Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

One-step site-specific modification of native proteins with 2-pyridinecarboxyaldehydes

Abstract

The chemical modification of proteins is an enabling technology for many scientific fields, including chemical biology, biophysics, bioengineering and materials science. These methods allow the attachment of strategically selected detection probes, polymers, drug molecules and analysis platforms. However, organic reactions that can proceed under conditions mild enough to maintain biomolecular function are limited. Even more rare are chemical strategies that can target a single site, leading to products with uniform properties and optimal function. We present a versatile method for the selective modification of protein N termini that does not require any genetic engineering of the protein target. This reaction is demonstrated for 12 different proteins, including the soluble domain of the human estrogen receptor. The function of this protein was confirmed through the binding of a fluorescent estrogen mimic, and the modified protein was explored as a prototype for the detection of endocrine-disrupting chemicals in water.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: N-terminal polypeptide modification using aldehyde derivatives.
Figure 2: A convertible reagent for adding diverse functional groups to protein N termini.
Figure 3: Site-specific attachment of 2PCA-biotin reagent 7a to ten protein substrates, as characterized using ESI-TOF MS.
Figure 4: Polymer immobilization of the ligand-binding domain of ERα′.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Hermanson, G.T. Bioconjugate Techniques (Academic Press, San Diego, CA, 1996).

  2. Griffin, B.A., Adams, S.R. & Tsien, R.Y. Specific covalent labeling of recombinant protein molecules inside live cells. Science 281, 269–272 (1998).

    Article  CAS  Google Scholar 

  3. Zalipsky, S. Functionalized poly(ethylene glycols) for preparation of biologically relevant conjugates. Bioconjug. Chem. 6, 150–165 (1995).

    Article  CAS  Google Scholar 

  4. Rao, J., Dragulescu-Andrasi, A. & Yao, H. Fluorescence imaging in vivo: recent advances. Curr. Opin. Biotechnol. 18, 17–25 (2007).

    Article  CAS  Google Scholar 

  5. Witus, L.S. & Francis, M.B. Using synthetically modified proteins to make new materials. Acc. Chem. Res. 44, 774–783 (2011).

    Article  CAS  Google Scholar 

  6. Szobota, S. et al. Remote control of neuronal activity with a light-gated glutamate receptor. Neuron 54, 535–545 (2007).

    Article  CAS  Google Scholar 

  7. Cornish, V.W., Hahn, K.M. & Schultz, P.G. Site-specific protein modification using a ketone handle. J. Am. Chem. Soc. 118, 8150–8151 (1996).

    Article  CAS  Google Scholar 

  8. Deiters, A. et al. Adding amino acids with novel reactivity to the genetic code of Saccharomyces cerevisiae. J. Am. Chem. Soc. 125, 11782–11783 (2003).

    Article  CAS  Google Scholar 

  9. van Hest, J.C.M., Kiick, K.L. & Tirrell, D.A. Efficient incorporation of unsaturated methionine analogues into proteins in vivo. J. Am. Chem. Soc. 122, 1282–1288 (2000).

    Article  CAS  Google Scholar 

  10. Dawson, P.E., Muir, T., Clark-Lewis, I. & Kent, S. Synthesis of proteins by native chemical ligation. Science 266, 776–779 (1994).

    Article  CAS  Google Scholar 

  11. Muir, T.W. Semisynthesis of proteins by expressed protein ligation. Annu. Rev. Biochem. 72, 249–289 (2003).

    Article  CAS  Google Scholar 

  12. Wu, P. et al. Site-specific chemical modification of recombinant proteins produced in mammalian cells by using the genetically encoded aldehyde tag. Proc. Natl. Acad. Sci. USA 106, 3000–3005 (2009).

    Article  CAS  Google Scholar 

  13. Uttamapinant, C. et al. A fluorophore ligase for site-specific protein labeling inside living cells. Proc. Natl. Acad. Sci. USA 107, 10914–10919 (2010).

    Article  CAS  Google Scholar 

  14. Baker, D.P. et al. N-terminally PEGylated human interferon-β-1a with improved pharmacokinetic properties and in vivo efficacy in a melanoma angiogenesis model. Bioconjug. Chem. 17, 179–188 (2006).

    Article  CAS  Google Scholar 

  15. Singudas, R., Adusumalli, S.R., Joshi, P.N. & Rai, V. A phthalimidation protocol that follows protein defined parameters. Chem. Commun. (Camb.) 51, 473–476 (2015).

    Article  CAS  Google Scholar 

  16. Chan, A.O.Y. et al. Modification of N-terminal α-amino groups of peptides and proteins using ketenes. J. Am. Chem. Soc. 134, 2589–2598 (2012).

    Article  CAS  Google Scholar 

  17. Tam, J.P., Yu, Q. & Miao, Z. Orthogonal ligation strategies for peptide and protein. Biopolymers 51, 311–332 (1999).

    Article  CAS  Google Scholar 

  18. Geoghegan, K.F. & Stroh, J.G. Site-directed conjugation of nonpeptide groups to peptides and proteins via periodate oxidation of a 2-amino alcohol. Application to modification at N-terminal serine. Bioconjug. Chem. 3, 138–146 (1992).

    Article  CAS  Google Scholar 

  19. Ning, X. et al. Protein modification by strain-promoted alkyne-nitrone cycloaddition. Angew. Chem. Int. Ed. Engl. 49, 3065–3068 (2010).

    Article  CAS  Google Scholar 

  20. Li, X., Zhang, L., Hall, S.E. & Tam, J.P. A new ligation method for N-terminal tryptophan-containing peptides using the Pictet-Spengler reaction. Tetrahedr. Lett. 41, 4069–4073 (2000).

    Article  CAS  Google Scholar 

  21. Gilmore, J.M., Scheck, R.A., Esser-Kahn, A.P., Joshi, N.S. & Francis, M.B. N-terminal protein modification through a biomimetic transamination reaction. Angew. Chem. Int. Ed. Engl. 45, 5307–5311 (2006).

    Article  CAS  Google Scholar 

  22. Witus, L.S. et al. Site-specific protein transamination using N-methylpyridinium-4-carboxaldehyde. J. Am. Chem. Soc. 135, 17223–17229 (2013).

    Article  CAS  Google Scholar 

  23. Dixon, H.B.F. & Fields, R. Specific modification of NH2-terminal residues by transamination. Methods Enzymol. 25, 409–419 (1972).

    Article  CAS  Google Scholar 

  24. Dixon, H.B.F. N-terminal modification of proteins—a review. J. Protein Chem. 3, 99–108 (1984).

    Article  CAS  Google Scholar 

  25. Obermeyer, A.C., Jarman, J.B. & Francis, M.B. N-terminal modification of proteins with o-aminophenols. J. Am. Chem. Soc. 136, 9572–9579 (2014).

    Article  CAS  Google Scholar 

  26. Baldwin, J.E. Rules for ring closure. J. Chem. Soc. Chem. Commun. 734–736 (1976).

  27. San George, R.C. & Hoberman, H.D. Reaction of acetaldehyde with hemoglobin. J. Biol. Chem. 261, 6811–6821 (1986).

    CAS  PubMed  Google Scholar 

  28. Metz, B. et al. Identification of formaldehyde-induced modifications in proteins: reactions with model peptides. J. Biol. Chem. 279, 6235–6243 (2004).

    Article  CAS  Google Scholar 

  29. Fraenkel-Conrat, H. & Olcott, H.S. Reaction of formaldehyde with proteins: VI. Cross-linking of amino groups with phenol, imidazole, or indole groups. J. Biol. Chem. 174, 827–843 (1948).

    CAS  PubMed  Google Scholar 

  30. Join, B. et al. Selective iron-catalyzed oxidation of benzylic and allylic alcohols. Adv. Synth. Catal. 353, 3023–3030 (2011).

    Article  CAS  Google Scholar 

  31. Storr, T. et al. Ru(iii) complexes of Edta and Dtpa polyaminocarboxylate analogues and their use as nitric oxide scavengers. Eur. J. Inorg. Chem. 2005, 2685–2697 (2005).

    Article  Google Scholar 

  32. Gaertner, H.F. & Offord, R.E. Site-specific attachment of functionalized poly(ethylene glycol) to the amino terminus of proteins. Bioconjug. Chem. 7, 38–44 (1996).

    Article  CAS  Google Scholar 

  33. Peter, W. et al. Interchain cysteine bridges control entry of progesterone to the central cavity of the uteroglobin dimer. Protein Eng. 5, 351–359 (1992).

    Article  CAS  Google Scholar 

  34. Glazer, A.N. Specific chemical modification of proteins. Annu. Rev. Biochem. 39, 101–130 (1970).

    Article  CAS  Google Scholar 

  35. Anderson, P.J. & Perham, R.N. The reactivity of thiol groups and the subunit structure of aldolase. Biochem. J. 117, 291–298 (1970).

    Article  CAS  Google Scholar 

  36. Joo, C., Balci, H., Ishitsuka, Y., Buranachai, C. & Ha, T. Advances in single-molecule fluorescence methods for molecular biology. Annu. Rev. Biochem. 77, 51–76 (2008).

    Article  CAS  Google Scholar 

  37. Witus, L.S. et al. Identification of highly reactive sequences for PLP-mediated bioconjugation using a combinatorial peptide library. J. Am. Chem. Soc. 132, 16812–16817 (2010).

    Article  CAS  Google Scholar 

  38. Wiita, A.P., Hsu, G.W., Lu, C.M., Esensten, J.H. & Wells, J.A. Circulating proteolytic signatures of chemotherapy-induced cell death in humans discovered by N-terminal labeling. Proc. Natl. Acad. Sci. USA 111, 7594–7599 (2014).

    Article  CAS  Google Scholar 

  39. Diamanti-Kandarakis, E. et al. Endocrine-disrupting chemicals: an endocrine society scientific statement. Endocr. Rev. 30, 293–342 (2009).

    Article  CAS  Google Scholar 

  40. Ternes, T.A. et al. Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater? Water Res. 37, 1976–1982 (2003).

    Article  CAS  Google Scholar 

  41. Blair, R.M. et al. The estrogen receptor relative binding affinities of 188 natural and xenochemicals: structural diversity of ligands. Toxicol. Sci. 54, 138–153 (2000).

    Article  CAS  Google Scholar 

  42. Gangloff, M. et al. Crystal structure of a mutant hERα ligand-binding domain reveals key structural features for the mechanism of partial agonism. J. Biol. Chem. 276, 15059–15065 (2001).

    Article  CAS  Google Scholar 

  43. Gryder, B.E. et al. Histone deacetylase inhibitors equipped with estrogen receptor modulation activity. J. Med. Chem. 56, 5782–5796 (2013).

    Article  CAS  Google Scholar 

  44. Himo, F. et al. Copper(i)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J. Am. Chem. Soc. 127, 210–216 (2004).

    Article  Google Scholar 

  45. Cecconi, C., Shank, E.A., Bustamante, C. & Marqusee, S. Direct observation of the three-state folding of a single protein molecule. Science 309, 2057–2060 (2005).

    Article  CAS  Google Scholar 

  46. Banerjee, D., Liu, A.P., Voss, N.R., Schmid, S.L. & Finn, M.G. Multivalent display and receptor-mediated endocytosis of transferrin on virus-like particles. ChemBioChem 11, 1273–1279 (2010).

    Article  CAS  Google Scholar 

  47. Stephanopoulos, N., Tong, G.J., Hsiao, S.C. & Francis, M.B. Dual-surface modified virus capsids for targeted delivery of photodynamic agents to cancer cells. ACS Nano 4, 6014–6020 (2010).

    Article  CAS  Google Scholar 

  48. Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    Article  CAS  Google Scholar 

  49. Wang, H. et al. Self-assembled nanospheres as a novel delivery system for taxol: a molecular hydrogel with nanosphere morphology. Chem. Commun. (Camb.) 47, 4439–4441 (2011).

    Article  CAS  Google Scholar 

  50. Van Gompel, J. & Schuster, G.B. Chemiluminescence of organic peroxides: intramolecular electron-exchange luminescence from a secondary perester. J. Org. Chem. 52, 1465–1468 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The development of this reaction was supported by the Energy Biosciences Institute at the University of California–Berkeley. The application of the reaction to the human estrogen receptor was supported by the US National Science Foundation (CHE-1059083 and CHE-1413666). J.I.M. was supported by the Berkeley Chemical Biology Graduate Program (National Research Service Award Training grant 1 T32 GMO66698). H.K.M. was supported by the Villum Kann Rasmussens Foundation as well as the Laboratory Directed Research and Development Program at Lawrence Berkeley National Labs. We would like to acknowledge M. Dedeo for the tobacco mosaic virus coat protein, L. Witus for the GFP and A. Obermeyer for X-ADSWAG peptides (all at the University of California-Berkeley).

Author information

Authors and Affiliations

Authors

Contributions

J.I.M. and M.B.F. conceived the project. J.I.M. developed the bioconjugation reaction and synthesized the 2PCA derivatives. H.K.M. performed the protein immobilization and binding experiments. H.K.M. and T.M. performed the expression and purification of uteroglobin and the human estrogen receptor. J.I.M. and M.B.F. wrote the manuscript. All of the authors reviewed and contributed to the manuscript.

Corresponding author

Correspondence to Matthew B Francis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–13 and Supplementary Note. (PDF 1934 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MacDonald, J., Munch, H., Moore, T. et al. One-step site-specific modification of native proteins with 2-pyridinecarboxyaldehydes. Nat Chem Biol 11, 326–331 (2015). https://doi.org/10.1038/nchembio.1792

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1792

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research