Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Pediatrics

Circulating FGF19 and FGF21 surge in early infancy from infra- to supra-adult concentrations

Abstract

Background/Objective:

Fibroblast growth factor 19 (FGF19) and 21 (FGF21) have been linked to obesity and type 2 diabetes in adults. We assessed the circulating concentrations of these factors in human neonates and infants, and their association with the endocrine–metabolic changes associated to prenatal growth restraint.

Subjects/Methods:

Circulating FGF19 and FGF21, selected hormones (insulin, insulin-like growth factor I and high- molecular-weight (HMW) adiponectin) and body composition (absorptiometry) were assessed longitudinally in 44 infants born appropriate- (AGA) or small-for-gestational-age (SGA). Measurements were performed at 0, 4 and 12 months in AGA infants; at 0 and 4 months in SGA infants; and cross-sectionally in 11 first-week AGA newborns.

Results:

Circulating FGF19 and FGF21 surged >10-fold in early infancy from infra- to supra-adult concentrations, the FGF19 surge appearing slower and more pronounced than the FGF21 surge. Whereas the FGF21 surge was of similar magnitude in AGA and SGA infants, FGF19 induction was significantly reduced in SGA infants. In AGA and SGA infants, cord-blood FGF21 and serum FGF19 at 4 months showed a positive correlation with HMW adiponectin (r=0.49, P=0.013; r=0.43, P=0.019, respectively).

Conclusions:

Our results suggest that these early FGF19 and FGF21 surges are of a physiological relevance that warrants further delineation and that may extend beyond infancy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ et al. FGF-21 as a novel metabolic regulator. J Clin Invest 2005; 115: 1627–1635.

    Article  CAS  Google Scholar 

  2. Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E . Hepatic fibroblast growth factor 21 is regulated by PPAR alpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 2007; 5: 426–437.

    Article  CAS  Google Scholar 

  3. Inagaki T, Dutchak P, Zhao G, Ding X, Gautron L, Parameswara V et al. Endocrine regulation of the fasting response by PPAR alpha-mediated induction of fibroblast growth factor 21. Cell Metab 2007; 5: 415–425.

    Article  CAS  Google Scholar 

  4. Badman MK, Koester A, Flier JS, Kharitonenkov A, Maratos-Flier E . Fibroblast growth factor 21-deficient mice demonstrate impaired adaptation to ketosis. Endocrinology 2009; 150: 4931–4940.

    Article  CAS  Google Scholar 

  5. Inagaki T, Choi M, Moschetta A, Peng L, Cummins CL, McDonald JG et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2005; 2: 217–225.

    Article  CAS  Google Scholar 

  6. Kir S, Beddow SA, Samuel VT, Miller P, Previs SF, Suino-Powell K et al. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science 2011; 331: 1621–1624.

    Article  CAS  Google Scholar 

  7. Novotny D, Vaverkova H, Karasek D, Lukes J, Slavik L, Malina P et al. Evaluation of total adiponectin, adipocyte fatty acid binding protein and fibroblast growth factor 21 levels in individuals with metabolic syndrome. Physiol Res 2014; 63: 219–228.

    CAS  PubMed  Google Scholar 

  8. Nishimura T, Nakatake Y, Konishi M, Itoh N . Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim Biophys Acta 2000; 1492: 203–206.

    Article  CAS  Google Scholar 

  9. Mai K, Andres J, Biedasek K, Weicht J, Bobbert T, Sabath M et al. Free fatty acids link metabolism and regulation of the insulin-sensitizing fibroblast growth factor-21. Diabetes 2009; 58: 1532–1538.

    Article  CAS  Google Scholar 

  10. Gaich G, Chien JY, Fu H, Glass LC, Deeg MA, Holland WL et al. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab 2013; 18: 333–340.

    Article  CAS  Google Scholar 

  11. Adams AC, Coskun T, Rovira AR, Schneider MA, Raches DW, Micanovic R et al. Fundamentals of FGF19 & FGF21 action in vitro and in vivo. PLoS One 2012; 7: e38438.

    Article  CAS  Google Scholar 

  12. Fisher FM, Estall JL, Adams AC, Antonellis PJ, Bina HA, Flier JS et al. Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo. Endocrinology 2011; 152: 2996–3004.

    Article  CAS  Google Scholar 

  13. Coskun T, Bina HA, Schneider MA, Dunbar JD, Hu CC, Chen Y et al. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 2008; 149: 6018–6027.

    Article  CAS  Google Scholar 

  14. Micanovic R, Raches DW, Dunbar JD, Driver DA, Bina HA, Dickinson CD et al. Different roles of N- and C-termini in the functional activity of FGF21. J Cell Physiol 2009; 219: 227–234.

    Article  CAS  Google Scholar 

  15. Mráz M, Lacinová Z, Kaválková P, Haluzíková D, Trachta P, Drápalová J et al. Serum concentrations of fibroblast growth factor 19 in patients with obesity and type 2 diabetes mellitus: the influence of acute hyperinsulinemia, very-low calorie diet and PPAR-α agonist treatment. Physiol Res 2011; 60: 627–636.

    PubMed  Google Scholar 

  16. Gallego-Escuredo JM, Gómez-Ambrosi J, Catalan V, Domingo P, Giralt M, Frühbeck G et al. Opposite alterations in FGF21 and FGF19 levels and disturbed expression of the receptor machinery for endocrine FGFs in obese patients. Int J Obes (Lond) 2015; 39: 121–129.

    Article  CAS  Google Scholar 

  17. Gerhard GS, Styer AM, Wood GC, Roesch SL, Petrick AT, Gabrielsen J et al. A role for fibroblast growth factor 19 and bile acids in diabetes remission after Roux-en-Y gastric bypass. Diabetes Care 2013; 36: 1859–1864.

    Article  CAS  Google Scholar 

  18. Woo YC, Xu A, Wang Y, Lam KS . Fibroblast growth factor 21 as an emerging metabolic regulator: clinical perspectives. Clin Endocrinol (Oxf) 2013; 78: 489–496.

    Article  CAS  Google Scholar 

  19. Chavez AO, Molina-Carrion M, Abdul-Ghani MA, Folli F, DeFronzo RA, Tripathy D . Circulating fibroblast growth factor-21 is elevated in impaired glucose tolerance and type 2 diabetes and correlates with muscle and hepatic insulin resistance. Diabetes Care 2009; 32: 1542–1546.

    Article  CAS  Google Scholar 

  20. Mashili FL, Austin RL, Deshmukh AS, Fritz T, Caidahl K, Bergdahl K et al. Direct effects of FGF21 on glucose uptake in human skeletal muscle: implications for type 2 diabetes and obesity. Diabetes Metab Res Rev 2011; 27: 286–297.

    Article  CAS  Google Scholar 

  21. Hanks LJ, Casazza K, Ashraf AP, Wallace S, Gutiérrez OM . Fibroblast growth factor-21, body composition, and insulin resistance in pre-pubertal and early pubertal males and females. Clin Endocrinol (Oxf) 2014; e-pub ahead of print 10 July 2014; doi:10.1111/cen.12552.

    Article  Google Scholar 

  22. Ko BJ, Kim SM, Park KH, Park HS, Mantzoros CS . Levels of circulating selenoprotein P, fibroblast growth factor (FGF) 21 and FGF23 in relation to the metabolic syndrome in young children. Int J Obes (Lond) 2014; 38: 1497–1502.

    Article  CAS  Google Scholar 

  23. Bisgaard A, Sørensen K, Johannsen TH, Helge JW, Andersson AM, Juul A . Significant gender difference in serum levels of fibroblast growth factor 21 in Danish children and adolescents. Int J Pediatr Endocrinol 2014; 2014: 7.

    Article  Google Scholar 

  24. Hondares E, Rosell M, Gonzalez FJ, Giralt M, Iglesias R, Villarroya F . Hepatic FGF21 expression is induced at birth via PPAR alpha in response to milk intake and contributes to thermogenic activation of neonatal brown fat. Cell Metab 2010; 11: 206–212.

    Article  CAS  Google Scholar 

  25. Levin BE . Metabolic imprinting: critical impact of the perinatal environment on the regulation of energy homeostasis. Philos Trans R Soc Lond B Biol Sci 2006; 361: 1107–1121.

    Article  CAS  Google Scholar 

  26. Boney CM, Verma A, Tucker R, Vohr BR . Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics 2005; 115: e290–e296.

    Article  Google Scholar 

  27. Harder T, Rodekamp E, Schellong K, Dudenhausen JW, Plagemann A . Birth weight and subsequent risk of type 2 diabetes: a meta-analysis. Am J Epidemiol 2007; 165: 849–857.

    Article  Google Scholar 

  28. Kerkhof GF, Hokken-Koelega AC . Rate of neonatal weight gain and effects on adult metabolic health. Nat Rev Endocrinol 2012; 8: 689–692.

    Article  Google Scholar 

  29. Ibáñez L, Sebastiani G, Lopez-Bermejo A, Díaz M, Gómez-Roig MD, de Zegher F . Gender specificity of body adiposity and circulating adiponectin, visfatin, insulin, and insulin growth factor-I at term birth: relation to prenatal growth. J Clin Endocrinol Metab 2008; 93: 2774–2778.

    Article  Google Scholar 

  30. Ibáñez L, Sebastiani G, Diaz M, Gómez-Roig MD, Lopez-Bermejo A, de Zegher F . Low body adiposity and high leptinemia in breast-fed infants born small-for-gestational-age. J Pediatr 2010; 156: 145–147.

    Article  Google Scholar 

  31. Ferrández-Longás A, Mayayo E, Labarta JI, Bagué L, Puga B, Rueda C et al. Estudio longitudinal de crecimiento y desarrollo. Centro Andrea Prader. Zaragoza. García-Dihinx A, Romo A, Ferrández-Longás A (eds) Patrones de crecimiento y desarrollo en España. Atlas de gráficas y tablas. 1st edn. Madrid: ERGON, 1980–2002; pp 61–115.

    Google Scholar 

  32. de Zegher F, Sebastiani G, Diaz M, Sánchez-Infantes D, Lopez-Bermejo A, Ibáñez L . Body composition and circulating High-Molecular-Weight adiponectin and IGF-I in infants born small for gestational age: breast- versus formula-feeding. Diabetes 2012; 61: 1969–1973.

    Article  CAS  Google Scholar 

  33. Domingo P, Gallego-Escuredo JM, Domingo JC, Gutierrez MM, Mateo MG, Fernandez I et al. Serum FGF21 levels are elevated in association with lipodystrophy, insulin resistance and biomarkers of liver injury in HIV-1-infected patients. AIDS 2010; 24: 2629–2637.

    Article  CAS  Google Scholar 

  34. Boehm G, Senger H, Müller D, Beyreiss K, Räihä NC . Metabolic differences between AGA-and SGA-infants of very low birthweight. III. Influence of postnatal age. Acta Paediatr Scand 1989; 78: 677–681.

    Article  CAS  Google Scholar 

  35. Lin Z, Tian H, Lam KS, Lin S, Hoo RC, Konishi M et al. Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab 2013; 17: 779–789.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

DS-I is an Investigator of the Sara Borrell Fund from Carlos III National Institute of Health, Spain. MD and LI are Clinical Investigators of CIBERDEM (Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, www.ciberdem.org). FdZ is a Clinical Investigator supported by the Clinical Research Council of the University Hospital Leuven. FV is an Investigator of CIBEROBN (Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición). This study was supported by the Ministerio de Ciencia e Innovación (SAF 2011-23636), Recercaixa, Instituto de Salud Carlos III and by the Fondo Europeo de Desarrollo Regional (FEDER), Madrid, Spain (PI11/0443).

Author Contributions

DS-I contributed to the design and acquisition of data and drafted the manuscript; JMG-E contributed to data acquisition and helped in writing the manuscript; MD, GA and GS contributed to data acquisition and reviewed the manuscript; AL-B contributed to data acquisition and to discussion of the paper; FdZ and FV contributed to interpretation of the data and reviewed the manuscript; PD contributed to data acquisition; LI contributed to conception and the interpretation of data and reviewed the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Ibáñez.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Infantes, D., Gallego-Escuredo, J., Díaz, M. et al. Circulating FGF19 and FGF21 surge in early infancy from infra- to supra-adult concentrations. Int J Obes 39, 742–746 (2015). https://doi.org/10.1038/ijo.2015.2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2015.2

This article is cited by

Search

Quick links