Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Interleukin 17 is a chief orchestrator of immunity

Abstract

Increased understanding of the biology of interleukin 17 (IL-17) has revealed that this cytokine is a central player in immunity at the sites most exposed to microorganisms. Although it has been strongly associated with immunopathology, IL-17 also has an important role in host defense. The regulation of IL-17 secretion seems to be shared among various cell types, each of which can concomitantly secrete additional products. IL-17 has only modest activity on its own; its impact in immunity arises from its synergistic action with other factors, its self-sustaining feedback loop and, in some cases, its role as a counterpart of interferon-γ (IFN-γ). Together these attributes provide a robust response against microorganisms, but they can equally contribute to immune pathology. Here we focus on a discussion of the role of IL-17 during infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The major populations of lymphocytes that secrete IL-17, as detected by lineage marking for IL-17A17: TCRγδ+ γδ T cells, CD4+TCRαβ+ TH17 cells, CD3 ILC3s, TCR+NK1.1+ NKT cells and TCRNK1.1+ NK cells.
Figure 2: The role of IL-17 during infection.
Figure 3: The role of IL-17 at epithelial barrier sites.
Figure 4: The potential negative effects of IL-17 during tumor responses.

Similar content being viewed by others

References

  1. Aggarwal, S. & Gurney, A.L. IL-17: prototype member of an emerging cytokine family. J. Leukoc. Biol. 71, 1–8 (2002).

    CAS  PubMed  Google Scholar 

  2. Hymowitz, S.G. et al. IL-17s adopt a cystine knot fold: structure and activity of a novel cytokine, IL-17F, and implications for receptor binding. EMBO J. 20, 5332–5341 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Veldhoen, M., Hocking, R.J., Atkins, C.J., Locksley, R.M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Rouvier, E., Luciani, M.F., Mattéi, M.G., Denizot, F. & Golstein, P. CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J. Immunol. 150, 5445–5456 (1993).

    CAS  PubMed  Google Scholar 

  5. Fossiez, F. et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J. Exp. Med. 183, 2593–2603 (1996).

    CAS  PubMed  Google Scholar 

  6. Yao, Z. et al. Herpesvirus saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 3, 811–821 (1995).

    CAS  PubMed  Google Scholar 

  7. Wright, J.F. et al. Identification of an interleukin 17F/17A heterodimer in activated human CD4+ T cells. J. Biol. Chem. 282, 13447–13455 (2007).

    CAS  PubMed  Google Scholar 

  8. Gaffen, S.L. Life before seventeen: cloning of the IL-17 receptor. J. Immunol. 187, 4389–4391 (2011).

    CAS  PubMed  Google Scholar 

  9. Toy, D. et al. Cutting edge: interleukin 17 signals through a heteromeric receptor complex. J. Immunol. 177, 36–39 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Harrington, L.E. et al. Interleukin 17–producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6, 1123–1132 (2005).

    CAS  PubMed  Google Scholar 

  11. Park, H. et al. A distinct lineage of CD4+ T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6, 1133–1141 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Korn, T., Bettelli, E., Oukka, M. & Kuchroo, V.K. IL-17 and Th17 cells. Annu. Rev. Immunol. 27, 485–517 (2009).

    CAS  PubMed  Google Scholar 

  13. Ghoreschi, K. et al. Generation of pathogenic TH17 cells in the absence of TGF-β signalling. Nature 467, 967–971 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Stockinger, B., Veldhoen, M. & Martin, B. Th17 T cells: linking innate and adaptive immunity. Semin. Immunol. 19, 353–361 (2007).

    CAS  PubMed  Google Scholar 

  15. Papotto, R.J. & Silva-Santos, B. Nat. Immunol. (18 May 2017) doi:10.1038/ni.3726.

    CAS  PubMed  Google Scholar 

  16. Gaffen, S.L., Jain, R., Garg, A.V. & Cua, D.J. The IL-23–IL-17 immune axis: from mechanisms to therapeutic testing. Nat. Rev. Immunol. 14, 585–600 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hirota, K. et al. Fate mapping of IL-17–producing T cells in inflammatory responses. Nat. Immunol. 12, 255–263 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Pappu, R., Rutz, S. & Ouyang, W. Regulation of epithelial immunity by IL-17 family cytokines. Trends Immunol. 33, 343–349 (2012).

    CAS  PubMed  Google Scholar 

  19. Guo, P. et al. Dual nature of the adaptive immune system in lampreys. Nature 459, 796–801 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Acosta-Rodriguez, E.V. et al. Surface phenotype and antigenic specificity of human interleukin 17–producing T helper memory cells. Nat. Immunol. 8, 639–646 (2007).

    CAS  PubMed  Google Scholar 

  21. Han, Q. et al. Characterization of lamprey IL-17 family members and their receptors. J. Immunol. 195, 5440–5451 (2015).

    CAS  PubMed  Google Scholar 

  22. Richards, M.H. & Nelson, J.L. The evolution of vertebrate antigen receptors: a phylogenetic approach. Mol. Biol. Evol. 17, 146–155 (2000).

    CAS  PubMed  Google Scholar 

  23. Romagnoli, P.A., Sheridan, B.S., Pham, Q.M., Lefrançois, L. & Khanna, K.M. IL-17A-producing resident memory γδ T cells orchestrate the innate immune response to secondary oral Listeria monocytogenes infection. Proc. Natl. Acad. Sci. USA 113, 8502–8507 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ishigame, H. et al. Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity 30, 108–119 (2009).

    CAS  PubMed  Google Scholar 

  25. Nakae, S. et al. Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity 17, 375–387 (2002).

    CAS  PubMed  Google Scholar 

  26. Kolls, J.K., McCray, P.B. Jr. & Chan, Y.R. Cytokine-mediated regulation of antimicrobial proteins. Nat. Rev. Immunol. 8, 829–835 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ogura, H. et al. Interleukin-17 promotes autoimmunity by triggering a positive-feedback loop via interleukin-6 induction. Immunity 29, 628–636 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Liévin-Le Moal, V. & Servin, A.L. The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: mucins, antimicrobial peptides, and microbiota. Clin. Microbiol. Rev. 19, 315–337 (2006).

    PubMed  PubMed Central  Google Scholar 

  29. Koenders, M.I. et al. Interleukin-17 receptor deficiency results in impaired synovial expression of interleukin-1 and matrix metalloproteinases 3, 9, and 13 and prevents cartilage destruction during chronic reactivated streptococcal cell wall-induced arthritis. Arthritis Rheum. 52, 3239–3247 (2005).

    CAS  PubMed  Google Scholar 

  30. Shalom-Barak, T., Quach, J. & Lotz, M. Interleukin-17-induced gene expression in articular chondrocytes is associated with activation of mitogen-activated protein kinases and NF-κB. J. Biol. Chem. 273, 27467–27473 (1998).

    CAS  PubMed  Google Scholar 

  31. Parsonage, G. et al. Prolonged, granulocyte-macrophage colony-stimulating factor-dependent, neutrophil survival following rheumatoid synovial fibroblast activation by IL-17 and TNFα. Arthritis Res. Ther. 10, R47 (2008).

    PubMed  PubMed Central  Google Scholar 

  32. Andoh, A. et al. IL-17 selectively down-regulates TNF-α-induced RANTES gene expression in human colonic subepithelial myofibroblasts. J. Immunol. 169, 1683–1687 (2002).

    CAS  PubMed  Google Scholar 

  33. Gaffen, S.L. Structure and signalling in the IL-17 receptor family. Nat. Rev. Immunol. 9, 556–567 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zrioual, S. et al. Genome-wide comparison between IL-17A- and IL-17F-induced effects in human rheumatoid arthritis synoviocytes. J. Immunol. 182, 3112–3120 (2009).

    CAS  PubMed  Google Scholar 

  35. Ruddy, M.J. et al. Functional cooperation between interleukin-17 and tumor necrosis factor-α is mediated by CCAAT/enhancer-binding protein family members. J. Biol. Chem. 279, 2559–2567 (2004).

    CAS  PubMed  Google Scholar 

  36. Shen, F., Hu, Z., Goswami, J. & Gaffen, S.L. Identification of common transcriptional regulatory elements in interleukin-17 target genes. J. Biol. Chem. 281, 24138–24148 (2006).

    CAS  PubMed  Google Scholar 

  37. Amatya, N., Garg, A.V. & Gaffen, S.L. IL-17 signaling: the yin and the yang. Trends Immunol. http://dx.doi.org/10.1016/j.it.2017.01.006 (2017).

  38. Veldhoen, M., Hirota, K., Christensen, J., O'Garra, A. & Stockinger, B. Natural agonists for aryl hydrocarbon receptor in culture medium are essential for optimal differentiation of Th17 T cells. J. Exp. Med. 206, 43–49 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Stange, J. & Veldhoen, M. The aryl hydrocarbon receptor in innate T cell immunity. Semin. Immunopathol. 35, 645–655 (2013).

    CAS  PubMed  Google Scholar 

  40. Liang, S.C. et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med. 203, 2271–2279 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Dixon, B.R., Radin, J.N., Piazuelo, M.B., Contreras, D.C. & Algood, H.M. IL-17a and IL-22 induce expression of antimicrobials in gastrointestinal epithelial cells and may contribute to epithelial cell defense against Helicobacter pylori. PLoS One 11, e0148514 (2016).

    PubMed  PubMed Central  Google Scholar 

  42. Besnard, A.G. et al. Dual role of IL-22 in allergic airway inflammation and its cross-talk with IL-17A. Am. J. Respir. Crit. Care Med. 183, 1153–1163 (2011).

    CAS  PubMed  Google Scholar 

  43. Sonnenberg, G.F. et al. Pathological versus protective functions of IL-22 in airway inflammation are regulated by IL-17A. J. Exp. Med. 207, 1293–1305 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Saraiva, M. et al. Interleukin-10 production by Th1 cells requires interleukin-12-induced STAT4 transcription factor and ERK MAP kinase activation by high antigen dose. Immunity 31, 209–219 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Rutz, S. et al. Transcription factor c-Maf mediates the TGF-β-dependent suppression of IL-22 production in TH17 cells. Nat. Immunol. 12, 1238–1245 (2011).

    CAS  PubMed  Google Scholar 

  46. Ouyang, W., Rutz, S., Crellin, N.K., Valdez, P.A. & Hymowitz, S.G. Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu. Rev. Immunol. 29, 71–109 (2011).

    CAS  PubMed  Google Scholar 

  47. Savan, R. et al. A novel role for IL-22R1 as a driver of inflammation. Blood 117, 575–584 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Geboes, L. et al. Proinflammatory role of the Th17 cytokine interleukin-22 in collagen-induced arthritis in C57BL/6 mice. Arthritis Rheum. 60, 390–395 (2009).

    CAS  PubMed  Google Scholar 

  49. Wolk, K. et al. IL-22 and IL-20 are key mediators of the epidermal alterations in psoriasis while IL-17 and IFN-γ are not. J. Mol. Med. (Berl.) 87, 523–536 (2009).

    CAS  Google Scholar 

  50. Leipe, J. et al. Interleukin 22 serum levels are associated with radiographic progression in rheumatoid arthritis. Ann. Rheum. Dis. 70, 1453–1457 (2011).

    CAS  PubMed  Google Scholar 

  51. Boniface, K. et al. A role for T cell-derived interleukin 22 in psoriatic skin inflammation. Clin. Exp. Immunol. 150, 407–415 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim, K.W. et al. Interleukin-22 promotes osteoclastogenesis in rheumatoid arthritis through induction of RANKL in human synovial fibroblasts. Arthritis Rheum. 64, 1015–1023 (2012).

    CAS  PubMed  Google Scholar 

  53. Van Belle, A.B. et al. IL-22 is required for imiquimod-induced psoriasiform skin inflammation in mice. J. Immunol. 188, 462–469 (2012).

    CAS  PubMed  Google Scholar 

  54. Guilloteau, K. et al. Skin inflammation induced by the synergistic action of IL-17A, IL-22, oncostatin M, IL-1α, and TNF-α recapitulates some features of psoriasis. J. Immunol. 184, 5263–5270 (2010).

    CAS  PubMed  Google Scholar 

  55. Rabeony, H. et al. Inhibition of keratinocyte differentiation by the synergistic effect of IL-17A, IL-22, IL-1α, TNFα and oncostatin M. PLoS One 9, e101937 (2014).

    PubMed  PubMed Central  Google Scholar 

  56. Zaba, L.C. et al. Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J. Exp. Med. 204, 3183–3194 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Chiricozzi, A. et al. Integrative responses to IL-17 and TNF-α in human keratinocytes account for key inflammatory pathogenic circuits in psoriasis. J. Invest. Dermatol. 131, 677–687 (2011).

    CAS  PubMed  Google Scholar 

  58. Wang, C.Q. et al. IL-17 and TNF synergistically modulate cytokine expression while suppressing melanogenesis: potential relevance to psoriasis. J. Invest. Dermatol. 133, 2741–2752 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Nonaka, M. et al. Synergistic induction of macrophage inflammatory protein-3α;/CCL20 production by interleukin-17A and tumor necrosis factor-α; in nasal polyp fibroblasts. World Allergy Organ. J. 2, 218–223 (2009).

    PubMed  PubMed Central  Google Scholar 

  60. Iyoda, M. et al. IL-17A and IL-17F stimulate chemokines via MAPK pathways (ERK1/2 and p38 but not JNK) in mouse cultured mesangial cells: synergy with TNF-α and IL-1β. Am. J. Physiol. Renal Physiol. 298, F779–F787 (2010).

    CAS  PubMed  Google Scholar 

  61. Kreymborg, K. et al. IL-22 is expressed by Th17 cells in an IL-23-dependent fashion, but not required for the development of autoimmune encephalomyelitis. J. Immunol. 179, 8098–8104 (2007).

    CAS  PubMed  Google Scholar 

  62. Griffin, G.K. et al. IL-17 and TNF-α sustain neutrophil recruitment during inflammation through synergistic effects on endothelial activation. J. Immunol. 188, 6287–6299 (2012).

    CAS  PubMed  Google Scholar 

  63. Ghoreschi, K., Laurence, A., Yang, X.P., Hirahara, K. & O'Shea, J.J. T helper 17 cell heterogeneity and pathogenicity in autoimmune disease. Trends Immunol. 32, 395–401 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Eid, R.E. et al. Interleukin-17 and interferon-γ are produced concomitantly by human coronary artery-infiltrating T cells and act synergistically on vascular smooth muscle cells. Circulation 119, 1424–1432 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang, Y. et al. IL-17A synergizes with IFN-γ to upregulate iNOS and NO production and inhibit chlamydial growth. PLoS One 7, e39214 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Barin, J.G. et al. Collaborative interferon-γ and interleukin-17 signaling protects the oral mucosa from Staphylococcus aureus. Am. J. Pathol. 186, 2337–2352 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Guiton, R. et al. Interleukin 17 receptor signaling is deleterious during Toxoplasma gondii infection in susceptible BL6 mice. J. Infect. Dis. 202, 427–435 (2010).

    CAS  PubMed  Google Scholar 

  68. Kezic, J.M., Glant, T.T., Rosenbaum, J.T. & Rosenzweig, H.L. Neutralization of IL-17 ameliorates uveitis but damages photoreceptors in a murine model of spondyloarthritis. Arthritis Res. Ther. 14, R18 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Stange, J. et al. IL-22 mediates host defense against an intestinal intracellular parasite in the absence of IFN-γ at the cost of Th17-driven immunopathology. J. Immunol. 188, 2410–2418 (2012).

    CAS  PubMed  Google Scholar 

  70. Hirota, K. et al. Plasticity of Th17 cells in Peyer's patches is responsible for the induction of T cell–dependent IgA responses. Nat. Immunol. 14, 372–379 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Hsu, H.C. et al. Interleukin 17–producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nat. Immunol. 9, 166–175 (2008).

    CAS  PubMed  Google Scholar 

  72. Khader, S.A. et al. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat. Immunol. 8, 369–377 (2007).

    CAS  PubMed  Google Scholar 

  73. Trentini, M.M., de Oliveira, F.M., Kipnis, A. & Junqueira-Kipnis, A.P. The role of neutrophils in the induction of specific Th1 and Th17 during vaccination against tuberculosis. Front. Microbiol. 7, 898 (2016).

    PubMed  PubMed Central  Google Scholar 

  74. Iwakura, Y., Nakae, S., Saijo, S. & Ishigame, H. The roles of IL-17A in inflammatory immune responses and host defense against pathogens. Immunol. Rev. 226, 57–79 (2008).

    CAS  PubMed  Google Scholar 

  75. Uyttenhove, C. & Van Snick, J. Development of an anti-IL-17A auto-vaccine that prevents experimental auto-immune encephalomyelitis. Eur. J. Immunol. 36, 2868–2874 (2006).

    CAS  PubMed  Google Scholar 

  76. Kap, Y.S. et al. Effects of early IL-17A neutralization on disease induction in a primate model of experimental autoimmune encephalomyelitis. J. Neuroimmune Pharmacol. 6, 341–353 (2011).

    PubMed  Google Scholar 

  77. Hot, A. & Miossec, P. Effects of interleukin (IL)-17A and IL-17F in human rheumatoid arthritis synoviocytes. Ann. Rheum. Dis. 70, 727–732 (2011).

    CAS  PubMed  Google Scholar 

  78. Yang, X.O. et al. Regulation of inflammatory responses by IL-17F. J. Exp. Med. 205, 1063–1075 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Martin, B., Hirota, K., Cua, D.J., Stockinger, B. & Veldhoen, M. Interleukin-17-producing γδ T cells selectively expand in response to pathogen products and environmental signals. Immunity 31, 321–330 (2009).

    CAS  PubMed  Google Scholar 

  80. Satoh-Takayama, N. et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29, 958–970 (2008).

    CAS  PubMed  Google Scholar 

  81. Molesworth-Kenyon, S.J., Yin, R., Oakes, J.E. & Lausch, R.N. IL-17 receptor signaling influences virus-induced corneal inflammation. J. Leukoc. Biol. 83, 401–408 (2008).

    CAS  PubMed  Google Scholar 

  82. Yue, F.Y. et al. Virus-specific interleukin-17-producing CD4+ T cells are detectable in early human immunodeficiency virus type 1 infection. J. Virol. 82, 6767–6771 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Stoppelenburg, A.J. et al. Local IL-17A potentiates early neutrophil recruitment to the respiratory tract during severe RSV infection. PLoS One 8, e78461 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Crowe, C.R. et al. Critical role of IL-17RA in immunopathology of influenza infection. J. Immunol. 183, 5301–5310 (2009).

    CAS  PubMed  Google Scholar 

  85. Sellge, G. et al. Th17 cells are the dominant T cell subtype primed by Shigella flexneri mediating protective immunity. J. Immunol. 184, 2076–2085 (2010).

    CAS  PubMed  Google Scholar 

  86. Veldhoen, M. & Stockinger, B. TGFβ1, a “Jack of all trades”: the link with pro-inflammatory IL-17-producing T cells. Trends Immunol. 27, 358–361 (2006).

    CAS  PubMed  Google Scholar 

  87. Markel, G. et al. The involvement of IL-17A in the murine response to sub-lethal inhalational infection with Francisella tularensis. PLoS One 5, e11176 (2010).

    PubMed  PubMed Central  Google Scholar 

  88. Stockinger, B. & Veldhoen, M. Differentiation and function of Th17 T cells. Curr. Opin. Immunol. 19, 281–286 (2007).

    CAS  PubMed  Google Scholar 

  89. Conti, H.R. et al. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J. Exp. Med. 206, 299–311 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Huang, W., Na, L., Fidel, P.L. & Schwarzenberger, P. Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J. Infect. Dis. 190, 624–631 (2004).

    CAS  PubMed  Google Scholar 

  91. Puel, A. et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 332, 65–68 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Puel, A. et al. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J. Exp. Med. 207, 291–297 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Rudner, X.L., Happel, K.I., Young, E.A. & Shellito, J.E. Interleukin-23 (IL-23)-IL-17 cytokine axis in murine Pneumocystis carinii infection. Infect. Immun. 75, 3055–3061 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. McKenzie, B.S., Kastelein, R.A. & Cua, D.J. Understanding the IL-23-IL-17 immune pathway. Trends Immunol. 27, 17–23 (2006).

    CAS  PubMed  Google Scholar 

  95. Conti, H.R. et al. Oral-resident natural Th17 cells and γδ T cells control opportunistic Candida albicans infections. J. Exp. Med. 211, 2075–2084 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Ma, C.S. et al. Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT3. J. Exp. Med. 205, 1551–1557 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Renner, E.D. et al. Novel signal transducer and activator of transcription 3 (STAT3) mutations, reduced TH17 cell numbers, and variably defective STAT3 phosphorylation in hyper-IgE syndrome. J. Allergy Clin. Immunol. 122, 181–187 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Hashizume, M., Hayakawa, N. & Mihara, M. IL-6 trans-signalling directly induces RANKL on fibroblast-like synovial cells and is involved in RANKL induction by TNF-α and IL-17. Rheumatology (Oxford) 47, 1635–1640 (2008).

    CAS  Google Scholar 

  99. Lin, D. et al. IL-17 regulates the expressions of RANKL and OPG in human periodontal ligament cells via TRAF6/TBK1-JNK/NF-κB pathways. Immunology 144, 472–485 (2015).

    CAS  PubMed Central  Google Scholar 

  100. Won, H.Y. et al. Prominent bone loss mediated by RANKL and IL-17 produced by CD4+ T cells in TallyHo/JngJ mice. PLoS One 6, e18168 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Sato, K. et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J. Exp. Med. 203, 2673–2682 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Dutzan, N. et al. On-going mechanical damage from mastication drives homeostatic Th17 cell responses at the oral barrier. Immunity 46, 133–147 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Yu, J.J., Ruddy, M.J., Conti, H.R., Boonanantanasarn, K. & Gaffen, S.L. The interleukin-17 receptor plays a gender-dependent role in host protection against Porphyromonas gingivalis-induced periodontal bone loss. Infect. Immun. 76, 4206–4213 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Yu, J.J. et al. An essential role for IL-17 in preventing pathogen-initiated bone destruction: recruitment of neutrophils to inflamed bone requires IL-17 receptor-dependent signals. Blood 109, 3794–3802 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Belibasakis, G.N. et al. Regulation of RANKL and OPG gene expression in human gingival fibroblasts and periodontal ligament cells by Porphyromonas gingivalis: a putative role of the Arg-gingipains. Microb. Pathog. 43, 46–53 (2007).

    CAS  PubMed  Google Scholar 

  106. Ye, P. et al. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J. Exp. Med. 194, 519–527 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Aujla, S.J. et al. IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat. Med. 14, 275–281 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Brucklacher-Waldert, V., Carr, E.J., Linterman, M.A. & Veldhoen, M. Cellular plasticity of CD4+ T cells in the intestine. Front. Immunol. 5, 488 (2014).

    PubMed  PubMed Central  Google Scholar 

  109. Basu, R. et al. Th22 cells are an important source of IL-22 for host protection against enteropathogenic bacteria. Immunity 37, 1061–1075 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med. 14, 282–289 (2008).

    CAS  PubMed  Google Scholar 

  111. Kao, C.Y. et al. IL-17 markedly up-regulates β-defensin-2 expression in human airway epithelium via JAK and NF-κB signaling pathways. J. Immunol. 173, 3482–3491 (2004).

    CAS  PubMed  Google Scholar 

  112. Zheng, Y. et al. Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445, 648–651 (2007).

    CAS  PubMed  Google Scholar 

  113. Hamada, S. et al. IL-17A produced by γδ T cells plays a critical role in innate immunity against Listeria monocytogenes infection in the liver. J. Immunol. 181, 3456–3463 (2008).

    CAS  PubMed  Google Scholar 

  114. Kelly, M.N. et al. Interleukin-17/interleukin-17 receptor-mediated signaling is important for generation of an optimal polymorphonuclear response against Toxoplasma gondii infection. Infect. Immun. 73, 617–621 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Klose, C.S. et al. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 157, 340–356 (2014).

    CAS  PubMed  Google Scholar 

  116. Khader, S.A. et al. IL-23 compensates for the absence of IL-12p70 and is essential for the IL-17 response during tuberculosis but is dispensable for protection and antigen-specific IFN-γ responses if IL-12p70 is available. J. Immunol. 175, 788–795 (2005).

    CAS  PubMed  Google Scholar 

  117. Lockhart, E., Green, A.M. & Flynn, J.L. IL-17 production is dominated by γδ T cells rather than CD4 T cells during Mycobacterium tuberculosis infection. J. Immunol. 177, 4662–4669 (2006).

    CAS  PubMed  Google Scholar 

  118. Nish, S.A. et al. T cell-intrinsic role of IL-6 signaling in primary and memory responses. eLife 3, e01949 (2014).

    PubMed  PubMed Central  Google Scholar 

  119. Veldhoen, M., Hocking, R.J., Flavell, R.A. & Stockinger, B. Signals mediated by transforming growth factor–β initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease. Nat. Immunol. 7, 1151–1156 (2006).

    CAS  PubMed  Google Scholar 

  120. Brucklacher-Waldert, V. et al. Tbet or continued RORγt expression is not required for Th17-associated immunopathology. J. Immunol. 196, 4893–4904 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Kotake, S. et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J. Clin. Invest. 103, 1345–1352 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Takemura, S. et al. Lymphoid neogenesis in rheumatoid synovitis. J. Immunol. 167, 1072–1080 (2001).

    CAS  PubMed  Google Scholar 

  123. Timmer, T.C. et al. Inflammation and ectopic lymphoid structures in rheumatoid arthritis synovial tissues dissected by genomics technology: identification of the interleukin-7 signaling pathway in tissues with lymphoid neogenesis. Arthritis Rheum. 56, 2492–2502 (2007).

    CAS  PubMed  Google Scholar 

  124. Lubberts, E. et al. Overexpression of IL-17 in the knee joint of collagen type II immunized mice promotes collagen arthritis and aggravates joint destruction. Inflamm. Res. 51, 102–104 (2002).

    CAS  PubMed  Google Scholar 

  125. Lubberts, E. et al. Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion. Arthritis Rheum. 50, 650–659 (2004).

    CAS  PubMed  Google Scholar 

  126. Nakae, S., Nambu, A., Sudo, K. & Iwakura, Y. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J. Immunol. 171, 6173–6177 (2003).

    CAS  PubMed  Google Scholar 

  127. Lubberts, E. et al. IL-17 promotes bone erosion in murine collagen-induced arthritis through loss of the receptor activator of NF-κB ligand/osteoprotegerin balance. J. Immunol. 170, 2655–2662 (2003).

    CAS  PubMed  Google Scholar 

  128. Boehncke, W.H. & Schön, M.P. Psoriasis. Lancet 386, 983–994 (2015).

    CAS  PubMed  Google Scholar 

  129. Cargill, M. et al. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am. J. Hum. Genet. 80, 273–290 (2007).

    CAS  PubMed  Google Scholar 

  130. Chan, J.R. et al. IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2-dependent mechanisms with implications for psoriasis pathogenesis. J. Exp. Med. 203, 2577–2587 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Broome, A.M., Ryan, D. & Eckert, R.L. S100 protein subcellular localization during epidermal differentiation and psoriasis. J. Histochem. Cytochem. 51, 675–685 (2003).

    CAS  PubMed  Google Scholar 

  132. Hollox, E.J. et al. Psoriasis is associated with increased β-defensin genomic copy number. Nat. Genet. 40, 23–25 (2008).

    CAS  PubMed  Google Scholar 

  133. Griffiths, C.E. & Barker, J.N. Pathogenesis and clinical features of psoriasis. Lancet 370, 263–271 (2007).

    CAS  PubMed  Google Scholar 

  134. Fujino, S. et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut 52, 65–70 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Camoglio, L. et al. Contrasting roles of IL-12p40 and IL-12p35 in the development of hapten-induced colitis. Eur. J. Immunol. 32, 261–269 (2002).

    CAS  PubMed  Google Scholar 

  136. Harbour, S.N., Maynard, C.L., Zindl, C.L., Schoeb, T.R. & Weaver, C.T. Th17 cells give rise to Th1 cells that are required for the pathogenesis of colitis. Proc. Natl. Acad. Sci. USA 112, 7061–7066 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Yen, D. et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J. Clin. Invest. 116, 1310–1316 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Zhang, Z., Zheng, M., Bindas, J., Schwarzenberger, P. & Kolls, J.K. Critical role of IL-17 receptor signaling in acute TNBS-induced colitis. Inflamm. Bowel Dis. 12, 382–388 (2006).

    PubMed  Google Scholar 

  139. Khor, B., Gardet, A. & Xavier, R.J. Genetics and pathogenesis of inflammatory bowel disease. Nature 474, 307–317 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Liu, J.Z. et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat. Genet. 47, 979–986 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Barrett, J.C. et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat. Genet. 40, 955–962 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Hueber, W. et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn's disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut 61, 1693–1700 (2012).

    CAS  PubMed  Google Scholar 

  143. Genovese, M.C. et al. Efficacy and safety of secukinumab in patients with rheumatoid arthritis: a phase II, dose-finding, double-blind, randomised, placebo controlled study. Ann. Rheum. Dis. 72, 863–869 (2013).

    CAS  PubMed  Google Scholar 

  144. McInnes, I.B. et al. Efficacy and safety of secukinumab, a fully human anti-interleukin-17A monoclonal antibody, in patients with moderate-to-severe psoriatic arthritis: a 24-week, randomised, double-blind, placebo-controlled, phase II proof-of-concept trial. Ann. Rheum. Dis. 73, 349–356 (2014).

    CAS  PubMed  Google Scholar 

  145. Baeten, D. et al. Secukinumab, an interleukin-17A inhibitor, in ankylosing spondylitis. N. Engl. J. Med. 373, 2534–2548 (2015).

    CAS  PubMed  Google Scholar 

  146. Farahnik, B. et al. Ixekizumab for the treatment of psoriasis: a review of phase III trials. Dermatol. Ther. (Heidelb.) 6, 25–37 (2016).

    Google Scholar 

  147. Mease, P.J. et al. Ixekizumab, an interleukin-17A specific monoclonal antibody, for the treatment of biologic-naive patients with active psoriatic arthritis: results from the 24-week randomised, double-blind, placebo-controlled and active (adalimumab)-controlled period of the phase III trial SPIRIT-P1. Ann. Rheum. Dis. 76, 79–87 (2017).

    CAS  PubMed  Google Scholar 

  148. Fragoulis, G.E., Siebert, S. & McInnes, I.B. Therapeutic targeting of IL-17 and IL-23 cytokines in immune-mediated diseases. Annu. Rev. Med. 67, 337–353 (2016).

    CAS  PubMed  Google Scholar 

  149. O'Connor, W. Jr. et al. A protective function for interleukin 17A in T cell-mediated intestinal inflammation. Nat. Immunol. 10, 603–609 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Becker, C. et al. Cutting edge: IL-23 cross-regulates IL-12 production in T cell-dependent experimental colitis. J. Immunol. 177, 2760–2764 (2006).

    CAS  PubMed  Google Scholar 

  151. Buonocore, S. et al. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 464, 1371–1375 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Geremia, A. et al. IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J. Exp. Med. 208, 1127–1133 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Coccia, M. et al. IL-1β mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4+ Th17 cells. J. Exp. Med. 209, 1595–1609 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Powell, N. et al. The transcription factor T-bet regulates intestinal inflammation mediated by interleukin-7 receptor+ innate lymphoid cells. Immunity 37, 674–684 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Eken, A., Singh, A.K., Treuting, P.M. & Oukka, M. IL-23R+ innate lymphoid cells induce colitis via interleukin-22-dependent mechanism. Mucosal Immunol. 7, 143–154 (2014).

    CAS  PubMed  Google Scholar 

  156. Withers, D.R. et al. Transient inhibition of ROR-γt therapeutically limits intestinal inflammation by reducing TH17 cells and preserving group 3 innate lymphoid cells. Nat. Med. 22, 319–323 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Li, Z. et al. Cross-talk between T cells and innate immune cells is crucial for IFN-γ-dependent tumor rejection. J. Immunol. 179, 1568–1576 (2007).

    CAS  PubMed  Google Scholar 

  158. Bronte, V. Th17 and cancer: friends or foes? Blood 112, 214 (2008).

    CAS  PubMed  Google Scholar 

  159. Kryczek, I. et al. Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood 114, 1141–1149 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Kryczek, I., Wei, S., Szeliga, W., Vatan, L. & Zou, W. Endogenous IL-17 contributes to reduced tumor growth and metastasis. Blood 114, 357–359 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. DeBerardinis, R.J., Lum, J.J., Hatzivassiliou, G. & Thompson, C.B. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7, 11–20 (2008).

    CAS  PubMed  Google Scholar 

  162. Dang, E.V. et al. Control of TH17/Treg balance by hypoxia-inducible factor 1. Cell 146, 772–784 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Kleinewietfeld, M. et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 496, 518–522 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Shi, L.Z. et al. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 208, 1367–1376 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Cubillos-Ruiz, J.R. et al. ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis. Cell 161, 1527–1538 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Wang, L. et al. IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway. J. Exp. Med. 206, 1457–1464 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Coffelt, S.B. et al. IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature 522, 345–348 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.V. receives funding via the European Union H2020 ERA project (no. 667824–EXCELLtoINNOV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Veldhoen.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veldhoen, M. Interleukin 17 is a chief orchestrator of immunity. Nat Immunol 18, 612–621 (2017). https://doi.org/10.1038/ni.3742

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.3742

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing