Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Genetic recording of in vivo cell proliferation by ProTracer

Abstract

The ability to experimentally measure cell proliferation is the basis for understanding the sources of cells that drive organ development, tissue regeneration and repair. Recently, we generated a genetic approach to detect cell proliferation: we used genetic lineage–tracing technologies to achieve seamless recording of in vivo cell proliferation in a tissue-specific manner. We provide a detailed protocol (generation of mouse lines, characterization of mouse lines, mouse line crossing and cell-proliferation tracing) for using this genetic system to study cell proliferation. This cell-proliferation tracing system, which we term ‘ProTracer’ (Proliferation Tracer), permits lifelong noninvasive monitoring of cell proliferation of specific cell lineages in live animals. Compared with other short-term strategies that require execution of animals, ProTracer does not require sampling or animal sacrifice for tissue processing. To highlight these features, we used ProTracer to study the proliferation of hepatocytes during liver homeostasis and after tissue injury in mice. We show that the protocol is applicable to study any in vivo cell proliferation, which takes ~9 months to finish from mouse generation to data analysis. This protocol can easily be carried out by researchers skilled in mouse-related experiments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Lineage tracing of Ki67+ cells by traditional and dual-recombinase–mediated genetic tracing methods.
Fig. 2: The workflow of fate mapping cell proliferation by ProTracer.
Fig. 3: The ProTracer mouse breeding strategy.
Fig. 4: Characterization of the specificity and leakiness of Ki67-CrexER.
Fig. 5: Characterization of R26-DreER and Alb-DreER mice.
Fig. 6: Hepatocyte proliferation captured by R26-DreER primed ProTracer.
Fig. 7: Proliferative cells captured by ubiquitous ProTracer in multiple tissues.
Fig. 8: Hepatocyte proliferation traced by ProTracer and EdU incorporation.
Fig. 9: Hepatocyte proliferation traced by Alb-DreER primed ProTracer.
Fig. 10: Examination of hepatocyte proliferation after PHx by hepatocyte-specific ProTracer.
Fig. 11: Monitoring hepatocyte proliferation by noninvasive bioluminescence imaging.

Similar content being viewed by others

Data availability

The main data of this protocol are from the studies published in the supporting primary research paper by He et al.27.

References

  1. Merrell, A. J. & Stanger, B. Z. Adult cell plasticity in vivo: de-differentiation and transdifferentiation are back in style. Nat. Rev. Mol. Cell Biol. 17, 413–425 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Blanpain, C. & Simons, B. D. Unravelling stem cell dynamics by lineage tracing. Nat. Rev. Mol. Cell Biol. 14, 489–502 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Foglia, M. J. & Poss, K. D. Building and re-building the heart by cardiomyocyte proliferation. Development 143, 729–740 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Miyajima, A., Tanaka, M. & Itoh, T. Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Cell Stem Cell 14, 561–574 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Senyo, S. E. et al. Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493, 433–436 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Lin, Z. et al. Cardiac-specific YAP activation improves cardiac function and survival in an experimental murine MI model. Circ. Res. 115, 354–363 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Porrello, E. R. et al. Transient regenerative potential of the neonatal mouse heart. Science 331, 1078–1080 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Morikawa, Y., Heallen, T., Leach, J., Xiao, Y. & Martin, J. F. Dystrophin-glycoprotein complex sequesters Yap to inhibit cardiomyocyte proliferation. Nature 547, 227–231 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Steinhauser, M. L. et al. Multi-isotope imaging mass spectrometry quantifies stem cell division and metabolism. Nature 481, 516–519 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bergmann, O. et al. Dynamics of cell generation and turnover in the human heart. Cell 161, 1566–1575 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Zajicek, G., Oren, R. & Weinreb, M. Jr. The streaming liver. Liver 5, 293–300 (1985).

    Article  CAS  PubMed  Google Scholar 

  12. Bralet, M. P., Branchereau, S., Brechot, C. & Ferry, N. Cell lineage study in the liver using retroviral-mediated gene-transfer. Evidence against the streaming of hepatocytes in normal liver. Am. J. Pathol. 144, 896–905 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, B., Zhao, L. D., Fish, M., Logan, C. Y. & Nusse, R. Self-renewing diploid Axin2+ cells fuel homeostatic renewal of the liver. Nature 524, 180–185 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pu, W. J. et al. Mfsd2a+ hepatocytes repopulate the liver during injury and regeneration. Nat. Commun. 7, 13369 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lin, S. D. et al. Distributed hepatocytes expressing telomerase repopulate the liver in homeostasis and injury. Nature 556, 244–248 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sun, T. L. et al. AXIN2+ pericentral hepatocytes have limited contributions to liver homeostasis and regeneration. Cell Stem Cell 26, 97–107.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Chen, F. et al. Broad distribution of hepatocyte proliferation in liver homeostasis and regeneration. Cell Stem Cell 26, 27–33.e4 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Larsimont, J. C. et al. Sox9 controls self-renewal of oncogene targeted cells and links tumor initiation and invasion. Cell Stem Cell 17, 60–73 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Andersson, E. R. In the zone for liver proliferation. Science 371, 887–888 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Kretzschmar, K. et al. Profiling proliferative cells and their progeny in damaged murine hearts. Proc. Natl Acad. Sci. USA 115, E12245–E12254 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu, K., Jin, H. & Zhou, B. Genetic lineage tracing with multiple DNA recombinases: a user’s guide for conducting more precise cell fate mapping studies. J. Biol. Chem. 295, 6413–6424 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tian, X., Pu, W. T. & Zhou, B. Cellular origin and developmental program of coronary angiogenesis. Circ. Res. 116, 515–530 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guo, C., Yang, W. & Lobe, C. G. A Cre recombinase transgene with mosaic, widespread tamoxifen-inducible action. Genesis 32, 8–18 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Basak, O. et al. Troy+ brain stem cells cycle through quiescence and regulate their number by sensing niche occupancy. Proc. Natl Acad. Sci. USA 115, E610–E619 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Robinson, S. P., Langanfahey, S. M., Johnson, D. A. & Jordan, V. C. Metabolites, pharmacodynamics, and pharmacokinetics of tamoxifen in rats and mice compared to the breast-cancer patient. Drug Metab. Dispos. 19, 36–43 (1991).

    CAS  PubMed  Google Scholar 

  26. Walker, E. A., Foley, J. J., Clark-Vetri, R. & Raffa, R. B. Effects of repeated administration of chemotherapeutic agents tamoxifen, methotrexate, and 5-fluorouracil on the acquisition and retention of a learned response in mice. Psychopharmacol. (Berl.) 217, 539–548 (2011).

    Article  CAS  Google Scholar 

  27. He, L. et al. Proliferation tracing reveals regional hepatocyte generation in liver homeostasis and repair. Science 371, eabc4346 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Liu, X. et al. Cell proliferation fate mapping reveals regional cardiomyocyte cell-cycle activity in subendocardial muscle of left ventricle. Nat. Commun. 12, 5784 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li, Y. et al. Genetic fate mapping of transient cell fate reveals N-cadherin activity and function in tumor metastasis. Dev. Cell 54, 593–607.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, S. H. et al. Seamless genetic recording of transiently activated mesenchymal gene expression in endothelial cells during cardiac fibrosis. Circulation 144, 2004–2020 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Sauer, B. & McDermott, J. DNA recombination with a heterospecific Cre homolog identified from comparison of the pac-c1 regions of P1-related phages. Nucleic Acids Res. 32, 6086–6095 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. He, L. et al. Enhancing the precision of genetic lineage tracing using dual recombinases. Nat. Med. 23, 1488–1498 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Haskins, J. S. et al. Evaluating the genotoxic and cytotoxic effects of thymidine analogs, 5-ethynyl-2′-deoxyuridine and 5-bromo-2′-deoxyurdine to mammalian cells. Int. J. Mol. Sci. 21, 6631 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Han, X. et al. A suite of new Dre recombinase drivers markedly expands the ability to perform intersectional genetic targeting. Cell Stem Cell 28, 1160–1176.e7 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Li, Y. et al. Genetic lineage tracing of nonmyocyte population by dual recombinases. Circulation 138, 793–805 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Ukai, H., Kiyonari, H. & Ueda, H. R. Production of knock-in mice in a single generation from embryonic stem cells. Nat. Protoc. 12, 2513–2530 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Yao, X. et al. Homology-mediated end joining-based targeted integration using CRISPR/Cas9. Cell Res. 27, 801–814 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang, H. et al. Endocardium minimally contributes to coronary endothelium in the embryonic ventricular free walls. Circ. Res. 118, 1880–1893 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Reinert, R. B. et al. Tamoxifen-induced Cre-loxP recombination is prolonged in pancreatic islets of adult mice. PLOS One 7, e33529 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Safran, M. et al. Mouse reporter strain for noninvasive bioluminescent imaging of cells that have undergone Cre-mediated recombination. Mol. Imaging 2, 297–302 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, Y. et al. Genetic tracing of hepatocytes in liver homeostasis, injury, and regeneration. J. Biol. Chem. 292, 8594–8604 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. He, L. J. et al. Reassessment of c-Kit+ cells for cardiomyocyte contribution in adult heart. Circulation 140, 164–166 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Wang, Q., Dolyle, T., Cao, Y. & Contag, C. H. A dual bioluminescent reporter transgenic mouse strain for noninvasive bioluminescent imaging of cells that have undergone cremediated recombination—a useful model for development research. Cancer Res. 66(8 Suppl), 231 (2006).

    Google Scholar 

  44. Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Madisen, L. et al. Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron 85, 942–958 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Southern, E. Southern blotting. Nat. Protoc. 1, 518–525 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Yu, W. et al. GATA4 regulates Fgf16 to promote heart repair after injury. Development 143, 936–949 (2016).

    CAS  PubMed  Google Scholar 

  48. Tarlow, B. D. et al. Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes. Cell Stem Cell 15, 605–618 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Science Foundation of China (grant nos. 82088101 and 32050087 to B.Z.), the National Key Research & Development Program of China (grant nos. 2019YFA0110403 and 2019YFA0802000 to B.Z. and grant nos. 2021YFA0805100 and 2018YFA0108100 to L.H.), Shanghai Pilot Program for Basic Research – Chinese Academy of Science, Shanghai Branch (grant no. JCYJ-SHFY-2021-0 to B.Z.), CAS Project for Young Scientists in Basic Research (grant no. YSBR-012 to B.Z.), the Pearl River Talent Recruitment Program of Guangdong Province (grant no. 2017ZT07S347 to B.Z.), the XPLORER PRIZE (to B.Z.), Benyuan Young Investigator Program (to L.H.), New Cornerstone Science Foundation (to B.Z.), AstraZeneca and the Shanghai Municipal Science and Technology Major Project. We also thank Shanghai Model Organisms Center, Inc., for generating mice; members of the animal facility and cell platform in CEMCS; the National Center for Protein Science Shanghai for assistance in microscopy; and the Genome Tagging Project (GTP) Center, CEMCS, CAS for technical support.

Author information

Authors and Affiliations

Authors

Contributions

B.Z. supervised the project. X.L., W.W., L.H. and B.Z. designed and performed the experiments. X.L. and B.Z. wrote the manuscript. W.W. and L.H. edited the manuscript and provided valuable comments.

Corresponding authors

Correspondence to Lingjuan He or Bin Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Natalie Porat-Shliom, Sean M. Wu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

He, L. et al. Science 371, eabc4346 (2021): https://doi.org/10.1126/science.abc4346

Source data

Source Data Fig. 5

Unprocessed Southern blots

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Weng, W., He, L. et al. Genetic recording of in vivo cell proliferation by ProTracer. Nat Protoc 18, 2349–2373 (2023). https://doi.org/10.1038/s41596-023-00833-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00833-8

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing