Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structures and mechanisms of tRNA methylation by METTL1–WDR4

Abstract

Specific, regulated modification of RNAs is important for proper gene expression1,2. tRNAs are rich with various chemical modifications that affect their stability and function3,4. 7-Methylguanosine (m7G) at tRNA position 46 is a conserved modification that modulates steady-state tRNA levels to affect cell growth5,6. The METTL1–WDR4 complex generates m7G46 in humans, and dysregulation of METTL1–WDR4 has been linked to brain malformation and multiple cancers7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22. Here we show how METTL1 and WDR4 cooperate to recognize RNA substrates and catalyse methylation. A crystal structure of METTL1–WDR4 and cryo-electron microscopy structures of METTL1–WDR4–tRNA show that the composite protein surface recognizes the tRNA elbow through shape complementarity. The cryo-electron microscopy structures of METTL1–WDR4–tRNA with S-adenosylmethionine or S-adenosylhomocysteine along with METTL1 crystal structures provide additional insights into the catalytic mechanism by revealing the active site in multiple states. The METTL1 N terminus couples cofactor binding with conformational changes in the tRNA, the catalytic loop and the WDR4 C terminus, acting as the switch to activate m7G methylation. Thus, our structural models explain how post-translational modifications of the METTL1 N terminus can regulate methylation. Together, our work elucidates the core and regulatory mechanisms underlying m7G modification by METTL1, providing the framework to understand its contribution to biology and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Architecture of the human METTL1–WDR4 complex.
Fig. 2: Architecture of the METTL1–WDR4–tRNA complex in three states.
Fig. 3: Structural recognition of tRNA shape by METTL1–WDR4.
Fig. 4: Detailed view of the active site.
Fig. 5: METTL1 N terminus coordinates SAH binding with RNA and protein conformational changes.
Fig. 6: Mechanistic model for tRNA m7G46 methylation by METTL1–WDR4.

Similar content being viewed by others

Data availability

The atomic models for METTL1–WDR4 (8D58), METTL1–WDR4–tRNA (8D9K), METTL1–SAM (8D59), METTL1–SAH (8D5B), METTL1–WDR4–tRNA–SAM (8D9L) and METTL1–WDR4–tRNA–SAH (8EG0) are deposited in the PDB (https://www.rcsb.org/). Cryo-EM maps and masks of METTL1–WDR4–tRNA (EMD-27264), METTL1–WDR4–tRNA–SAM (EMD-27265) and METTL1–WDR4–tRNA–SAH (EMD-28108) used to build the models are deposited in the Electron Microscopy Data Bank (https://www.ebi.ac.uk/pdbe/emdb/).

References

  1. Frye, M., Harada, B. T., Behm, M. & He, C. RNA modifications modulate gene expression during development. Science 361, 1346–1349 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wiener, D. & Schwartz, S. The epitranscriptome beyond m6A. Nat. Rev. Genet. 22, 119–131 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Pan, T. Modifications and functional genomics of human transfer RNA. Cell Res. 28, 395–404 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Suzuki, T. The expanding world of tRNA modifications and their disease relevance. Nat. Rev. Mol. Cell Biol. 22, 375–392 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Alexandrov, A., Martzen, M. R. & Phizicky, E. M. Two proteins that form a complex are required for 7-methylguanosine modification of yeast tRNA. RNA 8, 1253–1266 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alexandrov, A. et al. Rapid tRNA decay can result from lack of nonessential modifications. Mol. Cell 21, 87–96 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Filonava, L., Torres, A. G. & Ribas de Pouplana, L. A novel cause for primordial dwarfism revealed: defective tRNA modification. Genome Biol. 16, 216 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Shaheen, R. et al. Mutation in WDR4 impairs tRNA m7G46 methylation and causes a distinct form of microcephalic primordial dwarfism. Genome Biol. 16, 210 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Trimouille, A. et al. Further delineation of the phenotype caused by biallelic variants in the WDR4 gene. Clin. Genet. 93, 374–377 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Chen, X. et al. Speech and language delay in a patient with WDR4 mutations. Eur. J. Med. Genet. 61, 468–472 (2018).

    Article  PubMed  Google Scholar 

  11. Orellana, E. A. et al. METTL1-mediated m7G modification of Arg-TCT tRNA drives oncogenic transformation. Mol. Cell 81, 3323–3338.e14 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dai, Z. et al. N7-methylguanosine tRNA modification enhances oncogenic mRNA translation and promotes intrahepatic cholangiocarcinoma progression. Mol. Cell 81, 3339–3355.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Ying, X. et al. METTL1-m7G-EGFR/EFEMP1 axis promotes the bladder cancer development. Clin. Transl. Med. 11, e675 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Han, H. et al. N7-methylguanosine tRNA modification promotes esophageal squamous cell carcinoma tumorigenesis via the RPTOR/ULK1/autophagy axis. Nat. Commun. 13, 1478 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen, Z. et al. METTL1 promotes hepatocarcinogenesis via m7G tRNA modification-dependent translation control. Clin. Transl. Med. 11, e661 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen, J. et al. Aberrant translation regulated by METTL1/WDR4-mediated tRNA N7-methylguanosine modification drives head and neck squamous cell carcinoma progression. Cancer Commun. 42, 223–244 (2022).

    Article  Google Scholar 

  17. Wang, C. et al. Methyltransferase-like 1 regulates lung adenocarcinoma A549 cell proliferation and autophagy via the AKT/mTORC1 signaling pathway. Oncol. Lett. 21, 330 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ma, J. et al. METTL1/WDR4-mediated m7G tRNA modifications and m7G codon usage promote mRNA translation and lung cancer progression. Mol. Ther. 29, 3422–3435 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu, Y. et al. Overexpressed methyltransferase-like 1 (METTL1) increased chemosensitivity of colon cancer cells to cisplatin by regulating miR-149-3p/S100A4/p53 axis. Aging 11, 12328–12344 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tian, Q. H. et al. METTL1 overexpression is correlated with poor prognosis and promotes hepatocellular carcinoma via PTEN. J. Mol. Med. 97, 1535–1545 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Chen, B. et al. N7-methylguanosine tRNA modification promotes tumorigenesis and chemoresistance through WNT/β-catenin pathway in nasopharyngeal carcinoma. Oncogene 41, 2239–2253 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Luo, Y. et al. The potential role of N7-methylguanosine (m7G) in cancer. J. Hematol. Oncol. 15, 63 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Suzuki, T. in Fine-Tuning of RNA Functions by Modification and Editing (ed. Grosjean, H.) 23–69 (Springer, 2005).

  24. Motorin, Y. & Helm, M. tRNA stabilization by modified nucleotides. Biochemistry 49, 4934–4944 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Lorenz, C., Lunse, C. E. & Morl, M. tRNA modifications: impact on structure and thermal adaptation. Biomolecules 7, 35 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ohira, T. et al. Reversible RNA phosphorylation stabilizes tRNA for cellular thermotolerance. Nature 605, 372–379 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jonkhout, N. et al. The RNA modification landscape in human disease. RNA 23, 1754–1769 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kirchner, S. & Ignatova, Z. Emerging roles of tRNA in adaptive translation, signalling dynamics and disease. Nat. Rev. Genet. 16, 98–112 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Boccaletto, P. et al. MODOMICS: a database of RNA modification pathways. 2021 Update. Nucleic Acids Res. 50, D231–D235 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Juhling, F. et al. tRNAdb 2009: compilation of tRNA sequences and tRNA genes. Nucleic Acids Res. 37, D159–D162 (2009).

    Article  PubMed  Google Scholar 

  31. Alexandrov, A., Grayhack, E. J. & Phizicky, E. M. tRNA m7G methyltransferase Trm8p/Trm82p: evidence linking activity to a growth phenotype and implicating Trm82p in maintaining levels of active Trm8p. RNA 11, 821–830 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wu, J., Hou, J. H. & Hsieh, T. S. A new Drosophila gene wh (wuho) with WD40 repeats is essential for spermatogenesis and has maximal expression in hub cells. Dev. Biol. 296, 219–230 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lin, S. et al. Mettl1/Wdr4-mediated m7G tRNA methylome is required for normal mRNA translation and embryonic stem cell self-renewal and differentiation. Mol. Cell 71, 244–255.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Deng, Y., Zhou, Z., Ji, W., Lin, S. & Wang, M. METTL1-mediated m7G methylation maintains pluripotency in human stem cells and limits mesoderm differentiation and vascular development. Stem Cell Res. Ther. 11, 306 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. De Bie, L. G. et al. The yggH gene of Escherichia coli encodes a tRNA (m7G46) methyltransferase. J. Bacteriol. 185, 3238–3243 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhou, H. et al. Monomeric tRNA (m7G46) methyltransferase from Escherichia coli presents a novel structure at the function-essential insertion. Proteins 76, 512–515 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Leulliot, N. et al. Structure of the yeast tRNA m7G methylation complex. Structure 16, 52–61 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Cartlidge, R. A. et al. The tRNA methylase METTL1 is phosphorylated and inactivated by PKB and RSK in vitro and in cells. EMBO J. 24, 1696–1705 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Okamoto, M. et al. tRNA modifying enzymes, NSUN2 and METTL1, determine sensitivity to 5-fluorouracil in HeLa cells. PLoS Genet. 10, e1004639 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Benas, P. et al. The crystal structure of HIV reverse-transcription primer tRNA(Lys,3) shows a canonical anticodon loop. RNA 6, 1347–1355 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bou-Nader, C. et al. HIV-1 matrix-tRNA complex structure reveals basis for host control of Gag localization. Cell Host Microbe 29, 1421–1436.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Finer-Moore, J., Czudnochowski, N., O’Connell, J. D. 3rd, Wang, A. L. & Stroud, R. M. Crystal structure of the human tRNA m1A58 methyltransferase-tRNA3Lys complex: refolding of substrate tRNA allows access to the methylation target. J. Mol. Biol. 427, 3862–3876 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Blersch, K. F. et al. Structural model of the M7G46 methyltransferase TrmB in complex with tRNA. RNA Biol 18, 2466–2479 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Matsumoto, K. et al. RNA recognition mechanism of eukaryote tRNA (m7G46) methyltransferase (Trm8–Trm82 complex). FEBS Lett. 581, 1599–1604 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Schultz, S. K. & Kothe, U. tRNA elbow modifications affect the tRNA pseudouridine synthase TruB and the methyltransferase TrmA. RNA 26, 1131–1142 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Akimov, V. et al. UbiSite approach for comprehensive mapping of lysine and N-terminal ubiquitination sites. Nat. Struct. Mol. Biol. 25, 631–640 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Studier, F. W. Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Minor, W., Cymborowski, M., Otwinowski, Z. & Chruszcz, M. HKL-3000: the integration of data reduction and structure solution—from diffraction images to an initial model in minutes. Acta Crystallogr. D Biol. Crystallogr. 62, 859–866 (2006).

    Article  PubMed  Google Scholar 

  49. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  51. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Petrov, A., Wu, T., Puglisi, E. V. & Puglisi, J. D. RNA purification by preparative polyacrylamide gel electrophoresis. Methods Enzymol. 530, 315–330 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    Article  PubMed  Google Scholar 

  54. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Bepler, T. et al. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat. Methods 16, 1153–1160 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67, 355–367 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Cryo-Electron Microscopy Facility (Cancer Prevention Research Institute of Texas (CPRIT) RP170644) and the Structural Biology Laboratory (CPRIT RP220582) at UT Southwestern for support with synchrotron and cryo-EM data collection. The use of the SBC 19-ID beamline at Advanced Photon Source is supported by the US Department of Energy contract DE-AC02-06CH11357. This work was supported by the US National Institutes of Health (R01GM122960 and R01CA258589), CPRIT (RP190259) and the Welch Foundation (I-2115-20220331). Y.N. is a Packard Fellow, Pew Scholar and Southwestern Medical Foundation Scholar in Biomedical Research.

Author information

Authors and Affiliations

Authors

Contributions

Y.N. conceived and supervised the study. V.M.R.-A. prepared the cryo-EM grids, collected data, determined cryo-EM structures and refined the atomic models using cryo-EM maps. R.R. prepared crystals and collected diffraction data. R.R. and K.B. performed data processing, model building and refinement for the crystal structures. V.M.R.-A., R.R., K.B., O.O. and P.H.R. produced recombinant proteins and RNAs and performed biochemical assays. V.M.R.-A. and Y.N. prepared the manuscript with help from all other co-authors.

Corresponding author

Correspondence to Yunsun Nam.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Hauke Hillen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 METTL1-WDR4 protein purification and tRNA complex reconstitution.

a, SDS-PAGE of purified full-length wild-type METTL1-WDR4 complex. A representative gel among 3 replicates is shown. b, EMSA to measure the affinity for tRNALys. For each gel, protein concentrations are 0, 16, 32, 65, and 130 nM, left to right. Representative gel among 3 replicates is shown. c, Quantification of EMSA for METTL1-WDR4 from 3 replicate experiments. d, Superimposition of yeast Trm8-Trm82 (PDB 2VDU, orange) onto the crystal structure of human METTL1-WDR4. The complex structures were superimposed by aligning METTL1 with Trm8. e-g, Superimposition of METTL1 structures as indicated. The structures missing PDB codes are from this study.

Extended Data Fig. 2 Cryo-EM data processing for the METTL1-WDR4-tRNALys structure.

a, Cryo-EM data processing workflow. Left, a representative micrograph of the METTL1-WDR4-tRNA complex particles. A total of 16,993 images were used for picking and 2D classification. 2D class averages that showed high-resolution features were used for further 3D analysis using Cryosparc. 3D classification identified different populations that showed partial or no density around the anticodon arm. 3D classification applying the indicated mask revealed a homogeneous population of particles showing contiguous density in the tRNA region. b, Angular distribution plot. c, Local resolution map shown with colors on the sharpened map. d, Directional FSC plot and FSC curves showing the resolution at 0.143 cutoff.

Extended Data Fig. 3 Cryo-EM data processing for the METTL1-WDR4-tRNALys-SAM structure.

a, Cryo-EM data processing workflow. Left, a representative micrograph of the METTL1-WDR4-tRNA-SAM complex particles. A total of 5,607 images were used for picking and 2D classification. 2D class averages that showed high-resolution features were used for further 3D analysis using Cryosparc. 3D classification identified different populations that showed partial density around the anticodon arm. 3D classification applying the indicated mask revealed a homogeneous population of particles showing contiguous density in the tRNA region. b, Angular distribution plot. c, Local resolution map shown with colors on the sharpened map. d, Directional FSC plot and FSC curves showing the resolution at 0.143 cutoff.

Extended Data Fig. 4 Cryo-EM data processing for the METTL1-WDR4-tRNALys-SAH structure.

a, Cryo-EM data processing workflow. Left, a representative micrograph of the METTL1-WDR4-tRNA-SAH complex particles. A total of 6,120 images were used for picking and 2D classification. 2D class averages that showed high-resolution features were used for further 3D analysis using Cryosparc. 3D variability analysis identified a population of particles that showed consistent density for the WDR4 C-terminal helix and several rounds of 3D Heterogeneous Refinement identified particles showing prominent density for G46. b, Angular distribution plot. c, Local resolution map shown with colors on the sharpened map. d, Directional FSC plot and FSC curves showing the resolution at 0.143 cutoff.

Extended Data Fig. 5 Conformational changes in structures containing the METTL1-WDR4-tRNA complex.

a, Superimposition of the METTL1-WDR4 crystal structure on the METTL1-WDR4-tRNA cryo-EM structure, aligned by METTL1. b, Flexible loop of METTL1 (161–175, catalytic loop) becomes more ordered with RNA. c, Superimposition of different tRNALys structures. All three have the same sequence except the tips of the anticodon arm and the acceptor arm. The B. Taurus structure (PDB:1FIR) was with a fully modified tRNA and the other two structures were obtained for unmodified RNA after in vitro transcription. d, Superimposition of the METTL1-WDR4 crystal structure (gray) onto the SAH-bound quaternary complex cryo-EM structure (multiple colors), aligned by WDR4. Movement of the WDR4 C-terminal helix upon binding RNA is shown with a dashed arrow. e, Superimposition of all three cryo-EM structures (colored by state) presented in this study, aligned by WDR4. f. Surface representation of the SAH-bound cryo-EM structure colored by evolutionary sequence conservation (Consurf server). The orientation is identical to Fig. 3a and b.

Extended Data Fig. 6 Structural and sequence organization of tRNA.

a-b, Sharpened cryo-EM map (mesh) near the SAH-binding site (a) and the G46 binding pocket (b). c, Sequence alignment of the human tRNAs used in this study shaded by conservation. Red boxes indicate nucleobases within 4 Å of protein. Sequences were aligned using Clustal Omega and visualized by Geneious Prime. d, In vitro methylation activity of full-length METTL1-WDR4 for the indicated tRNAs with the specified variable loop sequences, shown as mean ± SD from 3 replicates. e, EMSA using METTL1-WDR4 with different tRNAs shows no dramatic differences in affinities. Representative images from 3 replicate experiments are shown. For each gel, protein concentrations are 0, 16, 32, 65, and 130 nM, left to right.

Extended Data Fig. 7 Sequence alignment of METTL1 protein homologs.

Sequences used are from human (Q9UBP6), Mus musculus (Q9Z120), Bos taurus (Q2YDF1), Xenopus laevis (Q6NU94), Danio rerio (Q5XJ57), Drosophila melanogaster (O77263), Caenorhabditis elegans (Q23126) and Saccharomyces cerevisiae (Q12009) METTL1. Sequences were aligned using Clustal Omega and visualized by Geneious Prime. Residues within 4 Å of RNA in different states are indicated with asterisks.

Extended Data Fig. 8 Sequence alignment of WDR4 protein homologs.

Sequences used are from human (P57081), Mus musculus (Q9EP82), Bos taurus (A7E3S5), Xenopus laevis (Q7ZY78), Danio rerio (A4IGH4), Drosophila melanogaster (Q9W415), Caenorhabditis elegans (Q23232) and Saccharomyces cerevisiae (A6ZYC3) WDR4. Sequences were aligned using Clustal Omega and visualized by Geneious Prime. Residues within 4 Å of RNA in different states are indicated with asterisks.

Extended Data Table 1 Crystallography Data Collection and Refinement Statistics
Extended Data Table 2 Cryo-EM Data Collection, Refinement, and Validation Statistics

Supplementary information

Supplementary Information

This file contains Supplementary Figs. 1 and 2.

Reporting Summary

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz-Arroyo, V.M., Raj, R., Babu, K. et al. Structures and mechanisms of tRNA methylation by METTL1–WDR4. Nature 613, 383–390 (2023). https://doi.org/10.1038/s41586-022-05565-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05565-5

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing