Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrochemical labelling of hydroxyindoles with chemoselectivity for site-specific protein bioconjugation

Abstract

Electrochemistry has recently emerged as a powerful approach in small-molecule synthesis owing to its numerous attractive features, including precise control over the fundamental reaction parameters, mild reaction conditions and innate scalability. Even though these advantages also make it an attractive strategy for chemoselective modification of complex biomolecules such as proteins, such applications remain poorly developed. Here we report an electrochemically promoted coupling reaction between 5-hydroxytryptophan (5HTP) and simple aromatic amines—electrochemical labelling of hydroxyindoles with chemoselectivity (eCLIC)—that enables site-specific labelling of full-length proteins under mild conditions. Using genetic code expansion technology, the 5HTP residue can be incorporated into predefined sites of a recombinant protein expressed in either prokaryotic or eukaryotic hosts for subsequent eCLIC labelling. We used the eCLIC reaction to site-specifically label various recombinant proteins, including a full-length human antibody. Furthermore, we show that eCLIC is compatible with strain-promoted alkyne-azide and alkene-tetrazine click reactions, enabling site-specific modification of proteins at two different sites with distinct labels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electrochemical protein labelling strategies.
Fig. 2: Discovery and optimization of the eCLIC reaction.
Fig. 3: The substrate scope of eCLIC.
Fig. 4: Structural characterization of the eCLIC product.
Fig. 5: Functional conjugates of a full-length antibody using eCLIC.
Fig. 6: The eCLIC reaction is compatible with SPAAC and IEDDA.

Similar content being viewed by others

Data availability

Data supporting the findings of this study are available within the paper and its Supplementary Information. Crystallographic data for the structure reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition no. CCDC 2179454 (19). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/Search?Ccdcid=2179454. Source data are provided with this paper.

References

  1. Faraday, M. Siebente reihe von experimental‐Untersuchungen über Elektricität. Ann. Phys. 109, 481–520 (1834).

    Google Scholar 

  2. Kolbe, H. Beobachtungen über die oxydirende Wirkung des Sauerstoffs, wenn derselbe mit Hülfe einer elektrischen Säule entwickelt wird. J. Prakt. Chem. 41, 137–139 (1847).

    Google Scholar 

  3. Horn, E. J., Rosen, B. R. & Baran, P. S. Synthetic organic electrochemistry: an enabling and innately sustainable method. ACS Central Sci. 2, 302–308 (2016).

    CAS  Google Scholar 

  4. Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Little, R. D. A perspective on organic electrochemistry. J. Org. Chem. 85, 13375–13390 (2020).

    CAS  PubMed  Google Scholar 

  6. Zhu, C., Ang, N. W. J., Meyer, T. H., Qiu, Y. & Ackermann, L. Organic electrochemistry: molecular syntheses with potential. ACS Central Sci. 7, 415–431 (2021).

    CAS  Google Scholar 

  7. Spicer, C. D. & Davis, B. G. Selective chemical protein modification. Nat. Commun. 5, 4740 (2014).

    ADS  CAS  PubMed  Google Scholar 

  8. Stephanopoulos, N. & Francis, M. B. Choosing an effective protein bioconjugation strategy. Nat. Chem. Biol. 7, 876–884 (2011).

    CAS  PubMed  Google Scholar 

  9. Boutureira, O. & Bernardes, Ga. J. Advances in chemical protein modification. Chem. Rev. 115, 2174–2195 (2015).

    CAS  PubMed  Google Scholar 

  10. deGruyter, J. N., Malins, L. R. & Baran, P. S. Residue-specific peptide modification: a chemist’s guide. Biochemistry 56, 3863–3873 (2017).

    CAS  PubMed  Google Scholar 

  11. Lang, K. & Chin, J. W. Bioorthogonal reactions for labeling proteins. ACS Chem. Biol. 9, 16–20 (2014).

    CAS  PubMed  Google Scholar 

  12. McKay, C. S. & Finn, M. G. Click chemistry in complex mixtures: bioorthogonal bioconjugation. Chem. Biol. 21, 1075–1101 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Shih, H. W., Kamber, D. N. & Prescher, J. A. Building better bioorthogonal reactions. Curr. Opin. Chem. Biol. 21, 103–111 (2014).

    CAS  PubMed  Google Scholar 

  14. Sletten, E. M. & Bertozzi, C. R. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. 48, 6974–6998 (2009).

    CAS  Google Scholar 

  15. Kim, C. H., Axup, J. Y. & Schultz, P. G. Protein conjugation with genetically encoded unnatural amino acids. Curr. Opin. Chem. Biol. 17, 412–419 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Scinto, S. L. et al. Bioorthogonal chemistry. Nat. Rev. Methods Primers 1, 30 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hoyt, E. A., Cal, P. M., Oliveira, B. L. & Bernardes, G. J. Contemporary approaches to site-selective protein modification. Nat. Rev. Chem. 3, 147–171 (2019).

    CAS  Google Scholar 

  18. Walsh, S. J. et al. Site-selective modification strategies in antibody-drug conjugates. Chem. Soc. Rev. 50, 1305–1353 (2021).

    CAS  PubMed  Google Scholar 

  19. Bloom, S. et al. Decarboxylative alkylation for site-selective bioconjugation of native proteins via oxidation potentials. Nat. Chem. 10, 205–211 (2018).

    CAS  PubMed  Google Scholar 

  20. Lin, S. et al. Redox-based reagents for chemoselective methionine bioconjugation. Science 355, 597–602 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Patterson, D. M. & Prescher, J. A. Orthogonal bioorthogonal chemistries. Curr. Opin. Chem. Biol. 28, 141–149 (2015).

    CAS  PubMed  Google Scholar 

  22. Italia, J. S. et al. Mutually orthogonal nonsense-suppression systems and conjugation chemistries for precise protein labeling at up to three distinct sites. J. Am. Chem. Sci. 141, 6204–6212 (2019).

    CAS  Google Scholar 

  23. Bednar, R. M., Karplus, P. A. & Mehl, R. A. Site-specific dual encoding and labeling of proteins via genetic code expansion. Cell Chem. Biol. 30, 343–361 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Osgood, A. O. et al. An efficient opal-suppressor tryptophanyl pair creates new routes for simultaneously incorporating up to three distinct noncanonical amino acids into proteins in mammalian cells. Angew. Chem. Int. Ed. 62, e202219269 (2023).

    CAS  Google Scholar 

  25. Mackay, A. S., Payne, R. J. & Malins, L. R. Electrochemistry for the chemoselective modification of peptides and proteins. J. Am. Chem. Soc. 144, 23–41 (2022).

    CAS  PubMed  Google Scholar 

  26. Song, C. et al. Electrochemical oxidation induced selective tyrosine bioconjugation for the modification of biomolecules. Chem. Sci. 10, 7982–7987 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Alvarez-Dorta, D. et al. Electrochemically promoted tyrosine-click-chemistry for protein labeling. J. Am. Chem. Sci. 140, 17120–17126 (2018).

    CAS  Google Scholar 

  28. Sato, S. et al. Site-selective protein chemical modification of exposed tyrosine residues using tyrosine click reaction. Bioconjug. Chem. 31, 1417–1424 (2020).

    CAS  PubMed  Google Scholar 

  29. Depienne, S. et al. Luminol anchors improve the electrochemical-tyrosine-click labelling of proteins. Chem. Sci. 12, 15374–15381 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Seki, Y. et al. Transition metal-free tryptophan-selective bioconjugation of proteins. J. Am. Chem. Sci. 138, 10798–10801 (2016).

    CAS  Google Scholar 

  31. Toyama, E. et al. Electrochemical tryptophan-selective bioconjugation. Preprint at https://chemrxiv.org/engage/chemrxiv/article-details/60c740a4567dfe14a1ec3c1a (2019).

  32. Kendall, G. et al. Specific electrochemical nitration of horse heart myoglobin. Arch. Biochem. Biophys. 392, 169–179 (2001).

    CAS  PubMed  Google Scholar 

  33. Iniesta, J. et al. Specific electrochemical iodination of horse heart myoglobin at tyrosine 103 as determined by Fourier transform ion cyclotron resonance mass spectrometry. Arch. Biochem. Biophys. 474, 1–7 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Baran, P. S., Guerrero, C. A. & Corey, E. J. The first method for protection−deprotection of the indole 2,3-π bond. Org. Lett. 5, 1999–2001 (2003).

    CAS  PubMed  Google Scholar 

  35. Decoene, K. et al. Protein conjugation with triazolinediones: switching from a general tyrosine-selective labeling method to a highly specific tryptophan bioconjugation strategy. Preprint at https://chemrxiv.org/engage/chemrxiv/article-details/60c754d0842e650404db4222 (2021).

  36. Italia, J. S. et al. An orthogonalized platform for genetic code expansion in both bacteria and eukaryotes. Nat. Chem. Biol. 13, 446–450 (2017).

    CAS  PubMed  Google Scholar 

  37. White, A. M., Palombi, I. R. & Malins, L. R. Umpolung strategies for the functionalization of peptides and proteins. Chem. Sci. 13, 2809–2823 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Jewett, J. C. & Bertozzi, C. R. Cu-free click cycloaddition reactions in chemical biology. Chem. Soc. Rev. 39, 1272–1279 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Devaraj, N. K. & Weissleder, R. Biomedical applications of tetrazine cycloadditions. Acc. Chem. Res. 44, 816–827 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Chin, J. W. Expanding and reprogramming the genetic code. Nature 550, 53–60 (2017).

    ADS  CAS  PubMed  Google Scholar 

  41. Italia, J. S. et al. Expanding the genetic code of mammalian cells. Biochem. Soc. Trans. 45, 555–562 (2017).

    CAS  PubMed  Google Scholar 

  42. Young, D. D. & Schultz, P. G. Playing with the molecules of life. ACS Chem. Biol. 13, 854–870 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ficaretta, E. D. et al. A robust platform for unnatural amino acid mutagenesis in E. coli using the bacterial tryptophanyl-tRNA synthetase/tRNA pair. J. Mol. Biol. 434, 167304 (2022).

    CAS  PubMed  Google Scholar 

  44. Addy, P. S., Erickson, S. B., Italia, J. S. & Chatterjee, A. A chemoselective rapid azo-coupling reaction (CRACR) for unclickable bioconjugation. J. Am. Chem. Sci. 139, 11670–11673 (2017).

    CAS  Google Scholar 

  45. Addy, P. S., Italia, J. S. & Chatterjee, A. An oxidative bioconjugation strategy targeted to a genetically encoded 5-hydroxytryptophan. Chembiochem 19, 1375–1378 (2018).

    Google Scholar 

  46. Addy, P. S., Zheng, Y., Italia, J. S. & Chatterjee, A. A ‘quenchergenic’ chemoselective protein labeling strategy. Chembiochem 20, 1659–1663 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Singha Roy, S. J. et al. Photoredox-catalyzed labeling of hydroxyindoles with chemoselectivity (PhotoCLIC) for site-specific protein bioconjugation. Angew. Chem. Int. Ed. 62, e202300961 (2023).

    CAS  Google Scholar 

  48. Humphries, K. A., Wrona, M. Z. & Dryhurst, G. Electrochemical and enzymatic oxidation of 5-hydroxytryptophan. J. Electroanal. Chem. 346, 377–403 (1993).

    CAS  Google Scholar 

  49. Napolitano, A., d’Ischia, M. & Prota, G. A profile of the oxidation chemistry of 5-hydroxyindole under biomimetic conditions. Tetrahedron 44, 7265–7270 (1988).

    CAS  Google Scholar 

  50. Wrona, M. Z. & Dryhurst, G. Oxidation of serotonin by superoxide radical: implications to neurodegenerative brain disorders. Chem. Res. Toxicol. 11, 639–650 (1998).

    CAS  PubMed  Google Scholar 

  51. Yamagishi, Y., Ashigai, H., Goto, Y., Murakami, H. & Suga, H. Ribosomal synthesis of cyclic peptides with a fluorogenic oxidative coupling reaction. Chembiochem 10, 1469–1472 (2009).

    CAS  PubMed  Google Scholar 

  52. Ferguson, W. J. et al. Hydrogen ion buffers for biological research. Anal. Biochem. 104, 300–310 (1980).

    CAS  PubMed  Google Scholar 

  53. Grady, J. K., Chasteen, N. D. & Harris, D. C. Radicals from ‘Good’s’ buffers. Anal. Biochem. 173, 111–115 (1988).

    CAS  PubMed  Google Scholar 

  54. Nutting, J. E., Rafiee, M. & Stahl, S. S. Tetramethylpiperidine N-oxyl (TEMPO), phthalimide N-oxyl (PINO), and related N-oxyl species: electrochemical properties and their use in electrocatalytic reactions. Chem. Rev. 118, 4834–4885 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Sheikholeslami, F. et al. Isolation of a novel nanobody against HER-2/neu using phage displays technology. Lab. Med. 41, 69–76 (2010).

    Google Scholar 

  56. Drago, J. Z., Modi, S. & Chandarlapaty, S. Unlocking the potential of antibody–drug conjugates for cancer therapy. Nat. Rev. Clin. Oncol. 18, 327–344 (2021).

    PubMed  PubMed Central  Google Scholar 

  57. Beck, A., Goetsch, L., Dumontet, C. & Corvaïa, N. Strategies and challenges for the next generation of antibody-drug conjugates. Nat. Rev. Drug Discov. 16, 315–337 (2017).

    CAS  PubMed  Google Scholar 

  58. Axup, J. Y. et al. Synthesis of site-specific antibody-drug conjugates using unnatural amino acids. Proc. Natl Acad. Sci. USA 109, 16101–16106 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. VanBrunt, M. P. et al. Genetically encoded azide containing amino acid in mammalian cells enables site-specific antibody-drug conjugates using click cycloaddition chemistry. Bioconjug. Chem. 26, 2249–2260 (2015).

    CAS  PubMed  Google Scholar 

  60. Agarwal, P. & Bertozzi, C. R. Site-specific antibody–drug conjugates: the nexus of bioorthogonal chemistry, protein engineering and drug development. Bioconjug. Chem. 26, 176–192 (2015).

    CAS  PubMed  Google Scholar 

  61. Tian, F. et al. A general approach to site-specific antibody drug conjugates. Proc. Natl Acad. Sci. USA 111, 1766–1771 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chen, Y. et al. Creation of bacterial cells with 5-hydroxytryptophan as a 21st amino acid building block. Chem 6, 2717–2727 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Roy, G. et al. Development of a high yielding expression platform for the introduction of non-natural amino acids in protein sequences. mAbs 12, 1684749 (2020).

    PubMed  Google Scholar 

  64. Lang, K. et al. Genetically encoded norbornene directs site-specific cellular protein labelling via a rapid bioorthogonal reaction. Nat. Chem. 4, 298–304 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Zheng, Y., Addy, P. S., Mukherjee, R. & Chatterjee, A. Defining the current scope and limitations of dual noncanonical amino acid mutagenesis in mammalian cells. Chem. Sci. 8, 7211–7217 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Backliwal, G. et al. Rational vector design and multi-pathway modulation of HEK 293E cells yield recombinant antibody titers exceeding 1 g/l by transient transfection under serum-free conditions. Nucleic Acids Res. 36, e96 (2008).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (2128185 to A.C.) and by the NIH (R35GM134964 to E.W., R35GM136437 to A.C.). We thank M. Waegele (Boston College) for insightful discussions, B. Li (Director, XRD facility, B.C.) and T. Jayasundera (Director, NMR facilities, B.C.) for their assistance. The funding agencies had no role in study design.

Author information

Authors and Affiliations

Authors

Contributions

A.C., C.L. and S.J.S.R. designed the experiments and interpreted data. C.L. conducted bioconjugation experiments. S.J.S.R. generated the synthetic probes and performed structural characterizations. V.J.O. assisted with CV and earlier electrochemistry experiments. S.E.C. and E.W. performed trypsin digestion/MS and associated analysis. A.M. optimized the eCLIC modification of nanobody 5F7. D.J. assisted with flow cytometry analyses. E.D.F. assisted with bacterial expression of 5HTP-containing proteins. A.C., C.L. and S.J.S.R. prepared the manuscript. A.C. supervised the project.

Corresponding author

Correspondence to Abhishek Chatterjee.

Ethics declarations

Competing interests

A patent application on the eCLIC technology reported here has been submitted. A.C. is a cofounder and senior advisor of BrickBio, Inc. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Sébastien Gouin, Wen-Bin Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information

Reporting Summary

Supplementary File 1

Crystal structure of NBoc–OMe–5HTP adduct with N,N-dimethylaniline

Source data

Source Data Fig. 5e

Raw data from MTT assay

Source Data Fig. 5c

Uncropped gels Fig 5c

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loynd, C., Singha Roy, S.J., Ovalle, V.J. et al. Electrochemical labelling of hydroxyindoles with chemoselectivity for site-specific protein bioconjugation. Nat. Chem. 16, 389–397 (2024). https://doi.org/10.1038/s41557-023-01375-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01375-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing