Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Genetic manipulation of giant viruses and their host, Acanthamoeba castellanii

Abstract

Giant viruses (GVs) provide an unprecedented source of genetic innovation in the viral world and are thus, besides their importance in basic and environmental virology, in the spotlight for bioengineering advances. Their host, Acanthamoeba castellanii, is an accidental human pathogen that acts as a natural host and environmental reservoir of other human pathogens. Tools for genetic manipulation of viruses and host were lacking. Here, we provide a detailed method for genetic manipulation of A. castellanii and the GVs it plays host to by using CRISPR–Cas9 or homologous recombination. We detail the steps of vector preparation (4 d), transfection of amoeba cells (1 h), infection (1 h), selection (5 d for viruses, 2 weeks for amoebas) and cloning of recombinant viruses (4 d) or amoebas (2 weeks). This procedure takes ~3 weeks or 1 month for the generation of recombinant viruses or amoebas, respectively. This methodology allows the generation of stable gene modifications, which was not possible by using RNA silencing, the only previously available reverse genetic tool. We also include detailed sample-preparation steps for protein localization by immunofluorescence (4 h), western blotting (4 h), quantification of viral particles by optical density (15 min), calculation of viral lethal dose 50 (7 d) and quantification of DNA replication by quantitative PCR (4 h) to allow efficient broad phenotyping of recombinant organisms. This methodology allows the function of thousands of ORFan genes present in GVs, as well as the complex pathogen-host, pathogen-pathogen or pathogen-symbiont interactions in A. castellanii, to be studied in vivo.

Key points

  • This protocol enables genetic manipulation of nuclear and cytoplasmic giant viruses and their host, Acanthomoeba castellanii, by using either CRISPR–Cas9 or homologous recombination.

  • The methodology allows the generation of stable gene modifications, which was not possible by using RNA silencing, the only previously available reverse genetic tool.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of the overall methodology for genetic manipulation of A. castellanii and GVs.
Fig. 2: Design of homology arms for gene modification by homologous recombination.
Fig. 3: Cloning of polycistronic DNA sequences for gRNA expression.
Fig. 4: Design of primers for genotyping.

Similar content being viewed by others

Data availability

All data supporting this paper are included within the article in the form of figures and tables. Raw data associated with Fig. 4 are provided in the primary articles15,18. All plasmids were deposited in Addgene (reference number indicated in Table 1).

References

  1. Rayamajhee, B., Willcox, M. D., Henriquez, F. L., Petsoglou, C. & Carnt, N. Acanthamoeba keratitis: an increasingly common infectious disease of the cornea. Lancet Microbe 2, e345–e346 (2021).

    Article  PubMed  Google Scholar 

  2. Guimaraes, A. J., Gomes, K. X., Cortines, J. R., Peralta, J. M. & Peralta, R. H. Acanthamoeba spp. as a universal host for pathogenic microorganisms: one bridge from environment to host virulence. Microbiol. Res. 193, 30–38 (2016).

    Article  PubMed  Google Scholar 

  3. Raoult, D. et al. The 1.2-megabase genome sequence of Mimivirus. Science 306, 1344–1350 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Philippe, N. et al. Pandoraviruses: amoeba viruses with genomes up to 2.5 Mb reaching that of parasitic eukaryotes. Science 341, 281–286 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Legendre, M. et al. Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology. Proc. Natl Acad. Sci. USA 111, 4274–4279 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Legendre, M. et al. In-depth study of Mollivirus sibericum, a new 30,000-y-old giant virus infecting Acanthamoeba. Proc. Natl Acad. Sci. USA 112, E5327–E5335 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schulz, F., Abergel, C. & Woyke, T. Giant virus biology and diversity in the era of genome-resolved metagenomics. Nat. Rev. Microbiol 20, 721–736 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. de Oliveira, E. G. et al. Giant viruses as a source of novel enzymes for biotechnological application. Pathogens 11, 1453 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Byers, T. J. Molecular biology of DNA in Acanthamoeba, Amoeba, Entamoeba, and Naegleria. Int. Rev. Cytol. 99, 311–341 (1986).

    Article  CAS  PubMed  Google Scholar 

  10. Gicquaud, C. & Tremblay, N. Observations with Hoechst staining of amitosis in Acanthamoeba castellanii. J. Protozoo. l 38, 221–224 (1991).

    Article  Google Scholar 

  11. Matthey-Doret, C. et al. Chromosome-scale assemblies of Acanthamoeba castellanii genomes provide insights into Legionella pneumophila infection-related chromatin reorganization. Genome Res. 32, 1698–1710 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Peng, Z., Omaruddin, R. & Bateman, E. Stable transfection of Acanthamoeba castellanii. Biochim. Biophys. Acta 1743, 93–100 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Liu, Y. et al. Virus-encoded histone doublets are essential and form nucleosome-like structures. Cell 184, 4237–4250.e19 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fridmann-Sirkis, Y. et al. Efficiency in complexity: composition and dynamic nature of mimivirus replication factories. J. Virol. 90, 10039–10047 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bisio, H. et al. Evolution of giant pandoravirus revealed by CRISPR/Cas9. Nat. Commun. 14, 428 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aqeel, Y., Siddiqui, R. & Khan, N. A. Silencing of xylose isomerase and cellulose synthase by siRNA inhibits encystation in Acanthamoeba castellanii. Parasitol. Res. 112, 1221–1227 (2013).

    Article  PubMed  Google Scholar 

  17. Sobhy, H., Scola, B. L., Pagnier, I., Raoult, D. & Colson, P. Identification of giant Mimivirus protein functions using RNA interference. Front. Microbiol. 6, 345 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Alempic, J.-M. et al. Knockout of GMC-oxidoreductase genes reveals functional redundancy in mimivirus. Preprint at https://www.biorxiv.org/content/10.1101/2023.04.28.538727v1 (2023).

  19. Jiang, F. & Doudna, J. A. CRISPR-Cas9 structures and mechanisms. Annu. Rev. Biophys. 46, 505–529 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Moon, E. K., Hong, Y., Chung, D. I., Goo, Y. K. & Kong, H. H. Down-regulation of cellulose synthase inhibits the formation of endocysts in Acanthamoeba. Korean J. Parasitol. 52, 131–135 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Groenenboom, M. A., Maree, A. F. & Hogeweg, P. The RNA silencing pathway: the bits and pieces that matter. PloS Comput. Biol. 1, 155–165 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Wei, J. R. et al. Depletion of antibiotic targets has widely varying effects on growth. Proc. Natl Acad. Sci. USA 108, 4176–4181 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Curtis, C. D. & Nardulli, A. M. Using RNA interference to study protein function. Methods Mol. Biol. 505, 187–204 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Levasseur, A. et al. MIMIVIRE is a defence system in mimivirus that confers resistance to virophage. Nature 531, 249–252 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Bekliz, M. et al. Experimental analysis of Mimivirus translation initiation factor 4a reveals its importance in viral protein translation during infection of Acanthamoeba polyphaga. J. Virol. 92, e00337-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mougari, S., Abrahao, J., Oliveira, G. P., Bou Khalil, J. Y. & La Scola, B. Role of the R349 gene and its repeats in the MIMIVIRE defense system. Front. Microbiol. 10, 1147 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bisio, H. et al. The ZIP code of vesicle trafficking in apicomplexa: SEC1/Munc18 and SNARE Proteins. mBio 11, e02092-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bisio, H., Krishnan, A., Marq, J. B. & Soldati-Favre, D. Toxoplasma gondii phosphatidylserine flippase complex ATP2B-CDC50.4 critically participates in microneme exocytosis. PLoS Pathog. 18, e1010438 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ali, Z., Mahas, A. & Mahfouz, M. CRISPR/Cas13 as a tool for RNA interference. Trends Plant Sci. 23, 374–378 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Pallares Masmitja, M., Knodlseder, N. & Guell, M. CRISPR-gRNA design. Methods Mol. Biol. 1961, 3–11 (2019).

    Article  PubMed  Google Scholar 

  31. Bateman, E. Expression plasmids and production of EGFP in stably transfected Acanthamoeba. Protein Expr. Purif. 70, 95–100 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Fabre, E. et al. Noumeavirus replication relies on a transient remote control of the host nucleus. Nat. Commun. 8, 15087 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Davis, M. W. & Jorgensen, E. M. ApE, A plasmid editor: a freely available DNA manipulation and visualization program. Front. Bioinform. 2, 818619 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dos Santos, D. L. et al. Clinical and molecular diagnosis of Acanthamoeba keratitis in contact lens wearers in southern Brazil reveals the presence of an endosymbiont. Parasitol. Res. 121, 1447–1454 (2022).

    Article  PubMed  Google Scholar 

  35. Bertaux, L., Lartigue, A. & Jeudy, S. Giant mimiviridae CsCl purification protocol. Bio Protoc. 10, e3827 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lei, C., Yang, J., Hu, J. & Sun, X. On the calculation of TCID50 for quantitation of virus infectivity. Virol. Sin. 36, 141–144 (2021).

    Article  PubMed  Google Scholar 

  37. Burda, P. C., Bisio, H., Marq, J. B., Soldati-Favre, D. & Heussler, V. T. CRISPR/Cas9-based knockout of GNAQ reveals differences in host cell signaling necessary for egress of apicomplexan parasites. mSphere 5, e01001–e01020 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bisio, H., Lunghi, M., Brochet, M. & Soldati-Favre, D. Phosphatidic acid governs natural egress in Toxoplasma gondii via a guanylate cyclase receptor platform. Nat. Microbiol. 4, 420–428 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Sandra Jeudy for helpful advice during the development of the protocol. This study was founded by the European Research Council under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 832601; to C.A.). H.B. is the recipient of an EMBO Long-Term Fellowship (ALTF 979-2019).

Author information

Authors and Affiliations

Authors

Contributions

H.B., N.P. and A.S. wrote the original draft. C.A. administered the project, acquired funding and wrote the original draft.

Corresponding authors

Correspondence to Chantal Abergel or Hugo Bisio.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Julien Andreani, Frank Aylward, Matthias Fischer, Hiroyuki Hikida, Abdeali Jivaji, Vasudha Sharma and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Liu, Y. et al. Cell 184, 4237–4250.e19 (2021): https://doi.org/10.1016/j.cell.2021.06.032

Bisio, H. et al. Nat. Commun. 14, 428 (2023): https://doi.org/10.1038/s41467-023-36145-4

Alempic, J.-M. et al. Preprint at bioRxiv (2023): https://doi.org/10.1101/2023.04.28.538727

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Philippe, N., Shukla, A., Abergel, C. et al. Genetic manipulation of giant viruses and their host, Acanthamoeba castellanii. Nat Protoc 19, 3–29 (2024). https://doi.org/10.1038/s41596-023-00910-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00910-y

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing