Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mice carrying a knock-in mutation of Aicda resulting in a defect in somatic hypermutation have impaired gut homeostasis and compromised mucosal defense

Abstract

To elucidate the specific role of somatic hypermutation (SHM) in mucosal immunity, we generated mice carrying a knock-in point mutation in Aicda, which encodes activation-induced cytidine deaminase (AID), an enzyme essential to SHM and class-switch recombination (CSR). These mutant AIDG23S mice had much less SHM but had normal amounts of immunoglobulin in both serum and intestinal secretions. AIDG23S mice developed hyperplasia of germinal center B cells in gut-associated lymphoid tissues, accompanied by expansion of microflora in the small intestine. Moreover, AIDG23S mice had more translocation of Yersinia enterocolitica into mesenteric lymph nodes and were more susceptible than wild-type mice to oral challenge with cholera toxin. Together our results indicate that SHM is critical in maintaining intestinal homeostasis and efficient mucosal defense.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genotype analysis of AIDG23S mice.
Figure 2: SHM deficiency in AIDG23S mice.
Figure 3: Immunoglobulin concentrations in the serum and feces of AIDG23S mice.
Figure 4: GC B cell hyperplasia in AIDG23S mice.
Figure 5: Bacterial expansion causes GC B cell hyperplasia in AIDG23S mice.
Figure 6: Compromised mucosal defense in AIDG23S mice.

Similar content being viewed by others

References

  1. Artis, D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat. Rev. Immunol. 8, 411–420 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Round, J.L. & Mazmanian, S.K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9, 313–323 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sansonetti, P.J. War and peace at mucosal surfaces. Nat. Rev. Immunol. 4, 953–964 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Hayday, A.C. & Spencer, J. Barrier immunity. Semin. Immunol. 21, 99–100 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Honda, K. & Takeda, K. Regulatory mechanisms of immune responses to intestinal bacteria. Mucosal Immunol. 2, 187–196 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Ishii, K.J., Koyama, S., Nakagawa, A., Coban, C. & Akira, S. Host innate immune receptors and beyond: making sense of microbial infections. Cell Host Microbe 3, 352–363 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Fagarasan, S., Kawamoto, S., Kanagawa, O. & Suzuki, K. Adaptive immune regulation in the gut: T cell-dependent and T cell-independent IgA synthesis. Annu. Rev. Immunol. 28, 243–273 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Cerutti, A. & Rescigno, M. The biology of intestinal immunoglobulin A responses. Immunity 28, 740–750 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Macpherson, A.J., McCoy, K.D., Johansen, F.E. & Brandtzaeg, P. The immune geography of IgA induction and function. Mucosal Immunol. 1, 11–22 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Woof, J.M. & Mestecky, J. Mucosal immunoglobulins. Immunol. Rev. 206, 64–82 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Cerutti, A. The regulation of IgA class switching. Nat. Rev. Immunol. 8, 421–434 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fagarasan, S. Evolution, development, mechanism and function of IgA in the gut. Curr. Opin. Immunol. 20, 170–177 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Latiff, A.H. & Kerr, M.A. The clinical significance of immunoglobulin A deficiency. Ann. Clin. Biochem. 44, 131–139 (2007).

    Article  PubMed  Google Scholar 

  14. Harriman, G.R. et al. Targeted deletion of the IgA constant region in mice leads to IgA deficiency with alterations in expression of other Ig isotypes. J. Immunol. 162, 2521–2529 (1999).

    CAS  PubMed  Google Scholar 

  15. Arulanandam, B.P. et al. IgA immunodeficiency leads to inadequate Th cell priming and increased susceptibility to influenza virus infection. J. Immunol. 166, 226–231 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Lycke, N., Erlandsson, L., Ekman, L., Schon, K. & Leanderson, T. Lack of J chain inhibits the transport of gut IgA and abrogates the development of intestinal antitoxic protection. J. Immunol. 163, 913–919 (1999).

    CAS  PubMed  Google Scholar 

  17. Uren, T.K. et al. Role of the polymeric Ig receptor in mucosal B cell homeostasis. J. Immunol. 170, 2531–2539 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Uren, T.K. et al. Vaccine-induced protection against gastrointestinal bacterial infections in the absence of secretory antibodies. Eur. J. Immunol. 35, 180–188 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Chen, J. et al. Immunoglobulin gene rearrangement in B cell deficient mice generated by targeted deletion of the JH locus. Int. Immunol. 5, 647–656 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Moore, M.L., McKissic, E.L., Brown, C.C., Wilkinson, J.E. & Spindler, K.R. Fatal disseminated mouse adenovirus type 1 infection in mice lacking B cells or Bruton's tyrosine kinase. J. Virol. 78, 5584–5590 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Harris, N.L. et al. Mechanisms of neonatal mucosal antibody protection. J. Immunol. 177, 6256–6262 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Macpherson, A.J. & Uhr, T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303, 1662–1665 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Kitamura, D., Roes, J., Kuhn, R. & Rajewsky, K.A. B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin μ chain gene. Nature 350, 423–426 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Lund, F.E. et al. B cells are required for generation of protective effector and memory CD4 cells in response to Pneumocystis lung infection. J. Immunol. 176, 6147–6154 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Magez, S. et al. The role of B-cells and IgM antibodies in parasitemia, anemia, and VSG switching in Trypanosoma brucei-infected mice. PLoS Pathog. 4, e1000122 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fagarasan, S. et al. Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science 298, 1424–1427 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Suzuki, K. et al. Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc. Natl. Acad. Sci. USA 101, 1981–1986 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Revy, P. et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2). Cell 102, 565–575 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Shinkura, R. et al. Separate domains of AID are required for somatic hypermutation and class-switch recombination. Nat. Immunol. 5, 707–712 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Doi, T. et al. The C-terminal region of activation-induced cytidine deaminase is responsible for a recombination function other than DNA cleavage in class switch recombination. Proc. Natl. Acad. Sci. USA 106, 2758–2763 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shivarov, V., Shinkura, R. & Honjo, T. Dissociation of in vitro DNA deamination activity and physiological functions of AID mutants. Proc. Natl. Acad. Sci. USA 105, 15866–15871 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Komeno, Y. et al. AID-induced T-lymphoma or B-leukemia/lymphoma in a mouse BMT model. Leukemia 24, 1018–1024 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Dorsett, Y. et al. MicroRNA-155 suppresses activation-induced cytidine deaminase-mediated Myc-Igh translocation. Immunity 28, 630–638 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Takizawa, M. et al. AID expression levels determine the extent of cMyc oncogenic translocations and the incidence of B cell tumor development. J. Exp. Med. 205, 1949–1957 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jolly, C.J., Klix, N. & Neuberger, M.S. Rapid methods for the analysis of immunoglobulin gene hypermutation: application to transgenic and gene targeted mice. Nucleic Acids Res. 25, 1913–1919 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sait, L.C. et al. Secretory antibodies reduce systemic antibody responses against the gastrointestinal commensal flora. Int. Immunol. 19, 257–265 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Wijburg, O.L. et al. Innate secretory antibodies protect against natural Salmonella typhimurium infection. J. Exp. Med. 203, 21–26 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sanchez, J. & Holmgren, J. Cholera toxin structure, gene regulation and pathophysiological and immunological aspects. Cell. Mol. Life Sci. 65, 1347–1360 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Salzman, N.H. et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nat. Immunol. 11, 76–83 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Ivanov, I.I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ubeda, C. et al. Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J. Clin. Invest. 120, 4332–4341 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kadaoui, K.A. & Corthesy, B. Secretory IgA mediates bacterial translocation to dendritic cells in mouse Peyer's patches with restriction to mucosal compartment. J. Immunol. 179, 7751–7757 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Macpherson, A.J. IgA adaptation to the presence of commensal bacteria in the intestine. Curr. Top. Microbiol. Immunol. 308, 117–136 (2006).

    CAS  PubMed  Google Scholar 

  45. Takaku, K. et al. Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell 92, 645–656 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Wakeland, E., Morel, L., Achey, K., Yui, M. & Longmate, J. Speed congenics: a classic technique in the fast lane (relatively speaking). Immunol. Today 18, 472–477 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Kamata, T. et al. Increased frequency of surface IgA-positive plasma cells in the intestinal lamina propria and decreased IgA excretion in hyper IgA (HIGA) mice, a murine model of IgA nephropathy with hyperserum IgA. J. Immunol. 165, 1387–1394 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Wang, Q., Garrity, G.M., Tiedje, J.M. & Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. deVos, T. & Dick, T.A. A rapid method to determine the isotype and specificity of coproantibodies in mice infected with Trichinella or fed cholera toxin. J. Immunol. Methods 141, 285–288 (1991).

    Article  CAS  PubMed  Google Scholar 

  50. Kelly, B.S., Levy, J.G. & Sikora, L. The use of the enzyme-linked immunosorbent assay (ELISA) for the detection and quantification of specific antibody from cell cultures. Immunology 37, 45–52 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hase, K. et al. Uptake through glycoprotein 2 of FimH+ bacteria by M cells initiates mucosal immune response. Nature 462, 226–230 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Peng, X. et al. Morphine inhibits mucosal antibody responses and TGF-β mRNA in gut-associated lymphoid tissue following oral cholera toxin in mice. J. Immunol. 167, 3677–3681 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Nagaoka, M. Muramatsu, K. Kinoshita and H. Ohno for critical comments, and Y. Shiraki for help in preparing the manuscript. Supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan (Grant-in-Aid for Specially Promoted Research 17002015, and Grant-in Aid for Scientific Research on Priority Areas 16043228) and by the Mitsubishi Pharma Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

M.W., R.S. and T.H. designed the study; M.W., R.S., Y.D. and M.M. did the research; and M.W., R.S., S.F. and T.H. wrote the manuscript.

Corresponding author

Correspondence to Tasuku Honjo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Tables 1–2 (PDF 495 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, M., Shinkura, R., Doi, Y. et al. Mice carrying a knock-in mutation of Aicda resulting in a defect in somatic hypermutation have impaired gut homeostasis and compromised mucosal defense. Nat Immunol 12, 264–270 (2011). https://doi.org/10.1038/ni.1991

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1991

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology