Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites

Abstract

Amorphous metal oxides are useful in optical1,2, electronic3,4,5 and electrochemical devices6,7. The bonding arrangement within these glasses largely determines their properties, yet it remains a challenge to manipulate their structures in a controlled manner. Recently, we developed synthetic protocols for incorporating nanocrystals that are covalently bonded into amorphous materials8,9. This ‘nanocrystal-in-glass’ approach not only combines two functional components in one material, but also the covalent link enables us to manipulate the glass structure to change its properties. Here we illustrate the power of this approach by introducing tin-doped indium oxide nanocrystals into niobium oxide glass (NbOx), and realize a new amorphous structure as a consequence of linking it to the nanocrystals. The resulting material demonstrates a previously unrealized optical switching behaviour that will enable the dynamic control of solar radiation transmittance through windows. These transparent films can block near-infrared and visible light selectively and independently by varying the applied electrochemical voltage over a range of 2.5 volts. We also show that the reconstructed NbOx glass has superior properties—its optical contrast is enhanced fivefold and it has excellent electrochemical stability, with 96 per cent of charge capacity retained after 2,000 cycles.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nanocrystal-in-glass film preparation and structural characterization.
Figure 2: Raman analysis probing the reconstruction of a NbOx glass matrix when linked to nanocrystals.
Figure 3: ITO nanocrystals covalently linked to amorphous NbOx.
Figure 4: Tunable dual-band solar control and optical contrast enhancement in nanocrystal-in-glass films.

References

  1. Lines, M. E. Oxide glasses for fast photonic switching—a comparative study. J. Appl. Phys. 69, 6876–6884 (1991)

    Article  ADS  CAS  Google Scholar 

  2. Kim, S. H. & Yoko, T. Non-linear optical properties of TeO2-based glasses: MO(X)-TeO2 (M = Sc, TI, V, Nb, Mo, Ta, and W) binary glasses. J. Am. Ceram. Soc. 78, 1061–1065 (1995)

    Article  CAS  Google Scholar 

  3. Nomura, K. et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488–492 (2004)

    Article  ADS  CAS  Google Scholar 

  4. Arhammar, C. et al. Unveiling the complex electronic structure of amorphous metal oxides. Proc. Natl Acad. Sci. USA 108, 6355–6360 (2011)

    Article  ADS  Google Scholar 

  5. Kim, Y.-H. et al. Flexible metal-oxide devices made by room-temperature photochemical activation of sol-gel films. Nature 489, 128–132 (2012)

    Article  ADS  CAS  Google Scholar 

  6. Idota, Y., Kubota, T., Matsufuji, A., Maekawa, Y. & Miyasaka, T. Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science 276, 1395–1397 (1997)

    Article  CAS  Google Scholar 

  7. Granqvist, C. G. Handbook of Inorganic Electrochromic Materials (Elsevier Science, 2002)

    Google Scholar 

  8. Tangirala, R., Baker, J. L., Alivisatos, A. P. & Milliron, D. J. Modular inorganic nanocomposites by conversion of nanocrystal superlattices. Angew. Chem. Int. Ed. 49, 2878–2882 (2010)

    Article  CAS  Google Scholar 

  9. Llordes, A. et al. Polyoxometalates and colloidal nanocrystals as building blocks for metal oxide nanocomposite films. J. Mater. Chem. 21, 11631–11638 (2011)

    Article  CAS  Google Scholar 

  10. Rosenflanz, A. et al. Bulk glasses and ultrahard nanoceramics based on alumina and rare-earth oxides. Nature 430, 761–764 (2004)

    Article  ADS  CAS  Google Scholar 

  11. Falcão-Filho, E. L. et al. Third-order optical nonlinearity of a transparent glass ceramic containing sodium niobate nanocrystals. Phys. Rev. B 69, 134204 (2004)

    Article  ADS  Google Scholar 

  12. Mattarelli, M., Gasperi, G., Montagna, M. & Verrocchio, P. Transparency and long-ranged fluctuations: the case of glass ceramics. Phys. Rev. B 82, 094204 (2010)

    Article  ADS  Google Scholar 

  13. Schirmeisen, A. et al. Fast interfacial ionic conduction in nanostructured glass ceramics. Phys. Rev. Lett. 98, 225901 (2007)

    Article  ADS  Google Scholar 

  14. Zhou, H. S., Li, D. L., Hibino, M. & Honma, I. A self-ordered, crystalline-glass, mesoporous nanocomposite for use as a lithium-based storage device with both high power and high energy densities. Angew. Chem. Int. Ed. 44, 797–802 (2005)

    Article  CAS  Google Scholar 

  15. Dong, W. et al. Controllable and repeatable synthesis of thermally stable anatase nanocrystal-silica composites with highly ordered hexagonal mesostructures. J. Am. Chem. Soc. 129, 13894–13904 (2007)

    Article  CAS  Google Scholar 

  16. Sakamoto, A. & Yamamoto, S. Glass–ceramics: engineering principles and applications. Int. J. Appl. Glass Sci. 1, 237–247 (2010)

    Article  CAS  Google Scholar 

  17. Dong, A. et al. A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. J. Am. Chem. Soc. 133, 998–1006 (2011)

    Article  CAS  Google Scholar 

  18. Rosen, E. L. et al. Exceptionally mild reactive stripping of native ligands from nanocrystal surfaces by using Meerwein's salt. Angew. Chem. Int. Ed. 51, 684–689 (2012)

    Article  CAS  Google Scholar 

  19. McConnell, A. A., Anderson, J. S. & Rao, C. N. R. Raman-spectra of niobium oxides. Spectrochim. Acta 32, 1067–1076 (1976)

    Article  Google Scholar 

  20. Jehng, J. M. & Wachs, I. E. Structural chemistry and Raman-spectra of niobium oxides. Chem. Mater. 3, 100–107 (1991)

    Article  CAS  Google Scholar 

  21. Shelby, J. E. Introduction to Glass Science and Technology Ch. 2, 5 (Royal Society of Chemistry, 2005)

    Google Scholar 

  22. Monk, P., Mortimer, R. & Rosseinsky, D. Electrochromism and Electrochromic Devices Ch. 2 (Cambridge Univ. Press, 2007)

    Book  Google Scholar 

  23. Li, S.-Y., Niklasson, G. A. & Granqvist, C. G. Nanothermochromics: calculations for VO2 nanoparticles in dielectric hosts show much improved luminous transmittance and solar energy transmittance modulation. J. Appl. Phys. 108, 063525 (2010)

    Article  ADS  Google Scholar 

  24. Garcia, G. et al. Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals. Nano Lett. 11, 4415–4420 (2011)

    Article  ADS  CAS  Google Scholar 

  25. Garcia, G. et al. Near-infrared spectrally selective plasmonic electrochromic thin films. Adv. Opt. Mater. 1, 215–220 (2013)

    Article  Google Scholar 

  26. Rosario, A. V. & Pereira, E. C. Influence of the crystallinity on the Li+ intercalation process in Nb2O5 films. J. Solid State Electrochem. 9, 665–673 (2005)

    Article  CAS  Google Scholar 

  27. Wang, R. Y., Tangirala, R., Raoux, S., Jordan-Sweet, J. L. & Milliron, D. J. Ionic and electronic transport in Ag2S nanocrystal–GeS2 matrix composites with size-controlled Ag2S nanocrystals. Adv. Mater. 24, 99–103 (2012)

    Article  CAS  Google Scholar 

  28. Lehn, J. M. Supramolecular chemistry—receptors, catalysis, and carriers. Science 227, 849–856 (1985)

    Article  ADS  CAS  Google Scholar 

  29. Li, H., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276–279 (1999)

    Article  ADS  CAS  Google Scholar 

  30. Buonsanti, R. et al. Assembly of ligand-stripped nanocrystals into precisely controlled mesoporous architectures. Nano Lett. 12, 3872–3877 (2012)

    Article  ADS  CAS  Google Scholar 

  31. Villa, E. M. et al. Reaction dynamics of the decaniobate ion [HxNb10O28](6−x)− in water. Angew. Chem. Int. Edn 47, 4844–4846 (2008)

    Article  CAS  Google Scholar 

  32. Choi, S. I., Nam, K. M., Park, B. K., Seo, W. S. & Park, J. T. Preparation and optical properties of colloidal, monodisperse, and highly crystalline ITO nanoparticles. Chem. Mater. 20, 2609–2611 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Raoux and J. L. Jordan-Sweet as well as S. Mannsfeld and M. Toney for assistance in synchrotron XRD measurements at the National Synchrotron Light Source (Brookhaven National Laboratory) and Stanford Synchrotron Radiation Lightsource (SSRL); and R. Zuckermann, P. J. Schuck, R. J. Mendelsberg, and especially M. Salmeron and O. Yaghi for critical reading of the manuscript. This work was performed at the Molecular Foundry, Lawrence Berkeley National Laboratory, and was supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy (DOE) under contract number DE-AC02—05CH11231. D.J.M. and G.G. were supported by a DOE Early Career Research Program grant under the same contract, and J.G. was supported by Consejo Superior de Investigaciones Cientificas, CSIC, JAE. Scanning transmission electron microscopy images were taken at Oak Ridge National Laboratory (ORNL), supported by DOE-BES, Materials Sciences and Engineering Division, and by ORNL’s Shared Research Equipment (ShaRE) User Program, which is also sponsored by DOE-BES. XRD data shown in the manuscript was acquired at SSRL, beamline 11-3.

Author information

Authors and Affiliations

Authors

Contributions

A.L. synthesized the materials, carried out the experiments and analysed the data, with assistance from G.G. for the electrochemical characterization. J.G. carried out scanning transmission electron microscopy imaging. A.L. and D.J.M. were responsible for experimental design and wrote the manuscript, which incorporates critical input from all authors.

Corresponding author

Correspondence to Delia J. Milliron.

Ethics declarations

Competing interests

G.G. and D.J.M. have a financial interest in Heliotrope Technologies, a company pursuing the commercial development of electrochromic devices.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-10 and a Supplementary Discussion. (PDF 3090 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Llordés, A., Garcia, G., Gazquez, J. et al. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature 500, 323–326 (2013). https://doi.org/10.1038/nature12398

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12398

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing