Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Induced pluripotent stem cells: developmental biology to regenerative medicine

Abstract

Nuclear reprogramming of somatic cells with ectopic stemness factors to bioengineer pluripotent autologous stem cells signals a new era in regenerative medicine. The study of developmental biology has provided a roadmap for cardiac differentiation from embryonic tissue formation to adult heart muscle rejuvenation. Understanding the molecular mechanisms of stem-cell-derived cardiogenesis enables the reproducible generation, isolation, and monitoring of progenitors that have the capacity to recapitulate embryogenesis and differentiate into mature cardiac tissue. With the advent of induced pluripotent stem (iPS) cell technology, patient-specific stem cells provide a reference point to systematically decipher cardiogenic differentiation through discrete stages of development. Interrogation of iPS cells and their progeny from selected cohorts of patients is an innovative approach towards uncovering the molecular mechanisms of disease. Thus, the principles of cardiogenesis can now be applied to regenerative medicine in order to optimize personalized therapeutics, diagnostics, and discovery-based science for the development of novel clinical applications.

Key Points

  • Induced pluripotent stem (iPS) cells are autologous, somatic cells that have been modified to acquire an embryonic stem-cell-like capacity

  • iPS cells enable patient-specific examination of the molecular mechanisms of health and disease, and provide cell-based platforms for personalized diagnostics and therapeutics

  • iPS-cell-derived progeny have the potential to closely recapitulate natural cardiogenic differentiation

  • Nuclear reprogramming involves embryo-independent generation of iPS cells with ectopic stemness factors, which resets the fate of the cell to a self-sustainable pluripotent state

  • Various strategies are used for nuclear reprogramming, including genetic engineering with viruses, traceless systems, and genomic-free approaches

  • Bioengineered clones must undergo stringency testing to validate their functionality as iPS cells

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: iPS cells for personalized theranostics.
Figure 2: A tool kit for inducing pluripotency.
Figure 3: Strategies to optimize nuclear reprogramming.
Figure 4: Stringency testing for iPS cells.
Figure 5: Bioengineered cardiogenesis for applications in cardiovascular regenerative medicine.

Similar content being viewed by others

References

  1. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    CAS  PubMed  Google Scholar 

  2. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    CAS  PubMed  Google Scholar 

  3. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    CAS  PubMed  Google Scholar 

  4. Meissner, A., Wernig, M. & Jaenisch, R. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat. Biotechnol. 25, 1177–1181 (2007).

    CAS  PubMed  Google Scholar 

  5. Park, I. H. et al. Disease-specific induced pluripotent stem cells. Cell 134, 877–886 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Jaenisch, R. & Young, R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132, 567–582 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Murry, C. E. & Keller, G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132, 661–680 (2008).

    CAS  PubMed  Google Scholar 

  8. Yamanaka, S. Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 1, 39–49 (2007).

    CAS  PubMed  Google Scholar 

  9. Park, I. H., Lerou, P. H., Zhao, R., Huo, H. & Daley, G. Q. Generation of human-induced pluripotent stem cells. Nat. Protoc. 3, 1180–1186 (2008).

    CAS  PubMed  Google Scholar 

  10. Yamanaka, S. & Blau, H. M. Nuclear reprogramming to a pluripotent state by three approaches. Nature 465, 704–712 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Nelson, T., Behfar, A. & Terzic, A. Stem cells: biologics for regeneration. Clin. Pharmacol. Ther. 84, 620–623 (2008).

    CAS  PubMed  Google Scholar 

  12. Nelson, T. J., Behfar, A. & Terzic, A. Strategies for therapeutic repair: the “R3” regenerative medicine paradigm. Clin. Transl. Sci. 1, 168–171 (2008).

    PubMed  PubMed Central  Google Scholar 

  13. Raya, A. et al. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460, 53–59 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee, G. et al. Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461, 402–406 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Nelson, T. J., Behfar, A., Yamada, S., Martinez-Fernandez, A. & Terzic, A. Stem cell platforms for regenerative medicine. Clin. Transl. Sci. 2, 222–227 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Wu, J. C., Abraham, M. R. & Kraitchman, D. L. Current perspectives on imaging cardiac stem cell therapy. J. Nucl. Med. 51 (Suppl. 1), 128S–136S (2010).

  17. Parker, A. et al. Diagnosis of post-transplant lymphoproliferative disorder in solid organ transplant recipients—BCSH and BTS Guidelines. Br. J. Haematol. 149, 675–692 (2010).

    PubMed  Google Scholar 

  18. Martinez, O. M. & de Gruijl, F. R. Molecular and immunologic mechanisms of cancer pathogenesis in solid organ transplant recipients. Am. J. Transplant. 8, 2205–2211 (2008).

    CAS  PubMed  Google Scholar 

  19. Silva, J. & Smith, A. Capturing pluripotency. Cell 132, 532–536 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Campbell, K. H., McWhir, J., Ritchie, W. A. & Wilmut, I. Sheep cloned by nuclear transfer from a cultured cell line. Nature 380, 64–66 (1996).

    CAS  PubMed  Google Scholar 

  21. Beyhan, Z., Iager, A. E. & Cibelli, J. B. Interspecies nuclear transfer: implications for embryonic stem cell biology. Cell Stem Cell 1, 502–512 (2007).

    CAS  PubMed  Google Scholar 

  22. Byrne, J. A. et al. Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature 450, 497–502 (2007).

    CAS  PubMed  Google Scholar 

  23. French, A. J. et al. Development of human cloned blastocysts following somatic cell nuclear transfer with adult fibroblasts. Stem Cells 26, 485–493 (2008).

    CAS  PubMed  Google Scholar 

  24. Yamanaka, S. Pluripotency and nuclear reprogramming. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 2079–2087 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Yamanaka, S. A fresh look at iPS cells. Cell 137, 13–17 (2009).

    CAS  PubMed  Google Scholar 

  26. Yamanaka, S. Elite and stochastic models for induced pluripotent stem cell generation. Nature 460, 49–52 (2009).

    CAS  PubMed  Google Scholar 

  27. Dimos, J. T. et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321, 1218–1221 (2008).

    CAS  PubMed  Google Scholar 

  28. Ebert, A. D. et al. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457, 277–280 (2009).

    CAS  PubMed  Google Scholar 

  29. Takahashi, K., Okita, K., Nakagawa, M. & Yamanaka, S. Induction of pluripotent stem cells from fibroblast cultures. Nat. Protoc. 2, 3081–3089 (2007).

    CAS  PubMed  Google Scholar 

  30. Aasen, T. et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat. Biotechnol. 26, 1276–1284 (2008).

    CAS  PubMed  Google Scholar 

  31. Eminli, S. et al. Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. Nat. Genet. 41, 968–976 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Sun, N. et al. Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. Proc. Natl Acad. Sci. USA 106, 15720–15725 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Marion, R. M. et al. Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell 4, 141–154 (2009).

    CAS  PubMed  Google Scholar 

  34. Deng, J. et al. Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nat. Biotechnol. 27, 353–360 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Mikkelsen, T. S. et al. Dissecting direct reprogramming through integrative genomic analysis. Nature 454, 49–55 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Silva, J. et al. Nanog is the gateway to the pluripotent ground state. Cell 138, 722–737 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Yoshida, Y., Takahashi, K., Okita, K., Ichisaka, T. & Yamanaka, S. Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell 5, 237–241 (2009).

    CAS  PubMed  Google Scholar 

  38. Huangfu, D. et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat. Biotechnol. 26, 795–797 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lin, T. et al. A chemical platform for improved induction of human iPSCs. Nat. Methods 6, 805–808 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Banito, A. et al. Senescence impairs successful reprogramming to pluripotent stem cells. Genes Dev. 23, 2134–2139 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Utikal, J. et al. Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature 460, 1145–1148 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Marión, R. M. et al. A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 460, 1149–1153 (2009).

    PubMed  PubMed Central  Google Scholar 

  43. Li, H. et al. The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature 460, 1136–1139 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kawamura, T. et al. Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460, 1140–1144 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hong, H. et al. Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature 460, 1132–1135 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Smith, Z. D., Nachman, I., Regev, A. & Meissner, A. Dynamic single-cell imaging of direct reprogramming reveals an early specifying event. Nat. Biotechnol. 28, 521–526 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hanna, J. et al. Direct cell reprogramming is a stochastic process amenable to acceleration. Nature 462, 595–601 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hotta, A. & Ellis, J. Retroviral vector silencing during iPS cell induction: an epigenetic beacon that signals distinct pluripotent states. J. Cell. Biochem. 105, 940–948 (2008).

    CAS  PubMed  Google Scholar 

  49. Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G. & Hochedlinger, K. Induced pluripotent stem cells generated without viral integration. Science 322, 945–949 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T. & Yamanaka, S. Generation of mouse induced pluripotent stem cells without viral vectors. Science 322, 949–953 (2008).

    CAS  PubMed  Google Scholar 

  51. Chang, C. W. et al. Polycistronic lentiviral vector for “hit and run” reprogramming of adult skin fibroblasts to induced pluripotent stem cells. Stem Cells 27, 1042–1049 (2009).

    CAS  PubMed  Google Scholar 

  52. Kaji, K. et al. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458, 771–775 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Woltjen, K. et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458, 766–770 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Yu, J. et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science 324, 797–801 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhou, H. et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4, 381–384 (2009).

    CAS  PubMed  Google Scholar 

  56. Kim, D. et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4, 472–476 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Schenke-Layland, K. et al. Reprogrammed mouse fibroblasts differentiate into cells of the cardiovascular and hematopoietic lineages. Stem Cells 26, 1537–1546 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Martinez-Fernandez, A. et al. iPS programmed without c-MYC yield proficient cardiogenesis for functional heart chimerism. Circ. Res. 105, 648–656 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Mauritz, C. et al. Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation 118, 507–517 (2008).

    PubMed  Google Scholar 

  60. Narazaki, G. et al. Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation 118, 498–506 (2008).

    PubMed  Google Scholar 

  61. Zhang, J. et al. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ. Res. 104, e30–e41 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Tashiro, K. et al. Efficient adipocyte and osteoblast differentiation from mouse induced pluripotent stem cells by adenoviral transduction. Stem Cells 27, 1802–1811 (2009).

    CAS  PubMed  Google Scholar 

  63. Niwa, A. et al. Orderly hematopoietic development of induced pluripotent stem cells via Flk-1+ hemoangiogenic progenitors. J. Cell. Physiol. 221, 367–377 (2009).

    CAS  PubMed  Google Scholar 

  64. Senju, S. et al. Characterization of dendritic cells and macrophages generated by directed differentiation from mouse induced pluripotent stem cells. Stem Cells 27, 1021–1031 (2009).

    CAS  PubMed  Google Scholar 

  65. Maehr, R. et al. Generation of pluripotent stem cells from patients with type 1 diabetes. Proc. Natl Acad. Sci. USA 106, 15768–15773 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Tateishi, K. et al. Generation of insulin-secreting islet-like clusters from human skin fibroblasts. J. Biol. Chem. 283, 31601–31607 (2008).

    CAS  PubMed  Google Scholar 

  67. Zhang, D. et al. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res. 19, 429–438 (2009).

    CAS  PubMed  Google Scholar 

  68. Si-Tayeb, K. et al. Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology 51, 297–305 (2010).

    CAS  PubMed  Google Scholar 

  69. Song, Z. et al. Efficient generation of hepatocyte-like cells from human induced pluripotent stem cells. Cell Res. 19, 1233–1242 (2009).

    PubMed  Google Scholar 

  70. Buchholz, D. E. et al. Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. Stem Cells 27, 2427–2434 (2009).

    CAS  PubMed  Google Scholar 

  71. Meyer, J. S. et al. Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc. Natl Acad. Sci. USA 106, 16698–16703 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Osakada, F. et al. In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction. J. Cell Sci. 122, 3169–3179 (2009).

    CAS  PubMed  Google Scholar 

  73. Karumbayaram, S. et al. Directed differentiation of human-induced pluripotent stem cells generates active motor neurons. Stem Cells 27, 806–811 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Smith, K. P., Luong, M. X. & Stein, G. S. Pluripotency: toward a gold standard for human ES and iPS cells. J. Cell. Physiol. 220, 21–29 (2009).

    CAS  PubMed  Google Scholar 

  75. Nelson, T. J., Martinez-Fernandez, A. & Terzic, A. KCNJ11 knockout morula re-engineered by stem cell diploid aggregation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 269–276 (2009).

    CAS  PubMed  Google Scholar 

  76. Nagy, A., Nagy, K. & Gertsenstein, M. Production of mouse chimeras by aggregating pluripotent stem cells with embryos. Methods Enzymol. 476, 123–149 (2010).

    CAS  PubMed  Google Scholar 

  77. Zhao, X. Y. et al. iPS cells produce viable mice through tetraploid complementation. Nature 461, 86–90 (2009).

    CAS  PubMed  Google Scholar 

  78. Stadtfeld, M. et al. Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature 465, 175–181 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Hanna, J. et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318, 1920–1923 (2007).

    CAS  PubMed  Google Scholar 

  80. Xu, D. et al. Phenotypic correction of murine hemophilia A using an iPS cell-based therapy. Proc. Natl Acad. Sci. USA 106, 808–813 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Wernig, M. et al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. Proc. Natl Acad. Sci. USA 105, 5856–5861 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Nelson, T. J. et al. Repair of acute myocardial infarction with human stemness factors induced pluripotent stem cells. Circulation 120, 408–416 (2009).

    PubMed  PubMed Central  Google Scholar 

  83. Ye, Z. et al. Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood 114, 5473–5480 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Chien, K. R., Domian, I. J. & Parker, K. K. Cardiogenesis and the complex biology of regenerative cardiovascular medicine. Science 322, 1494–1497 (2008).

    CAS  PubMed  Google Scholar 

  85. Slack, J. M. Origin of stem cells in organogenesis. Science 322, 1498–1501 (2008).

    CAS  PubMed  Google Scholar 

  86. Garry, D. J. & Olson, E. N. A common progenitor at the heart of development. Cell 127, 1101–1104 (2006).

    CAS  PubMed  Google Scholar 

  87. Laflamme, M. A. & Murry, C. E. Regenerating the heart. Nat. Biotechnol. 23, 845–856 (2005).

    CAS  PubMed  Google Scholar 

  88. Wu, S. M., Chien, K. R. & Mummery, C. Origins and fates of cardiovascular progenitor cells. Cell 132, 537–543 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Mummery, C. et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 107, 2733–2740 (2003).

    CAS  PubMed  Google Scholar 

  90. Schneider, V. A. & Mercola, M. Wnt antagonism initiates cardiogenesis in Xenopus laevis. Genes Dev. 15, 304–315 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Marvin, M. J., Di Rocco, G., Gardiner, A., Bush, S. M. & Lassar, A. B. Inhibition of Wnt activity induces heart formation from posterior mesoderm. Genes Dev. 15, 316–327 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Olson, E. N. Development. The path to the heart and the road not taken. Science 291, 2327–2378 (2001).

    CAS  PubMed  Google Scholar 

  93. Pashmforoush, M. et al. Nkx2-5 pathways and congenital heart disease; loss of ventricular myocyte lineage specification leads to progressive cardiomyopathy and complete heart block. Cell 117, 373–386 (2004).

    CAS  PubMed  Google Scholar 

  94. Ishiwata, T., Nakazawa, M., Pu, W. T., Tevosian, S. G. & Izumo, S. Developmental changes in ventricular diastolic function correlate with changes in ventricular myoarchitecture in normal mouse embryos. Circ. Res. 93, 857–865 (2003).

    CAS  PubMed  Google Scholar 

  95. Zhou, B. et al. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454, 109–113 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Christoffels, V. M. et al. Tbx18 and the fate of epicardial progenitors. Nature 458, E8–E9 (2009).

    CAS  PubMed  Google Scholar 

  97. Moskowitz, I. P. et al. A molecular pathway including Id2, Tbx5, and Nkx2-5 required for cardiac conduction system development. Cell 129, 1365–1376 (2007).

    CAS  PubMed  Google Scholar 

  98. Zhao, Y. et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129, 303–317 (2007).

    CAS  PubMed  Google Scholar 

  99. Rentschler, S. et al. Neuregulin-1 promotes formation of the murine cardiac conduction system. Proc. Natl Acad. Sci. USA 99, 10464–10469 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Siedner, S. et al. Developmental changes in contractility and sarcomeric proteins from the early embryonic to the adult stage in the mouse heart. J. Physiol. 548, 493–505 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. MacLellan, W. R. & Schneider, M. D. Genetic dissection of cardiac growth control pathways. Annu. Rev. Physiol. 62, 289–319 (2000).

    CAS  PubMed  Google Scholar 

  102. Gai, H. et al. Generation and characterization of functional cardiomyocytes using induced pluripotent stem cells derived from human fibroblasts. Cell Biol. Int. 33, 1184–1193 (2009).

    CAS  PubMed  Google Scholar 

  103. Kuzmenkin, A. et al. Functional characterization of cardiomyocytes derived from murine induced pluripotent stem cells in vitro. FASEB J. 23, 4168–4180 (2009).

    CAS  PubMed  Google Scholar 

  104. Martinez-Fernandez, A., Nelson, T. J., Ikeda, Y. & Terzic, A. c-MYC independent nuclear reprogramming favors cardiogenic potential of induced pluripotent stem cells. J. Cardiovasc. Transl. Res. 3, 13–23 (2010).

    PubMed  PubMed Central  Google Scholar 

  105. Zwi, L. et al. Cardiomyocyte differentiation of human induced pluripotent stem cells. Circulation 120, 1513–1523 (2009).

    CAS  PubMed  Google Scholar 

  106. Moretti, A. et al. Mouse and human induced pluripotent stem cells as a source for multipotent Isl1+ cardiovascular progenitors. FASEB J. 24, 700–711 (2010).

    CAS  PubMed  Google Scholar 

  107. Yokoo, N. et al. The effects of cardioactive drugs on cardiomyocytes derived from human induced pluripotent stem cells. Biochem. Biophys. Res. Commun. 387, 482–488 (2009).

    CAS  PubMed  Google Scholar 

  108. Pfannkuche, K. et al. Cardiac myocytes derived from murine reprogrammed fibroblasts: intact hormonal regulation, cardiac ion channel expression and development of contractility. Cell. Physiol. Biochem. 24, 73–86 (2009).

    CAS  PubMed  Google Scholar 

  109. Moretti, A. et al. Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N. Engl. J. Med. doi:10.1056/NEJMoa0908679.

    CAS  Google Scholar 

  110. Carvajal-Vergara, X. et al. Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature 465, 808–812 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Hansen, A. et al. Development of a drug screening platform based on engineered heart tissue. Circ. Res. 107, 35–44 (2010).

    CAS  PubMed  Google Scholar 

  112. Ieda, M. et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142, 375–386 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. van Laake, L. W. et al. Reporter-based isolation of induced pluripotent stem cell- and embryonic stem cell-derived cardiac progenitors reveals limited gene expression variance. Circ. Res. 107, 340–347 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Srinivas, G., Anversa, P. & Frishman, W. H. Cytokines and myocardial regeneration: a novel treatment option for acute myocardial infarction. Cardiol. Rev. 17, 1–9 (2009).

    PubMed  Google Scholar 

  115. Reinecke, H., Minami, E., Zhu, W. Z. & Laflamme, M. A. Cardiogenic differentiation and transdifferentiation of progenitor cells. Circ. Res. 103, 1058–1071 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Bartunek, J. et al. Delivery of biologics in cardiovascular regenerative medicine. Clin. Pharmacol. Ther. 85, 548–552 (2009).

    CAS  PubMed  Google Scholar 

  117. Blin, G. et al. A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted nonhuman primates. J. Clin. Invest. 120, 1125–1139 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Alper, J. Geron gets green light for human trial of ES cell-derived product. Nat. Biotechnol. 27, 213–214 (2009).

    CAS  PubMed  Google Scholar 

  119. Li, J. Y., Christophersen, N. S., Hall, V., Soulet, D. & Brundin, P. Critical issues of clinical human embryonic stem cell therapy for brain repair. Trends Neurosci. 31, 146–153 (2008).

    PubMed  Google Scholar 

  120. Olson, E. N. A decade of discoveries in cardiac biology. Nat. Med. 10, 467–474 (2004).

    CAS  PubMed  Google Scholar 

  121. Behfar, A. et al. Guided stem cell cardiopoiesis: discovery and translation. J. Mol. Cell. Cardiol. 45, 523–529 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Behfar, A. et al. Cardiopoietic programming of embryonic stem cells for tumor-free heart repair. J. Exp. Med. 204, 405–420 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Chiriac, A., Nelson, T. J., Faustino, R. S., Behfar, A. & Terzic, A. Cardiogenic induction of pluripotent stem cells streamlined through a conserved SDF-1/VEGF/BMP2 integrated network. PLoS ONE 5, e9943 (2010).

    PubMed  PubMed Central  Google Scholar 

  124. Nelson, T. J. et al. CXCR4+/FLK-1+ biomarkers select a cardiopoietic lineage from embryonic stem cells. Stem Cells 26, 1464–1473 (2008).

    CAS  PubMed  Google Scholar 

  125. Moretti, A. et al. Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127, 1151–1165 (2006).

    CAS  PubMed  Google Scholar 

  126. Kattman, S. J., Huber, T. L. & Keller, G. M. Multipotent Flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev. Cell 11, 723–732 (2006).

    CAS  PubMed  Google Scholar 

  127. Yang, L. et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453, 524–528 (2008).

    CAS  PubMed  Google Scholar 

  128. Takeuchi, J. K. & Bruneau, B. G. Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature 459, 708–711 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Padin-Iruegas, M. E. et al. Cardiac progenitor cells and biotinylated insulin-like growth factor-1 nanofibers improve endogenous and exogenous myocardial regeneration after infarction. Circulation 120, 876–887 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Terzic, A. & Nelson, T. J. Regenerative medicine advancing health care 2020. J. Am. Coll. Cardiol. 55, 2254–2257 (2010).

    PubMed  Google Scholar 

  131. Yoshida, Y. & Yamanaka, S. Recent stem cell advances: induced pluripotent stem cells for disease modeling and stem cell-based regeneration. Circulation 122, 80–87 (2010).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

T. J. Nelson and A. Terzic contributed to discussion of content for the article, researched data to include in the manuscript, wrote the manuscript, reviewed and edited the manuscript before submission, and revised the manuscript in response to the peer-reviewers' comments. A. Martinez-Fernandez contributed to discussion of content for the article, researched data to include in the manuscript, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Timothy J. Nelson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, T., Martinez-Fernandez, A. & Terzic, A. Induced pluripotent stem cells: developmental biology to regenerative medicine. Nat Rev Cardiol 7, 700–710 (2010). https://doi.org/10.1038/nrcardio.2010.159

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2010.159

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research