Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Placental arsenic concentrations in relation to both maternal and infant biomarkers of exposure in a US cohort

Abstract

Arsenic crosses the placenta and may have adverse consequences in utero and later in life. At present, little is known about arsenic concentrations in placenta and their relation to maternal and infant exposures particularly at common levels of exposure. We measured placenta arsenic in a US cohort potentially exposed via drinking water from private wells, and evaluated the relationships between placenta and maternal and infant biomarker arsenic concentrations. We measured total arsenic concentrations in placental samples from women enrolled in the New Hampshire Birth Cohort Study (N=766). We compared these data to maternal urinary arsenic (total arsenic and individual species) collected at approximately 24-28 week gestation, along with maternal post-partum toenails and infant toenails using non-parametric multivariate analysis of log10-transformed data. We also examined the association between placental arsenic and household drinking water arsenic. Placenta arsenic concentrations were related to arsenic concentrations in maternal urine (β 0.55, P value <0.0001), maternal (β 0.30, P value 0.0196) and infant toenails (β 0.40, P value 0.0293) and household drinking water (β 0.09, P value <0.0001). Thus, our data suggest that placenta arsenic concentrations reflect both maternal and infant exposures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Ramsey KA, Larcombe AN, Sly PD, Zosky GR . In utero exposure to low dose arsenic via drinking water impairs early life lung mechanics in mice. BMC Pharmacol Toxicol 2013; 14: 13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rahman M, Sohel N, Yunus M, Chowdhury ME, Hore SK, Zaman K et al. Increased childhood mortality and arsenic in drinking water in Matlab, Bangladesh: a population-based cohort study. PLoS One 2013; 8: e55014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Farzan SF, Karagas MR, Chen Y . In utero and early life arsenic exposure in relation to long-term health and disease. Toxicol Appl Pharmacol 2013; 272: 384–390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Waalkes MP, Liu J, Germolec DR, Trempus CS, Cannon RE, Tokar EJ et al. Arsenic exposure in utero exacerbates skin cancer response in adulthood with contemporaneous distortion of tumor stem cell dynamics. Cancer Res 2008; 68: 8278–8285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Esteban-Vasallo MD, Aragones N, Pollan M, Lopez-Abente G, Perez-Gomez B . Mercury, cadmium, and lead levels in human placenta: a systematic review. Environ Health Perspect 2012; 120: 1369–1377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Waalkes MP, Liu J . Early-life arsenic exposure: methylation capacity and beyond. Environ Health Perspect 2008; 116: 104.

    Article  Google Scholar 

  7. Liaw J, Marshall G, Yuan Y, Ferreccio C, Steinmaus C, Smith AH . Increased childhood liver cancer mortality and arsenic in drinking water in northern Chile. Cancer Epidemiol Biomarkers Prev 2008; 17: 1982–1987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bodwell JE, Gosse JA, Nomikos AP, Hamilton JW . Arsenic disruption of steroid receptor gene activation: complex dose-response effects are shared by several steroid receptors. Chem Res Toxicol 2006; 19: 1619–1629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Milton AH, Shahidullah SM, Smith W, Hossain KS, Hasan Z, Ahmed KT . Association between chronic arsenic exposure and nutritional status among the women of child bearing age: a case-control study in Bangladesh. Int J Environ Res Public Health 2010; 7: 2811–2821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gamble MV, Liu X, Slavkovich V, Pilsner JR, Ilievski V, Factor-Litvak P et al. Folic acid supplementation lowers blood arsenic. Am J Clin Nutr 2007; 86: 1202–1209.

    Article  CAS  PubMed  Google Scholar 

  11. Gamble MV, Liu XH, Ahsan H, Pilsner JR, Ilievski V, Slavkovich V et al. Folate and arsenic metabolism: a double-blind, placebo-controlled folic acid-supplementation trial in Bangladesh. Am J Clin Nutr 2006; 84: 1093–1101.

    Article  CAS  PubMed  Google Scholar 

  12. Fei DL, Koestler DC, Li Z, Giambelli C, Sanchez-Mejias A, Gosse JA et al. Association between In Utero arsenic exposure, placental gene expression, and infant birth weight: a US birth cohort study. Environ Health 2013; 12: 58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Karp WB, Robertson AF . Correlation of human placental enzymatic activity with trace metal concentration in placentas from three geographical locations. Environ Res 1977; 13: 470–477.

    Article  CAS  PubMed  Google Scholar 

  14. Baglan RJ, Brill AB, Schulert A, Wilson D, Larsen K, Dyer N et al. Utility of placental tissue as an indicator of trace element exposure to adult and fetus. Environ Res 1974; 8: 64–70.

    Article  CAS  PubMed  Google Scholar 

  15. Iyengar GV, Rapp A . Human placenta as a 'dual' biomarker for monitoring fetal and maternal environment with special reference to potentially toxic trace elements. Part 1. Physiology, function and sampling of placenta for elemental characterization. Sci Total Environ 2001; 280: 195–206.

    Article  CAS  PubMed  Google Scholar 

  16. Concha G, Vogler G, Lezcano D, Nermell B, Vahter M . Exposure to inorganic arsenic metabolites during early human development. Toxicol Sci 1998; 44: 185–190.

    Article  CAS  PubMed  Google Scholar 

  17. Cottingham KL, Karimi R, Gruber JF, Zens MS, Sayarath V et al. Diet and toenail arsenic concentrations in a New Hampshire population with arsenic-containing water. Nutr J 2013; 12: 149–159.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Davis MA, Li Z, Gilbert-Diamond D, Mackenzie TA, Cottingham KL, Jackson BP et al. Infant toenails as a biomarker of in utero arsenic exposure. J Expo Sci Environ Epidemiol 2014; 24: 467–473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Davis MA, Mackenzie TA, Cottingham KL, Gilbert-Diamond D, Punshon T, Karagas MR . Rice consumption and urinary arsenic concentrations in US children. Environ Health Perpect 2012; 120: 1418–1424.

    Article  CAS  Google Scholar 

  20. Gilbert-Diamond D, Cottingham KL, Gruber JF, Punshon T, Sayarath V, Gandolfi AJ et al. Rice consumption raises a health concern: evidence from U.S. pregnant women. Proc Natl Acad Sci USA 2011; 108: 20656–20660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Karagas MR, Le CX, Morris S, Blum J, Lu X, Spate V et al. Markers of low level arsenic exposure for evaluating human cancer risks in a US population. Int J Occup Med Environ Health 2001; 14: 171–175.

    CAS  PubMed  Google Scholar 

  22. Karagas MR, Morris JS, Weiss JE, Spate V, Baskett C, Greenberg ER . Toenail samples as an indicator of drinking water arsenic exposure. Cancer Epidemiol Biomarkers Prev 1996; 5: 849–852.

    CAS  PubMed  Google Scholar 

  23. Amaya E, Gil F, Freire C, Olmedo P, Fernandez-Rodriguez M, Fernandez MF et al. Placental concentrations of heavy metals in a mother-child cohort. Environ Res 2013; 120: 63–70.

    Article  CAS  PubMed  Google Scholar 

  24. Jin L, Zhang L, Li Z, Liu JM, Ye R, Ren A . Placental concentrations of mercury, lead, cadmium, and arsenic and the risk of neural tube defects in a Chinese population. Reprod Toxicol 2013; 35: 25–31.

    Article  CAS  PubMed  Google Scholar 

  25. Kippler M, Hoque AM, Raqib R, Ohrvik H, Ekstrom EC, Vahter M . Accumulation of cadmium in human placenta interacts with the transport of micronutrients to the fetus. Toxicol Lett 2010; 192: 162–168.

    Article  CAS  PubMed  Google Scholar 

  26. Leino O, Kiviranta H, Karjalainen AK, Kronberg-Kippila C, Sinkko H, Larsen EH et al. Pollutant concentrations in placenta. Food Chem Toxicol 2013; 54: 59–69.

    Article  CAS  PubMed  Google Scholar 

  27. Llanos MN, Ronco AM . Fetal growth restriction is related to placental levels of cadmium lead and arsenic but not with antioxidant activities. Reprod Toxicol 2009; 27: 88–92.

    Article  CAS  PubMed  Google Scholar 

  28. Tabacova S, Baird DD, Balabaeva L, Lolova D, Petrov I . Placental arsenic and cadmium in relation to lipid peroxides and glutathione levels in maternal-infant pairs from a copper smelter area. Placenta 1994; 15: 873–881.

    Article  CAS  PubMed  Google Scholar 

  29. Zadorozhnaja TD, Little RE, Miller RK, Mendel NA, Taylor RJ et al. Concentrations of arsenic, cadmium, copper, lead, mercuy and zinc in human placentas from two cities in Ukraine. J Toxicol Environ Health A 2000; 61: 255–263.

    Article  CAS  PubMed  Google Scholar 

  30. Iyengar GV, Rapp A . Human placenta as a 'dual' biomarker for monitoring fetal and maternal environment with special reference to potentially toxic trace elements. Part 3. Toxic trace elements in placenta and placenta as a biomarker for these elements. Sci Total Environ 2001; 280: 221–238.

    Article  CAS  PubMed  Google Scholar 

  31. Seaborg B, Bodurtha J . Nail size in normal infants. Establishing standards for healthy term infants. Clin Pediatr 1989; 28: 142–145.

    Article  CAS  Google Scholar 

  32. Ayotte JD, Belaval M, Olson SA, Burow KR, Flanagan SM, Hinkle SR et al. Factors affecting temporal variability of arsenic in groundwater used for drinking water supply in the United States. Sci Total Environ 2014; 505: 1370–1379.

    Article  PubMed  Google Scholar 

  33. Karagas MR, Tosteson TD, Blum J, Klaue B, Weiss JE, Stannard V et al. Measurement of low levels of arsenic exposure: A comparison of water and toenail concentrations. Am J Epidemiol 2000; 152: 84–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the following P20 GM104416 from the National Institute of General Medical Sciences, P01ES022832 and P42 ES007373 from the National Institute of Environmental Health at the NIH and RD83544201 from the Environmental Protection Agency

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tracy Punshon.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Journal of Exposure Science and Environmental Epidemiology website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Punshon, T., Davis, M., Marsit, C. et al. Placental arsenic concentrations in relation to both maternal and infant biomarkers of exposure in a US cohort. J Expo Sci Environ Epidemiol 25, 599–603 (2015). https://doi.org/10.1038/jes.2015.16

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2015.16

Keywords

This article is cited by

Search

Quick links