Articles

Filter By:

  • A tailored proteomics workflow to identify endogenous protein pyrophosphorylation in human cells was developed, revealing the dependence of the modification on inositol pyrophosphates and a putative function in rDNA transcription.

    • Jeremy A. M. Morgan
    • Arpita Singh
    • Dorothea Fiedler
    ArticleOpen Access
  • Cryo-electron microscopy (cryo-EM), kinetic analysis and single-molecule biochemistry reveal how the tubulin tyrosine ligase-like 6 (TTLL6) glutamylase binds reads microtubule geometry and modification state of neighboring tubulins, enabling a spatial positive feedback loop for microtubule modification.

    • Kishore K. Mahalingan
    • Danielle A. Grotjahn
    • Antonina Roll-Mecak
    Article
  • Calcium signals are typically traced through electrophysical, optical and genetic methods. Here the authors report the development of Cal-ID, a calcium-dependent protein proximity labeling tool that can be used to record elevated calcium levels in cells.

    • J. Wren Kim
    • Adeline J. H. Yong
    • Nicholas T. Ingolia
    Article
  • Developing disease-modifying drugs for neurodegenerative diseases has been very challenging. Now a machine learning approach has been used to identify small molecule inhibitors of α-synuclein aggregation, a process implicated in Parkinson’s disease and other synucleinopathies. Compounds that bind to the catalytic sites on the surface of the aggregates were identified and then progressively optimized into secondary nucleation inhibitors.

    • Robert I. Horne
    • Ewa A. Andrzejewska
    • Michele Vendruscolo
    ArticleOpen Access
  • A proteomics and computational approach was developed to map the proximal proteome of the activated μ-opioid receptor and to extract subcellular location, trafficking and functional partners of G-protein-coupled receptor activity.

    • Benjamin J. Polacco
    • Braden T. Lobingier
    • Ruth Hüttenhain
    Article
  • Huang et al. developed E3-substrate tagging by ubiquitin biotinylation (E-STUB), a proximity labeling-based method for direct identification of ubiquitylated substrates for a given E3 ligase, providing a useful tool for substrate discovery of targeted protein degradation and the understanding of E3 ligase function.

    • Hai-Tsang Huang
    • Ryan J. Lumpkin
    • William R. Sellers
    Article
  • Hypoxia induces ·NO-dependent hydrogen sulfide (H2S) biogenesis by inhibiting the transsulfuration pathway. H2S oxidation promotes endothelial cell proliferation to support neovascularization in tissue injury and tumor xenograft models.

    • Roshan Kumar
    • Victor Vitvitsky
    • Ruma Banerjee
    Article
  • An approach to design proteins that can capture amyloidogenic protein regions present in, for example, tau and Aβ42 has now been developed. These designer proteins can inhibit the formation of pathogenic amyloid fibrils and protect cells from toxic species.

    • Danny D. Sahtoe
    • Ewa A. Andrzejewska
    • David Baker
    ArticleOpen Access
  • The study demonstrates that specific recognition and custom binding geometries can be computationally encoded between protein spans within lipids through designing synthetic transmembrane proteins to functionally regulate a target cytokine receptor.

    • Marco Mravic
    • Li He
    • William F. DeGrado
    ArticleOpen Access
  • NMR and Raman spectroscopies pinpoint the role of the protein droplet surface and RNA in the liquid droplet maturation mechanism of the FUS protein. A crust-like β-sheet structure is formed on the surface of FUS droplets during aging.

    • Leonidas Emmanouilidis
    • Ettore Bartalucci
    • Frédéric H.-T. Allain
    ArticleOpen Access
  • Aerobic glycolysis is a hallmark of fast-growing cells, but it is unclear whether glycolysis was selected for its speed. Glycolysis produces ATP slower than respiration (per protein mass) and is beneficial for rendering cells robust to hypoxia.

    • Yihui Shen
    • Hoang V. Dinh
    • Joshua D. Rabinowitz
    Article