. Cancer Res. 19, 6730–6740 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Bendell, J. C. et al. The McCAVE Trial: vanucizumab plus mFOLFOX-6 versus bevacizumab plus mFOLFOX-6 in patients with previously untreated metastatic colorectal carcinoma (mCRC). Oncologist 25, e451–e459 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Li, J. L. & Harris, A. L. Crosstalk of VEGF and Notch pathways in tumour angiogenesis: therapeutic implications. Front. Biosci. 14, 3094–3110 (2009).

    Article  CAS  Google Scholar 

  38. Fu, S. et al. Phase Ib study of navicixizumab plus paclitaxel in patients with platinum-resistant ovarian, primary peritoneal, or fallopian tube cancer. J. Clin. Oncol. 40, 2568–2577 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Strickler, J. H. et al. Efficacy and safety of dilpacimab (ABT-165) versus bevacizumab plus FOLFIRI in metastatic colorectal cancer: a phase II study. Future Oncol. 18, 3011–3020 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Hack, S. P., Zhu, A. X. & Wang, Y. Augmenting anticancer immunity through combined targeting of angiogenic and PD-1/PD-L1 pathways: challenges and opportunities. Front. Immunol. 11, 598877 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cui, X. et al. A novel bispecific antibody targeting PD-L1 and VEGF with combined anti-tumor activities. Front. Immunol. 12, 778978 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Silver, A. B., Leonard, E. K., Gould, J. R. & Spangler, J. B. Engineered antibody fusion proteins for targeted disease therapy. Trends Pharmacol. Sci. 42, 1064–1081 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kontermann, R. E. Antibody–cytokine fusion proteins. Arch. Biochem. Biophys. 526, 194–205 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Runbeck, E., Crescioli, S., Karagiannis, S. N. & Papa, S. Utilizing immunocytokines for cancer therapy. Antibodies 10, 10 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Holland, P. M. Death receptor agonist therapies for cancer, which is the right TRAIL? Cytokine Growth F. R. 25, 185–193 (2014).

    Article  CAS  Google Scholar 

  46. Dubuisson, A. & Micheau, O. Antibodies and derivatives targeting DR4 and DR5 for cancer therapy. Antibodies 6, 16 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Melero, I. et al. CD137 (4-1BB)-based cancer immunotherapy on its 25th anniversary. Cancer Discov. 13, 552–569 (2023).

    Article  CAS  PubMed  Google Scholar 

  48. Claus, C., Ferrara-Koller, C. & Klein, C. The emerging landscape of novel 4-1BB (CD137) agonistic drugs for cancer immunotherapy. mAbs 15, 2167189 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wilson, N. S. et al. An Fcγ receptor-dependent mechanism drives antibody-mediated target-receptor signaling in cancer cells. Cancer Cell 19, 101–113 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Garcia-Martinez, J. M. et al. Selective tumor cell apoptosis and tumor regression in CDH17-positive colorectal cancer models using BI 905711, a novel liver-sparing TRAILR2 agonist. Mol. Cancer Ther. 20, 96–108 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Brunker, P. et al. RG7386, a novel tetravalent FAP-DR5 antibody, effectively triggers FAP-dependent, avidity-driven DR5 hyperclustering and tumor cell apoptosis. Mol. Cancer Ther. 15, 946–957 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Shivange, G. et al. A single-agent dual-specificity targeting of FOLR1 and DR5 as an effective strategy for ovarian cancer. Cancer Cell 34, 331–345.e11 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cheal, S. M., Chung, S. K., Vaughn, B. A., Cheung, N. V. & Larson, S. M. Pretargeting: a path forward for radioimmunotherapy. J. Nucl. Med. 63, 1302–1315 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Bodet-Milin, C. et al. Clinical results in medullary thyroid carcinoma suggest high potential of pretargeted immuno-PET for tumor imaging and theranostic approaches. Front. Med. 6, 124 (2019).

    Article  Google Scholar 

  55. Chung, S. K. et al. Efficacy of HER2-targeted intraperitoneal 225Ac α-pretargeted radioimmunotherapy for small-volume ovarian peritoneal carcinomatosis. J. Nucl. Med. 64, 1439–1445 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Santich, B. H. et al. A self-assembling and disassembling (SADA) bispecific antibody (bsAb) platform for curative two-step pretargeted radioimmunotherapy. Clin. Cancer Res. 27, 532–541 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Harding, J. J. et al. Zanidatamab for HER2-amplified, unresectable, locally advanced or metastatic biliary tract cancer (HERIZON-BTC-01): a multicentre, single-arm, phase 2b study. Lancet Oncol. 24, 772–782 (2023).

    Article  CAS  PubMed  Google Scholar 

  58. Perez Bay, A. E. et al. A bispecific MET × MET antibody–drug conjugate with cleavable linker is processed in recycling and late endosomes. Mol. Cancer Ther. 22, 357–370 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Sharma, P. et al. Immune checkpoint therapy — current perspectives and future directions. Cell 186, 1652–1669 (2023).

    Article  CAS  PubMed  Google Scholar 

  60. Zhang, T., Lin, Y. & Gao, Q. Bispecific antibodies targeting immunomodulatory checkpoints for cancer therapy. Cancer Biol. Med. 20, 181–195 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Koopmans, I. et al. A novel bispecific antibody for EGFR-directed blockade of the PD-1/PD-L1 immune checkpoint. Oncoimmunology 7, e1466016 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Mittal, D. et al. Blockade of ErbB2 and PD-L1 using a bispecific antibody to improve targeted anti-ErbB2 therapy. Oncoimmunology 8, e1648171 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chen, Y. L. et al. A bispecific antibody targeting HER2 and PD-L1 inhibits tumor growth with superior efficacy. J. Biol. Chem. 297, 101420 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Koopmans, I. et al. Bispecific antibody approach for improved melanoma-selective PD-L1 immune checkpoint blockade. J. Invest. Dermatol. 139, 2343–2351.e3 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. Zhang, Y. et al. A tumor-targeted immune checkpoint blocker. Proc. Natl Acad. Sci. USA 116, 15889–15894 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wan, C. et al. Enhanced efficacy of simultaneous PD-1 and PD-L1 immune checkpoint blockade in high-grade serous ovarian cancer. Cancer Res. 81, 158–173 (2021).

    Article  CAS  PubMed  Google Scholar 

  67. Kotanides, H. et al. Bispecific targeting of PD-1 and PD-L1 enhances T-cell activation and antitumor immunity. Cancer Immunol. Res. 8, 1300–1310 (2020).

    Article  PubMed  Google Scholar 

  68. Pang, X. et al. Cadonilimab, a tetravalent PD-1/CTLA-4 bispecific antibody with trans-binding and enhanced target binding avidity. mAbs 15, 2180794 (2023). This article describes the preclinical properties of the first approved dual checkpoint-targeting bsAb, cadonilimab.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zhao, Y. et al. A multicenter, open-label phase Ib/II study of cadonilimab (anti PD-1 and CTLA-4 bispecific antibody) monotherapy in previously treated advanced non-small-cell lung cancer (AK104-202 study). Lung Cancer 184, 107355 (2023).

    Article  CAS  PubMed  Google Scholar 

  70. Gao, X. et al. Safety and antitumour activity of cadonilimab, an anti-PD-1/CTLA-4 bispecific antibody, for patients with advanced solid tumours (COMPASSION-03): a multicentre, open-label, phase 1b/2 trial. Lancet Oncol. 24, 1134–1146 (2023).

    Article  CAS  PubMed  Google Scholar 

  71. Frentzas, S. et al. A phase 1a/1b first-in-human study (COMPASSION-01) evaluating cadonilimab in patients with advanced solid tumors. Cell Rep. Med. 4, 101242 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Keam, S. J. Cadonilimab: first approval. Drugs 82, 1333–1339 (2022).

    Article  CAS  PubMed  Google Scholar 

  73. Berezhnoy, A. et al. Development and preliminary clinical activity of PD-1-guided CTLA-4 blocking bispecific DART molecule. Cell Rep. Med. 1, 100163 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mazor, Y. et al. Improving target cell specificity using a novel monovalent bispecific IgG design. mAbs 7, 377–389 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dovedi, S. J. et al. Design and efficacy of a monovalent bispecific PD-1/CTLA4 antibody that enhances CTLA4 blockade on PD-1+ activated T cells. Cancer Discov. 11, 1100–1117 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Jiang, H. et al. PD-L1/LAG-3 bispecific antibody enhances tumor-specific immunity. Oncoimmunology 10, 1943180 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Kraman, M. et al. FS118, a bispecific antibody targeting LAG-3 and PD-L1, enhances T-cell activation resulting in potent antitumor activity. Clin. Cancer Res. 26, 3333–3344 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Yap, T. A. et al. A phase 1 first-in-human study of FS118, a tetravalent bispecific antibody targeting LAG-3 and PD-L1 in patients with advanced cancer and PD-L1 resistance. Clin. Cancer Res. 29, 888–898 (2023).

    Article  CAS  PubMed  Google Scholar 

  79. Hellmann, M. D. et al. Safety and immunogenicity of LY3415244, a bispecific antibody against TIM-3 and PD-L1, in patients with advanced solid tumors. Clin. Cancer Res. 27, 2773–2781 (2021).

    Article  CAS  PubMed  Google Scholar 

  80. Luke, J. J. et al. The PD-1- and LAG-3-targeting bispecific molecule tebotelimab in solid tumors and hematologic cancers: a phase 1 trial. Nat. Med. 29, 2814–2824 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gulley, J. L. et al. Dual inhibition of TGF-β and PD-L1: a novel approach to cancer treatment. Mol. Oncol. 16, 2117–2134 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lan, Y. et al. Enhanced preclinical antitumor activity of M7824, a bifunctional fusion protein simultaneously targeting PD-L1 and TGF-β. Sci. Transl. Med. 10, eaan5488 (2018).

    Article  PubMed  Google Scholar 

  83. Lind, H. et al. Dual targeting of TGF-β and PD-L1 via a bifunctional anti-PD-L1/TGF-βRII agent: status of preclinical and clinical advances. J. Immunother. Cancer 8, e000433 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Feng, J. et al. SHR-1701, a bifunctional fusion protein targeting PD-L1 and TGFβ, for recurrent or metastatic cervical cancer: a clinical expansion cohort of a phase I study. Clin. Cancer Res. 28, 5297–5305 (2022).

    Article  CAS  PubMed  Google Scholar 

  85. Yi, M. et al. The construction, expression, and enhanced anti-tumor activity of YM101: a bispecific antibody simultaneously targeting TGF-β and PD-L1. J. Hematol. Oncol. 14, 27 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yi, M. et al. TGF-β: a novel predictor and target for anti-PD-1/PD-L1 therapy. Front. Immunol. 13, 1061394 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Li, S. et al. Cancer immunotherapy via targeted TGF-β signalling blockade in TH cells. Nature 587, 121–125 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fernandes, R. A. et al. Immune receptor inhibition through enforced phosphatase recruitment. Nature 586, 779–784 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ren, J. et al. Induced CD45 proximity potentiates natural killer cell receptor antagonism. ACS Synth. Biol. 11, 3426–3439 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gammelgaard, O. L. et al. Targeting two distinct epitopes on human CD73 with a bispecific antibody improves anticancer activity. J. Immunother. Cancer 10, e004554 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Xu, Y. et al. An engineered IL15 cytokine mutein fused to an anti-PD1 improves intratumoral T-cell function and antitumor immunity. Cancer Immunol. Res. 9, 1141–1157 (2021).

    Article  CAS  PubMed  Google Scholar 

  92. Shen, S. et al. Engineered IL-21 cytokine muteins fused to anti-PD-1 antibodies can improve CD8+ T cell function and anti-tumor immunity. Front. Immunol. 11, 832 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Li, Y. et al. Targeting IL-21 to tumor-reactive T cells enhances memory T cell responses and anti-PD-1 antibody therapy. Nat. Commun. 12, 951 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ren, Z. et al. Selective delivery of low-affinity IL-2 to PD-1+ T cells rejuvenates antitumor immunity with reduced toxicity. J. Clin. Invest. 132, e153604 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Codarri Deak, L. et al. PD-1-cis IL-2R agonism yields better effectors from stem-like CD8+ T cells. Nature 610, 161–172 (2022). This article describes how PD1 targeting of IL-2 results in the generation of a unique T cell subset.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Shen, J. et al. An engineered concealed IL-15-R elicits tumor-specific CD8+ T cell responses through PD-1-cis delivery. J. Exp. Med. 219, e20220745 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sulzmaier, F. J. et al. INBRX-120, a CD8α-targeted detuned IL-2 that selectively expands and activates tumoricidal effector cells for safe and durable in vivo responses. J. Immunother. Cancer 11, e006116 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Wu, W., Chia, T., Lu, J. et al. IL-2Rα-biased agonist enhances antitumor immunity by invigorating tumor-infiltrating CD25+CD8+ T cells. Nat. Cancer 4, 1309–1325 (2023).

    Article  CAS  PubMed  Google Scholar 

  99. Goebeler, M. E. & Bargou, R. C. T cell-engaging therapies—BiTEs and beyond. Nat. Rev. Clin. Oncol. 17, 418–434 (2020).

    Article  PubMed  Google Scholar 

  100. van de Donk, N. & Zweegman, S. T-cell-engaging bispecific antibodies in cancer. Lancet 402, 142–158 (2023).

    Article  PubMed  Google Scholar 

  101. Seimetz, D., Lindhofer, H. & Bokemeyer, C. Development and approval of the trifunctional antibody catumaxomab (anti-EpCAM × anti-CD3) as a targeted cancer immunotherapy. Cancer Treat. Rev. 36, 458–467 (2010). This review describes the development of catumaxomab, the first approved bsAb.

    Article  CAS  PubMed  Google Scholar 

  102. Bargou, R. et al. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science 321, 974–977 (2008). This article presents first clinical proof-of-concept data for blinatumomab, the second approved bsAb.

    Article  CAS  PubMed  Google Scholar 

  103. Einsele, H. et al. The BiTE (bispecific T-cell engager) platform: development and future potential of a targeted immuno-oncology therapy across tumor types. Cancer 126, 3192–3201 (2020).

    Article  CAS  PubMed  Google Scholar 

  104. Bacac, M. et al. CD20-TCB with obinutuzumab pretreatment as next-generation treatment of hematologic malignancies. Clin. Cancer Res. 24, 4785–4797 (2018).

    Article  CAS  PubMed  Google Scholar 

  105. Bacac, M. et al. A novel carcinoembryonic antigen T-cell bispecific antibody (CEA TCB) for the treatment of solid tumors. Clin. Cancer Res. 22, 3286–3297 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Budde, L. E. et al. Safety and efficacy of mosunetuzumab, a bispecific antibody, in patients with relapsed or refractory follicular lymphoma: a single-arm, multicentre, phase 2 study. Lancet Oncol. 23, 1055–1065 (2022).

    Article  CAS  PubMed  Google Scholar 

  107. Hindie, E. Teclistamab in relapsed or refractory multiple myeloma. N. Engl. J. Med. 387, 1721 (2022). This article describes the pivotal clinical data resulting in the approval of teclistamab.

    Article  PubMed  Google Scholar 

  108. Dickinson, M. J. et al. Glofitamab for relapsed or refractory diffuse large B-cell lymphoma. N. Engl. J. Med. 387, 2220–2231 (2022). This article describes the pivotal clinical data resulting in the approval of glofitamab.

    Article  CAS  PubMed  Google Scholar 

  109. Thieblemont, C. et al. Epcoritamab, a novel, subcutaneous CD3 × CD20 bispecific T-cell-engaging antibody, in relapsed or refractory large B-cell lymphoma: dose expansion in a phase I/II trial. J. Clin. Oncol. 41, 2238–2247 (2022). This article describes the pivotal clinical data resulting in the approval of epcoritamab.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Chari, A. et al. Talquetamab, a T-cell-redirecting GPRC5D bispecific antibody for multiple myeloma. N. Engl. J. Med. 387, 2232–2244 (2022). This article describes the pivotal clinical data resulting in the approval of talquetamab.

    Article  CAS  PubMed  Google Scholar 

  111. Lesokhin, A. M. et al. Elranatamab in relapsed or refractory multiple myeloma: phase 2 MagnetisMM-3 trial results. Nat. Med. https://doi.org/10.1038/s41591-023-02528-9 (2023). This article describes the pivotal clinical data resulting in the approval of elrantamab.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Bannerji, R. et al. Odronextamab, a human CD20 × CD3 bispecific antibody in patients with CD20-positive B-cell malignancies (ELM-1): results from the relapsed or refractory non-Hodgkin lymphoma cohort in a single-arm, multicentre, phase 1 trial. Lancet Haematol. 9, e327–e339 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Weinstock, M. et al. Complete responses to odronextamab in two patients with diffuse large B-cell lymphoma refractory to chimeric antigen receptor T-cell therapy. Br. J. Haematol. 199, 366–370 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Rentsch, V. et al. Glofitamab treatment in relapsed or refractory DLBCL after CAR T-cell therapy. Cancers 14, 2516 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Engelberts, P. J. et al. DuoBody-CD3 × CD20 induces potent T-cell-mediated killing of malignant B cells in preclinical models and provides opportunities for subcutaneous dosing. eBioMedicine 52, 102625 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Gurumurthi, A., Westin, J. R. & Subklewe, M. The race is on: bispecifics vs CAR T-cells in B-cell lymphoma. Blood Adv. 7, 5713–5716 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Liddy, N. et al. Monoclonal TCR-redirected tumor cell killing. Nat. Med. 18, 980–987 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Nathan, P. et al. Overall survival benefit with tebentafusp in metastatic uveal melanoma. N. Engl. J. Med. 385, 1196–1206 (2021). This article describes the pivotal clinical data resulting in the approval of tebentafusp.

    Article  CAS  PubMed  Google Scholar 

  119. Berman, D. M. & Bell, J. I. Redirecting polyclonal T cells against cancer with soluble T cell receptors. Clin. Cancer Res. 29, 697–704 (2022).

    Article  PubMed Central  Google Scholar 

  120. Kingwell, K. T cell receptor therapeutics hit the immuno-oncology stage. Nat. Rev. Drug. Discov. 21, 321–323 (2022).

    Article  CAS  PubMed  Google Scholar 

  121. Augsberger, C. et al. Targeting intracellular WT1 in AML with a novel RMF–peptide–MHC-specific T-cell bispecific antibody. Blood 138, 2655–2669 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Douglass, J. et al. Bispecific antibodies targeting mutant RAS neoantigens. Sci. Immunol. 6, eabd5515 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hsiue, E. H. et al. Targeting a neoantigen derived from a common TP53 mutation. Science 371, eabc8697 (2021). This article describes a BiTE targeting a p53 mutant-derived MHC-presented neoantigen.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Moritz, A. et al. High-throughput peptide–MHC complex generation and kinetic screenings of TCRs with peptide-receptive HLA-A*02:01 molecules. Sci. Immunol. 4, eaav0860 (2019).

    Article  CAS  PubMed  Google Scholar 

  125. Yang, X. et al. Facile repurposing of peptide–MHC-restricted antibodies for cancer immunotherapy. Nat. Biotechnol. 41, 932–943 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hattori, T. et al. Creating MHC-restricted neoantigens with covalent inhibitors that can be targeted by immune therapy. Cancer Discov. 13, 132–145 (2023).

    Article  CAS  PubMed  Google Scholar 

  127. Zhang, Z. et al. A covalent inhibitor of K-RasG12C induces MHC class I presentation of haptenated peptide neoepitopes targetable by immunotherapy. Cancer Cell 40, 1060–1069.e7 (2022). Together with Hattori et al. (2023), this article shows how covalent K-Ras inhibitors can be recognized by a BiTE.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Leclercq, G. et al. Novel strategies for the mitigation of cytokine release syndrome induced by T cell engaging therapies with a focus on the use of kinase inhibitors. Oncoimmunology 11, 2083479 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Leclercq-Cohen, G. et al. Dissecting the mechanisms underlying the cytokine release syndrome (CRS) mediated by T-cell bispecific antibodies. Clin. Cancer Res. 29, 4449–4463 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Mandikian, D. et al. Relative target affinities of T-cell-dependent bispecific antibodies determine biodistribution in a solid tumor mouse model. Mol. Cancer Ther. 17, 776–785 (2018).

    Article  CAS  PubMed  Google Scholar 

  131. Staflin, K. et al. Target arm affinities determine preclinical efficacy and safety of anti-HER2/CD3 bispecific antibody. JCI Insight 5, e133757 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Zuch de Zafra, C. L. et al. Targeting multiple myeloma with AMG 424, a novel anti-CD38/CD3 bispecific T-cell-recruiting antibody optimized for cytotoxicity and cytokine release. Clin. Cancer Res. 25, 3921–3933 (2019).

    Article  CAS  PubMed  Google Scholar 

  133. Trinklein, N. D. et al. Efficient tumor killing and minimal cytokine release with novel T-cell agonist bispecific antibodies. mAbs 11, 639–652 (2019). This article illustrates the advantage of applying low-affinity CD3 antibodies in TCEs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Dang, K. et al. Attenuating CD3 affinity in a PSMA × CD3 bispecific antibody enables killing of prostate tumor cells with reduced cytokine release. J. Immunother. Cancer 9, e002488 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Liu, C. Y. et al. Structure-based engineering of a novel CD3ε-targeting antibody for reduced polyreactivity. mAbs 15, 2189974 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Pouleau, B. et al. Pre-clinical characterization of ISB 1342, a CD38 × CD3 T-cell engager for relapsed/refractory multiple myeloma. Blood 142, 260–273 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Hinrichs, C. S. & Restifo, N. P. Reassessing target antigens for adoptive T-cell therapy. Nat. Biotechnol. 31, 999–1008 (2013). This review outlines the challenges in identifying suitable target antigens for T cell-based therapies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Arvedson, T., Bailis, J. M., Urbig, T. & Stevens, J. L. Considerations for design, manufacture, and delivery for effective and safe T-cell engager therapies. Curr. Opin. Biotechnol. 78, 102799 (2022).

    Article  CAS  PubMed  Google Scholar 

  139. Wang, J. et al. Characterization of anti-CD79b/CD3 bispecific antibody, a potential therapy for B cell malignancies. Cancer Immunol. Immunother. 72, 493–507 (2023).

    Article  CAS  PubMed  Google Scholar 

  140. Seckinger, A. et al. Target expression, generation, preclinical activity, and pharmacokinetics of the BCMA-T cell bispecific antibody EM801 for multiple myeloma treatment. Cancer Cell 31, 396–410 (2017).

    Article  CAS  PubMed  Google Scholar 

  141. Hipp, S. et al. A novel BCMA/CD3 bispecific T-cell engager for the treatment of multiple myeloma induces selective lysis in vitro and in vivo. Leukemia 31, 1743–1751 (2017).

    Article  CAS  PubMed  Google Scholar 

  142. Li, J. et al. Membrane-proximal epitope facilitates efficient T cell synapse formation by anti-FcRH5/CD3 and is a requirement for myeloma cell killing. Cancer Cell 31, 383–395 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Parker, K. R. et al. Single-cell analyses identify brain mural cells expressing CD19 as potential off-tumor targets for CAR-T immunotherapies. Cell 183, 126–142.e17 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Nair-Gupta, P. et al. A novel C2 domain binding CD33 × CD3 bispecific antibody with potent T-cell redirection activity against acute myeloid leukemia. Blood Adv. 4, 906–919 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Krupka, C. et al. CD33 target validation and sustained depletion of AML blasts in long-term cultures by the bispecific T-cell-engaging antibody AMG 330. Blood 123, 356–365 (2014).

    Article  CAS  PubMed  Google Scholar 

  146. Al-Hussaini, M. et al. Targeting CD123 in acute myeloid leukemia using a T-cell-directed dual-affinity retargeting platform. Blood 127, 122–131 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Chichili, G. R. et al. A CD3 × CD123 bispecific DART for redirecting host T cells to myelogenous leukemia: preclinical activity and safety in nonhuman primates. Sci. Transl. Med. 7, 289ra282 (2015).

    Article  Google Scholar 

  148. Ravandi, F. et al. Phase 1 study of vibecotamab identifies an optimized dose for treatment of relapsed/refractory acute myeloid leukemia. Blood Adv. 7, 6492–6505 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Arvedson, T. et al. Targeting solid tumors with bispecific T cell engager immune therapy. Annu. Rev. Canc Biol. 6, 17–34 (2022). This review summarizes the challenges faced when developing TCEs for treatment of solid tumours.

    Article  Google Scholar 

  150. Drago, J. Z., Modi, S. & Chandarlapaty, S. Unlocking the potential of antibody–drug conjugates for cancer therapy. Nat. Rev. Clin. Oncol. 18, 327–344 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Rius Ruiz, I. et al. p95HER2-T cell bispecific antibody for breast cancer treatment. Sci. Transl. Med. 10, eaat1445 (2018).

    Article  PubMed  Google Scholar 

  152. Choi, B. D. et al. Systemic administration of a bispecific antibody targeting EGFRvIII successfully treats intracerebral glioma. Proc. Natl Acad. Sci. USA 110, 270–275 (2013).

    Article  CAS  PubMed  Google Scholar 

  153. Iurlaro, R. et al. A novel EGFRvIII T-cell bispecific antibody for the treatment of glioblastoma. Mol. Cancer Ther. 21, 1499–1509 (2022).

    Article  CAS  PubMed  Google Scholar 

  154. Sternjak, A. et al. Preclinical assessment of AMG 596, a bispecific T-cell engager (BiTE) immunotherapy targeting the tumor-specific antigen EGFRvIII. Mol. Cancer Ther. 20, 925–933 (2021).

    Article  CAS  PubMed  Google Scholar 

  155. Crawford, A. et al. A mucin 16 bispecific T cell-engaging antibody for the treatment of ovarian cancer. Sci. Transl. Med. 11, eaau7534 (2019).

    Article  PubMed  Google Scholar 

  156. Zhu, G. et al. Targeting CLDN18.2 by CD3 bispecific and ADC modalities for the treatments of gastric and pancreatic cancer. Sci. Rep. 9, 8420 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Paz-Ares, L. et al. Tarlatamab, a first-in-class DLL3-targeted bispecific T cell engager, in recurrent small-cell lung cancer: an open-label, phase 1 study. J. Clin. Oncol. 41, 2893–2903 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Lin, T. Y., Park, J. A., Long, A., Guo, H. F. & Cheung, N. V. Novel potent anti-STEAP1 bispecific antibody to redirect T cells for cancer immunotherapy. J. Immunother. Cancer 9, e003114 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Ahn, M. J. et al. Tarlatamab for patients with previously treated small-cell lung cancer. N. Engl. J. Med. 389, 2063–2075 (2023). This article provides compelling clinical evidence for the anti-tumour efficacy of TCEs in solid tumour indications.

    Article  CAS  PubMed  Google Scholar 

  160. Kelly, W. K. et al. Xaluritamig, a STEAP1 × CD3 XmAb 2 + 1 immune therapy for metastatic castration-resistant prostate cancer: results from dose exploration in a first-in-human study. Cancer Discov. 14, 76–89 (2023).

    Article  PubMed Central  Google Scholar 

  161. Nolan-Stevaux, O. et al. AMG 509 (Xaluritamig), an anti-STEAP1 XmAb 2 + 1 T-cell redirecting immune therapy with avidity-dependent activity against prostate cancer. Cancer Discov. 14, 90–103 (2023).

    Article  Google Scholar 

  162. Slaga, D. et al. Avidity-based binding to HER2 results in selective killing of HER2-overexpressing cells by anti-HER2/CD3. Sci. Transl. Med. 10, eaat5775 (2018). This article illustrates the benefit of making use of avidity-mediated selectivity gain for TCEs.

    Article  PubMed  Google Scholar 

  163. Avanzino, B. C. et al. A T-cell engaging bispecific antibody with a tumor-selective bivalent folate receptor α binding arm for the treatment of ovarian cancer. Oncoimmunology 11, 2113697 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Dicara, D. M. et al. Development of T-cell engagers selective for cells co-expressing two antigens. mAbs 14, 2115213 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Tapia-Galisteo, A. et al. Trispecific T-cell engagers for dual tumor-targeting of colorectal cancer. Oncoimmunology 11, 2034355 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Braciak, T. A. et al. Dual-targeting triplebody 33-16-123 (SPM-2) mediates effective redirected lysis of primary blasts from patients with a broad range of AML subtypes in combination with natural killer cells. Oncoimmunology 7, e1472195 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Roskopf, C. C. et al. Dual-targeting triplebody 33-3-19 mediates selective lysis of biphenotypic CD19+CD33+ leukemia cells. Oncotarget 7, 22579–22589 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Zhao, L. et al. A novel CD19/CD22/CD3 trispecific antibody enhances therapeutic efficacy and overcomes immune escape against B-ALL. Blood 140, 1790–1802 (2022).

    Article  CAS  PubMed  Google Scholar 

  169. Mensurado, S., Blanco-Dominguez, R. & Silva-Santos, B. The emerging roles of γδ T cells in cancer immunotherapy. Nat. Rev. Clin. Oncol. 20, 178–191 (2023).

    Article  CAS  PubMed  Google Scholar 

  170. Saura-Esteller, J. et al. γδ T-cell based cancer immunotherapy: past–present–future. Front. Immunol. 13, 915837 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Lai, A. Y. et al. Cutting edge: bispecific γδ T cell engager containing heterodimeric BTN2A1 and BTN3A1 promotes targeted activation of Vγ9Vδ2+ T cells in the presence of costimulation by CD28 or NKG2D. J. Immunol. 209, 1475–1480 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. van Diest, E. et al. TCR anti-CD3 bispecific molecules (GABs) as novel immunotherapeutic compounds. J. Immunother. Cancer 9, e003850 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Ganesan, R. et al. Selective recruitment of γδ T cells by a bispecific antibody for the treatment of acute myeloid leukemia. Leukemia 35, 2274–2284 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Oberg, H. H. et al. Novel bispecific antibodies increase γδ T-cell cytotoxicity against pancreatic cancer cells. Cancer Res. 74, 1349–1360 (2014).

    Article  CAS  PubMed  Google Scholar 

  175. de Weerdt, I. et al. A bispecific single-domain antibody boosts autologous Vγ9Vδ2-T cell responses toward CD1d in chronic lymphocytic leukemia. Clin. Cancer Res. 27, 1744–1755 (2021).

    Article  PubMed  Google Scholar 

  176. Schmittnaegel, M. et al. A new class of bifunctional major histocompatibility class I antibody fusion molecules to redirect CD8 T cells. Mol. Cancer Ther. 15, 2130–2142 (2016).

    Article  CAS  PubMed  Google Scholar 

  177. Millar, D. G. et al. Antibody-mediated delivery of viral epitopes to tumors harnesses CMV-specific T cells for cancer therapy. Nat. Biotechnol. 38, 420–425 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Sefrin, J. P. et al. Sensitization of tumors for attack by virus-specific CD8+ T-cells through antibody-mediated delivery of immunogenic T-cell epitopes. Front. Immunol. 10, 1962 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. van der Wulp, W. et al. Antibody-mediated delivery of viral epitopes to redirect EBV-specific CD8+ T-cell immunity towards cancer cells. Cancer Gene Ther. 31, 58–68 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Cruz, J. W. et al. A novel bispecific antibody platform to direct complement activity for efficient lysis of target cells. Sci. Rep. 9, 12031 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Oostindie, S. C. et al. Logic-gated antibody pairs that selectively act on cells co-expressing two antigens. Nat. Biotechnol. 40, 1509–1519 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Peng, H. et al. ROR1-targeting switchable CAR-T cells for cancer therapy. Oncogene 41, 4104–4114 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Wermke, M. et al. Proof of concept for a rapidly switchable universal CAR-T platform with UniCAR-T-CD123 in relapsed/refractory AML. Blood 137, 3145–3148 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Bachmann, M. The UniCAR system: a modular CAR T cell approach to improve the safety of CAR T cells. Immunol. Lett. 211, 13–22 (2019).

    Article  CAS  PubMed  Google Scholar 

  185. Karches, C. H. et al. Bispecific antibodies enable synthetic agonistic receptor-transduced T cells for tumor immunotherapy. Clin. Cancer Res. 25, 5890–5900 (2019). This article shows the use of bsAbs to engage adoptively transferred CAR-T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Cho, J. H., Collins, J. J. & Wong, W. W. Universal chimeric antigen receptors for multiplexed and logical control of T cell responses. Cell 173, 1426–1438.e11 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Lee, Y. G. et al. Use of a single CAR T cell and several bispecific adapters facilitates eradication of multiple antigenically different solid tumors. Cancer Res. 79, 387–396 (2019).

    Article  CAS  PubMed  Google Scholar 

  188. Park, J. A. & Cheung, N. V. Overcoming tumor heterogeneity by ex vivo arming of T cells using multiple bispecific antibodies. J. Immunother. Cancer 10, e003771 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Demaria, O. et al. Harnessing innate immunity in cancer therapy. Nature 574, 45–56 (2019).

    Article  CAS  PubMed  Google Scholar 

  190. Delidakis, G., Kim, J. E., George, K. & Georgiou, G. Improving antibody therapeutics by manipulating the Fc domain: immunological and structural considerations. Annu. Rev. Biomed. Eng. 24, 249–274 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Shimasaki, N., Jain, A. & Campana, D. NK cells for cancer immunotherapy. Nat. Rev. Drug. Discov. 19, 200–218 (2020).

    Article  CAS  PubMed  Google Scholar 

  192. Whalen, K. A. et al. Engaging natural killer cells for cancer therapy via NKG2D, CD16A and other receptors. mAbs 15, 2208697 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Reusch, U. et al. A novel tetravalent bispecific TandAb (CD30/CD16A) efficiently recruits NK cells for the lysis of CD30+ tumor cells. mAbs 6, 728–739 (2014).

    Article  PubMed  Google Scholar 

  194. Bartlett, N. L. et al. A phase 1b study of AFM13 in combination with pembrolizumab in patients with relapsed or refractory Hodgkin lymphoma. Blood 136, 2401–2409 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Kerbauy, L. N. et al. Combining AFM13, a bispecific CD30/CD16 antibody, with cytokine-activated blood and cord blood-derived NK cells facilitates CAR-like responses against CD30+ malignancies. Clin. Cancer Res. 27, 3744–3756 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Ellwanger, K. et al. Redirected optimized cell killing (ROCK®): a highly versatile multispecific fit-for-purpose antibody platform for engaging innate immunity. mAbs 11, 899–918 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Wingert, S. et al. Preclinical evaluation of AFM24, a novel CD16A-specific innate immune cell engager targeting EGFR-positive tumors. mAbs 13, 1950264 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Kakiuchi-Kiyota, S. et al. A BCMA/CD16A bispecific innate cell engager for the treatment of multiple myeloma. Leukemia 36, 1006–1014 (2022).

    Article  CAS  PubMed  Google Scholar 

  199. Gantke, T. et al. Trispecific antibodies for CD16A-directed NK cell engagement and dual-targeting of tumor cells. Protein Eng. Des. Sel. 30, 673–684 (2017).

    Article  CAS  PubMed  Google Scholar 

  200. Harwardt, J. et al. Generation of a symmetrical trispecific NK cell engager based on a two-in-one antibody. Front. Immunol. 14, 1170042 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Kellner, C. et al. Tumor cell lysis and synergistically enhanced antibody-dependent cell-mediated cytotoxicity by NKG2D engagement with a bispecific immunoligand targeting the HER2 antigen. Biol. Chem. 403, 545–556 (2022).

    Article  CAS  PubMed  Google Scholar 

  202. Gauthier, L. et al. Multifunctional natural killer cell engagers targeting NKp46 trigger protective tumor immunity. Cell 177, 1701–1713.e16 (2019). This article introduces a novel NKp46-based class of natural killer cell-engaging bsAbs.

    Article  CAS  PubMed  Google Scholar 

  203. Pekar, L. et al. Affinity maturation of B7-H6 translates into enhanced NK cell-mediated tumor cell lysis and improved proinflammatory cytokine release of bispecific immunoligands via NKp30 engagement. J. Immunol. 206, 225–236 (2021).

    Article  CAS  PubMed  Google Scholar 

  204. Klausz, K. et al. Multifunctional NK cell-engaging antibodies targeting EGFR and NKp30 elicit efficient tumor cell killing and proinflammatory cytokine release. J. Immunol. 209, 1724–1735 (2022).

    Article  CAS  PubMed  Google Scholar 

  205. Demaria, O. et al. Antitumor immunity induced by antibody-based natural killer cell engager therapeutics armed with not-α IL-2 variant. Cell Rep. Med. 3, 100783 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Li, B. et al. CD89-mediated recruitment of macrophages via a bispecific antibody enhances anti-tumor efficacy. Oncoimmunology 7, e1380142 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Heemskerk, N. et al. Augmented antibody-based anticancer therapeutics boost neutrophil cytotoxicity. J. Clin. Invest. 131, e134680 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Vukovic, N. et al. A human IgE bispecific antibody shows potent cytotoxic capacity mediated by monocytes. J. Biol. Chem. 298, 102153 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Maute, R., Xu, J. & Weissman, I. L. CD47–SIRPα-targeted therapeutics: status and prospects. Immunooncol. Technol. 13, 100070 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Dheilly, E. et al. Selective blockade of the ubiquitous checkpoint receptor CD47 is enabled by dual-targeting bispecific antibodies. Mol. Ther. 25, 523–533 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Buatois, V. et al. Preclinical development of a bispecific antibody that safely and effectively targets CD19 and CD47 for the treatment of B-cell lymphoma and leukemia. Mol. Cancer Ther. 17, 1739–1751 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Hatterer, E. et al. Co-engaging CD47 and CD19 with a bispecific antibody abrogates B-cell receptor/CD19 association leading to impaired B-cell proliferation. mAbs 11, 322–334 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Liu, B. et al. Elimination of tumor by CD47/PD-L1 dual-targeting fusion protein that engages innate and adaptive immune responses. mAbs 10, 315–324 (2018).

    Article  CAS  PubMed  Google Scholar 

  214. Chen, S. H. et al. Dual checkpoint blockade of CD47 and PD-L1 using an affinity-tuned bispecific antibody maximizes antitumor immunity. J. Immunother. Cancer 9, e003464 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Tahk, S. et al. SIRPα–αCD123 fusion antibodies targeting CD123 in conjunction with CD47 blockade enhance the clearance of AML-initiating cells. J. Hematol. Oncol. 14, 155 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Mayes, P. A., Hance, K. W. & Hoos, A. The promise and challenges of immune agonist antibody development in cancer. Nat. Rev. Drug. Discov. 17, 509–527 (2018).

    Article  CAS  PubMed  Google Scholar 

  217. Kraehenbuehl, L., Weng, C. H., Eghbali, S., Wolchok, J. D. & Merghoub, T. Enhancing immunotherapy in cancer by targeting emerging immunomodulatory pathways. Nat. Rev. Clin. Oncol. 19, 37–50 (2022).

    Article  CAS  PubMed  Google Scholar 

  218. Yu, X. et al. Reducing affinity as a strategy to boost immunomodulatory antibody agonism. Nature 614, 539–547 (2023).

    Article  CAS  PubMed  Google Scholar 

  219. Segal, N. H. et al. Results from an integrated safety analysis of urelumab, an agonist anti-CD137 monoclonal antibody. Clin. Cancer Res. 23, 1929–1936 (2017).

    Article  CAS  PubMed  Google Scholar 

  220. Muller, D. Targeting co-stimulatory receptors of the TNF superfamily for cancer immunotherapy. BioDrugs 37, 21–33 (2023).

    Article  PubMed  Google Scholar 

  221. Hinner, M. J. et al. Tumor-localized costimulatory T-cell engagement by the 4-1BB/HER2 bispecific antibody-anticalin fusion PRS-343. Clin. Cancer Res. 25, 5878–5889 (2019).

    Article  CAS  PubMed  Google Scholar 

  222. Claus, C. et al. Tumor-targeted 4-1BB agonists for combination with T cell bispecific antibodies as off-the-shelf therapy. Sci. Transl. Med. 11, eaav5989 (2019). Together with Hinner et al. (2019), this article provides examples of potent 4-1BB × CD137 targeting co-stimulatory bsAbs for combination immunotherapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Melero, I. et al. A first-in-human study of the fibroblast activation protein-targeted, 4-1BB agonist RO7122290 in patients with advanced solid tumors. Sci. Transl. Med. 15, eabp9229 (2023).

    Article  CAS  PubMed  Google Scholar 

  224. Esensten, J. H., Bluestone, J. A. & Lim, W. A. Engineering therapeutic T cells: from synthetic biology to clinical trials. Annu. Rev. Pathol. 12, 305–330 (2017).

    Article  CAS  PubMed  Google Scholar 

  225. Hunig, T. The rise and fall of the CD28 superagonist TGN1412 and its return as TAB08: a personal account. FEBS J. 283, 3325–3334 (2016).

    Article  PubMed  Google Scholar 

  226. Otz, T., Grosse-Hovest, L., Hofmann, M., Rammensee, H. G. & Jung, G. A bispecific single-chain antibody that mediates target cell-restricted, supra-agonistic CD28 stimulation and killing of lymphoma cells. Leukemia 23, 71–77 (2009).

    Article  CAS  PubMed  Google Scholar 

  227. Skokos, D. et al. A class of costimulatory CD28-bispecific antibodies that enhance the antitumor activity of CD3-bispecific antibodies. Sci. Transl. Med. 12, eaaw7888 (2020). This article provides an example of a potent CD28-targeting co-stimulatory bsAb for combination immunotherapy.

    Article  CAS  PubMed  Google Scholar 

  228. Wei, J. et al. CD22-targeted CD28 bispecific antibody enhances antitumor efficacy of odronextamab in refractory diffuse large B cell lymphoma models. Sci. Transl. Med. 14, eabn1082 (2022).

    Article  CAS  PubMed  Google Scholar 

  229. Waite, J. C. et al. Tumor-targeted CD28 bispecific antibodies enhance the antitumor efficacy of PD-1 immunotherapy. Sci. Transl. Med. 12, eaba2325 (2020).

    Article  CAS  PubMed  Google Scholar 

  230. Enell Smith, K., Deronic, A., Hagerbrand, K., Norlen, P. & Ellmark, P. Rationale and clinical development of CD40 agonistic antibodies for cancer immunotherapy. Expert. Opin. Biol. Ther. 21, 1635–1646 (2021).

    Article  CAS  PubMed  Google Scholar 

  231. Ma, D. Y. & Clark, E. A. The role of CD40 and CD154/CD40L in dendritic cells. Semin. Immunol. 21, 265–272 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Hagerbrand, K. et al. Bispecific antibodies targeting CD40 and tumor-associated antigens promote cross-priming of T cells resulting in an antitumor response superior to monospecific antibodies. J. Immunother. Cancer 10, e005018 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Luke, J. J. et al. Phase I study of ABBV-428, a mesothelin-CD40 bispecific, in patients with advanced solid tumors. J. Immunother. Cancer 9, e002015 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Ye, S. et al. A bispecific molecule targeting CD40 and tumor antigen mesothelin enhances tumor-specific immunity. Cancer Immunol. Res. 7, 1864–1875 (2019).

    Article  CAS  PubMed  Google Scholar 

  235. Sum, E. et al. Fibroblast activation protein α-targeted CD40 agonism abrogates systemic toxicity and enables administration of high doses to induce effective antitumor immunity. Clin. Cancer Res. 27, 4036–4053 (2021).

    Article  CAS  PubMed  Google Scholar 

  236. Rigamonti, N. et al. A multispecific anti-CD40 DARPin construct induces tumor-selective CD40 activation and tumor regression. Cancer Immunol. Res. 10, 626–640 (2022).

    Article  CAS  PubMed  Google Scholar 

  237. Salomon, R. et al. Bispecific antibodies increase the therapeutic window of CD40 agonists through selective dendritic cell targeting. Nat. Cancer 3, 287–302 (2022).

    Article  CAS  PubMed  Google Scholar 

  238. Gaspar, M. et al. CD137/OX40 bispecific antibody induces potent antitumor activity that is dependent on target coengagement. Cancer Immunol. Res. 8, 781–793 (2020).

    Article  CAS  PubMed  Google Scholar 

  239. Muik, A. et al. DuoBody-CD40 × 4-1BB induces dendritic-cell maturation and enhances T-cell activation through conditional CD40 and 4-1BB agonist activity. J. Immunother. Cancer 10, e004322 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Peper-Gabriel, J. K. et al. The PD-L1/4-1BB bispecific antibody-anticalin fusion protein PRS-344/S095012 elicits strong T-cell stimulation in a tumor-localized manner. Clin. Cancer Res. 28, 3387–3399 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Muik, A. et al. An Fc-inert PD-L1 × 4-1BB bispecific antibody mediates potent anti-tumor immunity in mice by combining checkpoint inhibition and conditional 4-1BB co-stimulation. Oncoimmunology 11, 2030135 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Warmuth, S. et al. Engineering of a trispecific tumor-targeted immunotherapy incorporating 4-1BB co-stimulation and PD-L1 blockade. Oncoimmunology 10, 2004661 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Jeong, S. et al. Novel anti-4-1BB × PD-L1 bispecific antibody augments anti-tumor immunity through tumor-directed T-cell activation and checkpoint blockade. J. Immunother. Cancer 9, e002428 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Lakins, M. A. et al. FS222, a CD137/PD-L1 tetravalent bispecific antibody, exhibits low toxicity and antitumor activity in colorectal cancer models. Clin. Cancer Res. 26, 4154–4167 (2020).

    Article  CAS  PubMed  Google Scholar 

  245. Geuijen, C. et al. A human CD137 × PD-L1 bispecific antibody promotes anti-tumor immunity via context-dependent T cell costimulation and checkpoint blockade. Nat. Commun. 12, 4445 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Ramaswamy, M. et al. Immunomodulation of T- and NK-cell responses by a bispecific antibody targeting CD28 homolog and PD-L1. Cancer Immunol. Res. 10, 200–214 (2022).

    Article  CAS  PubMed  Google Scholar 

  247. Kvarnhammar, A. M. et al. The CTLA-4 × OX40 bispecific antibody ATOR-1015 induces anti-tumor effects through tumor-directed immune activation. J. Immunother. Cancer 7, 103 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  248. Vitale, L. A. et al. Development of CDX-527: a bispecific antibody combining PD-1 blockade and CD27 costimulation for cancer immunotherapy. Cancer Immunol. Immunother. 69, 2125–2137 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Qiao, Y. et al. Cancer immune therapy with PD-1-dependent CD137 co-stimulation provides localized tumour killing without systemic toxicity. Nat. Commun. 12, 6360 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Chan, S. et al. An anti-PD-1-GITR-L bispecific agonist induces GITR clustering-mediated T cell activation for cancer immunotherapy. Nat. Cancer 3, 337–354 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Chiu, D. et al. A PSMA-targeting CD3 bispecific antibody induces antitumor responses that are enhanced by 4-1BB costimulation. Cancer Immunol. Res. 8, 596–608 (2020).

    Article  CAS  PubMed  Google Scholar 

  252. Yao, Y., Hu, Y. & Wang, F. Trispecific antibodies for cancer immunotherapy. Immunology 169, 389–399 (2023).

    Article  CAS  PubMed  Google Scholar 

  253. Tapia-Galisteo, A., Compte, M., Alvarez-Vallina, L. & Sanz, L. When three is not a crowd: trispecific antibodies for enhanced cancer immunotherapy. Theranostics 13, 1028–1041 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Wu, L. et al. Trispecific antibodies enhance the therapeutic efficacy of tumor-directed T cells through T cell receptor co-stimulation. Nat. Cancer 1, 86–98 (2020). This article provides an example of a trispecific TCE with integrated co-stimulation.

    Article  CAS  PubMed  Google Scholar 

  255. Seung, E. et al. A trispecific antibody targeting HER2 and T cells inhibits breast cancer growth via CD4 cells. Nature 603, 328–334 (2022).

    Article  CAS  PubMed  Google Scholar 

  256. Lucchi, R., Bentanachs, J. & Oller-Salvia, B. The masking game: design of activatable antibodies and mimetics for selective therapeutics and cell control. ACS Cent. Sci. 7, 724–738 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Metz, S. et al. Bispecific antibody derivatives with restricted binding functionalities that are activated by proteolytic processing. Protein Eng. Des. Sel. 25, 571–580 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Autio, K. A., Boni, V., Humphrey, R. W. & Naing, A. Probody therapeutics: an emerging class of therapies designed to enhance on-target effects with reduced off-tumor toxicity for use in immuno-oncology. Clin. Cancer Res. 26, 984–989 (2020).

    Article  CAS  PubMed  Google Scholar 

  259. Panchal, A. et al. COBRA: a highly potent conditionally active T cell engager engineered for the treatment of solid tumors. mAbs 12, 1792130 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  260. Dettling, D. E. et al. Regression of EGFR positive established solid tumors in mice with the conditionally active T cell engager TAK-186. J. Immunother. Cancer 10, e004336 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  261. Geiger, M. et al. Protease-activation using anti-idiotypic masks enables tumor specificity of a folate receptor 1-T cell bispecific antibody. Nat. Commun. 11, 3196 (2020). This article provides an example of a protease-activated TCE.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Boustany, L. M. et al. A probody T cell-engaging bispecific antibody targeting EGFR and CD3 inhibits colon cancer growth with limited toxicity. Cancer Res. 82, 4288–4298 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Cattaruzza, F. et al. Precision-activated T-cell engagers targeting HER2 or EGFR and CD3 mitigate on-target, off-tumor toxicity for immunotherapy in solid tumors. Nat. Cancer 4, 485–501 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Banaszek, A. et al. On-target restoration of a split T cell-engaging antibody for precision immunotherapy. Nat. Commun. 10, 5387 (2019). This article introduces the concept of on-target assembly of split T cell-engaging antibodies.

    Article  PubMed  PubMed Central  Google Scholar 

  265. Dickopf, S. et al. Prodrug-activating chain exchange (PACE) converts targeted prodrug derivatives to functional bi- or multispecific antibodies. Biol. Chem. 403, 495–508 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Vasic, V. et al. Targeted chain-exchange-mediated reconstitution of a split type-I cytokine for conditional immunotherapy. mAbs 15, 2245111 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  267. Kamata-Sakurai, M. et al. Antibody to CD137 activated by extracellular adenosine triphosphate is tumor selective and broadly effective in vivo without systemic immune activation. Cancer Discov. 11, 158–175 (2021). This article shows how extracellular ATP can serve to activate antibody binding and activity in the TME.

    Article  CAS  PubMed  Google Scholar 

  268. Wells, J. A. & Kumru, K. Extracellular targeted protein degradation: an emerging modality for drug discovery. Nat. Rev. Drug. Discov. https://doi.org/10.1038/s41573-023-00833-z (2023). This Review provides an overview about the emerging area of antibody-based protein degradation approaches.

    Article  PubMed  Google Scholar 

  269. Pance, K. et al. Modular cytokine receptor-targeting chimeras for targeted degradation of cell surface and extracellular proteins. Nat. Biotechnol. 41, 273–281 (2023).

    Article  CAS  PubMed  Google Scholar 

  270. Siepe, D. H., Picton, L. K. & Garcia, K. C. Receptor elimination by E3 ubiquitin ligase recruitment (REULR): a targeted protein degradation toolbox. ACS Synth. Biol. 12, 1081–1093 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Marei, H. et al. Antibody targeting of E3 ubiquitin ligases for receptor degradation. Nature 610, 182–189 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Zhao, P. et al. Enhanced anti-angiogenetic effect of transferrin receptor-mediated delivery of VEGF-trap in a glioblastoma mouse model. mAbs 14, 2057269 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  273. Gramespacher, J. A., Cotton, A. D., Burroughs, P. W. W., Seiple, I. B. & Wells, J. A. Roadmap for optimizing and broadening antibody-based PROTACs for degradation of cell surface proteins. ACS Chem. Biol. 17, 1259–1268 (2022).

    Article  CAS  PubMed  Google Scholar 

  274. Cotton, A. D., Nguyen, D. P., Gramespacher, J. A., Seiple, I. B. & Wells, J. A. Development of antibody-based PROTACs for the degradation of the cell-surface immune checkpoint protein PD-L1. J. Am. Chem. Soc. 143, 593–598 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Stadler, C. R. et al. Elimination of large tumors in mice by mRNA-encoded bispecific antibodies. Nat. Med. 23, 815–817 (2017).

    Article  CAS  PubMed  Google Scholar 

  276. Huang, C. et al. Lipid nanoparticle delivery system for mRNA encoding B7H3-redirected bispecific antibody displays potent antitumor effects on malignant tumors. Adv. Sci. 10, e2205532 (2023).

    Article  Google Scholar 

  277. Heidbuechel, J. P. W. & Engeland, C. E. Oncolytic viruses encoding bispecific T cell engagers: a blueprint for emerging immunovirotherapies. J. Hematol. Oncol. 14, 63 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  278. Fajardo, C. A. et al. Oncolytic adenoviral delivery of an EGFR-targeting T-cell engager improves antitumor efficacy. Cancer Res. 77, 2052–2063 (2017).

    Article  CAS  PubMed  Google Scholar 

  279. Speck, T. et al. Targeted BiTE expression by an oncolytic vector augments therapeutic efficacy against solid tumors. Clin. Cancer Res. 24, 2128–2137 (2018).

    Article  CAS  PubMed  Google Scholar 

  280. Wing, A. et al. Improving CART-cell therapy of solid tumors with oncolytic virus-driven production of a bispecific T-cell engager. Cancer Immunol. Res. 6, 605–616 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Yin, Y. et al. Locally secreted BiTEs complement CAR T cells by enhancing killing of antigen heterogeneous solid tumors. Mol. Ther. 30, 2537–2553 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Choi, B. D. et al. CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nat. Biotechnol. 37, 1049–1058 (2019).

    Article  CAS  PubMed  Google Scholar 

  283. Liu, X. et al. Improved anti-leukemia activities of adoptively transferred T cells expressing bispecific T-cell engager in mice. Blood Cancer J. 6, e430 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Harris, K. E. et al. A bispecific antibody agonist of the IL-2 heterodimeric receptor preferentially promotes in vivo expansion of CD8 and NK cells. Sci. Rep. 11, 10592 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Yen, M. et al. Facile discovery of surrogate cytokine agonists. Cell 185, 1414–1430.e19 (2022). This article shows how single-domain antibodies can serve for the generation of cytokine mimetics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Lipinski, B. et al. Generation and engineering of potent single domain antibody-based bispecific IL-18 mimetics resistant to IL-18BP decoy receptor inhibition. mAbs 15, 2236265 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  287. Quijano-Rubio, A. et al. A split, conditionally active mimetic of IL-2 reduces the toxicity of systemic cytokine therapy. Nat. Biotechnol. 41, 532–540 (2023).

    Article  CAS  PubMed  Google Scholar 

  288. Silva, D. A. et al. De novo design of potent and selective mimics of IL-2 and IL-15. Nature 565, 186–191 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank all contributors, team members and collaborators involved in the field of bispecific antibodies (bsAbs) over the past decade. In the context of bsAbs, C.K. thanks P. Umana, Roche Innovation Center Zurich and all his colleagues at the Roche Innovation Centers in Zurich, Munich and Basel and Wolfgang Schaefer, Mannheim. The authors thank I. Wiesner, Roche Diagnostics GmbH, Penzberg, for help with antibody databases. The authors apologize to those authors whose work was overseen by error or could not be cited due to space limitation and the breadth of the field, or due to the unavailability of peer-reviewed manuscripts.

Author information

Authors and Affiliations

Authors

Contributions

C.K., U.B., J.M.R. and R.E.K. researched data for the article and wrote the article. All authors contributed substantially to discussion of the content and edited the manuscript before submission.

Corresponding authors

Correspondence to Christian Klein or Roland E. Kontermann.

Ethics declarations

Competing interests

C.K. and U.B. declare employment, stock ownership and patents/royalties with Roche. J.M.R. is employed by The Antibody Society, a non-profit trade association funded by corporate sponsors that develops antibody therapeutics or provides services to companies that develop antibody therapeutics, and is Editor-in-Chief of mAbs, a biomedical journal focused on topics relevant to antibody therapeutic development. R.E.K. is a consultant for Immatics, Roche, SunRock and Oncomatryx.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks John R. Desjarlais and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klein, C., Brinkmann, U., Reichert, J.M. et al. The present and future of bispecific antibodies for cancer therapy. Nat Rev Drug Discov 23, 301–319 (2024). https://doi.org/10.1038/s41573-024-00896-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-024-00896-6

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer