Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Isolation of mouse pancreatic islet Procr+ progenitors and long-term expansion of islet organoids in vitro

Abstract

Insulin production is required for glucose homeostasis. Pancreatic islet β cells are the only cells that produce insulin in humans; however, generation of functional β cells in vitro from embryonic or adult tissues has been challenging. Here, we describe isolation of pancreatic islet progenitors from adult mice, which enables the efficient generation and long-term expansion of functional islet organoids in vitro. This protocol starts with purification of protein C receptor (Procr)-expressing islet progenitors. Coculture with endothelial cells generates islet organoids in vitro that can be expanded by passage. Functional maturation is achieved as a consequence of a prolonged culture period and cyclic glucose stimulation. Primary islet organoids form in 7–10 days. Subsequently, each passage takes 1 week, with the final maturation step requiring 3 weeks of additional culture. The resulting organoids are predominantly composed of β cells but also contain small proportions of α, δ and pancreatic polypeptide cells. The organoids sense glucose and secrete insulin. This approach thus provides a strategy for β cell generation in vitro and an organoid system to study islet regeneration and diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic diagram of the time line for generating islet organoids.
Fig. 2: Expression of Procr in mouse pancreatic cells.
Fig. 3: Pancreas perfusion and islet purification by density gradient centrifugation and handpicking.
Fig. 4: FACS sorting of Procr+ islet progenitors and Cd31+ ECs for in vitro culture.
Fig. 5: Bright-field images of the islet organoids at different time points.
Fig. 6: Characterization of the islet organoids in vitro and the organoid cells in vivo.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article. The single-cell RNA-sequencing data shown in Fig. 2a–c can be found at https://www.biosino.org/node/index, with access no. OEP000249 (https://www.biosino.org/node/project/detail/OEP000249). Source data are provided with this paper.

References

  1. Zhou, Q. & Melton, D. A. Pancreas regeneration. Nature 557, 351–358 (2018).

    Article  CAS  Google Scholar 

  2. Greggio, C. et al. Artificial three-dimensional niches deconstruct pancreas development in vitro. Development 140, 4452–4462 (2013).

    Article  CAS  Google Scholar 

  3. Sugiyama, T. et al. Reconstituting pancreas development from purified progenitor cells reveals genes essential for islet differentiation. Proc. Natl Acad. Sci. USA 110, 12691–12696 (2013).

    Article  CAS  Google Scholar 

  4. Ramiya, V. K. et al. Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat. Med. 6, 278–282 (2000).

    Article  CAS  Google Scholar 

  5. Jin, L. et al. Colony-forming cells in the adult mouse pancreas are expandable in Matrigel and form endocrine/acinar colonies in laminin hydrogel. Proc. Natl Acad. Sci. USA 110, 3907–3912 (2013).

    Article  CAS  Google Scholar 

  6. Bonner-Weir, S. et al. In vitro cultivation of human islets from expanded ductal tissue. Proc. Natl Acad. Sci. USA 97, 7999–8004 (2000).

    Article  CAS  Google Scholar 

  7. Gao, R., Ustinov, J., Korsgren, O. & Otonkoski, T. In vitro neogenesis of human islets reflects the plasticity of differentiated human pancreatic cells. Diabetologia 48, 2296–2304 (2005).

    Article  CAS  Google Scholar 

  8. Yatoh, S. et al. Differentiation of affinity-purified human pancreatic duct cells to beta-cells. Diabetes 56, 1802–1809 (2007).

    Article  CAS  Google Scholar 

  9. Rovira, M. et al. Isolation and characterization of centroacinar/terminal ductal progenitor cells in adult mouse pancreas. Proc. Natl Acad. Sci. USA 107, 75–80 (2010).

    Article  CAS  Google Scholar 

  10. Huch, M. et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J. 32, 2708–2721 (2013).

    Article  CAS  Google Scholar 

  11. Minami, K. et al. Lineage tracing and characterization of insulin-secreting cells generated from adult pancreatic acinar cells. Proc. Natl Acad. Sci. USA 102, 15116–15121 (2005).

    Article  CAS  Google Scholar 

  12. Seaberg, R. M. et al. Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat. Biotechnol. 22, 1115–1124 (2004).

    Article  CAS  Google Scholar 

  13. Smukler, SimonR. et al. The adult mouse and human pancreas contain rare multipotent stem cells that express insulin. Cell Stem Cell 8, 281–293 (2011).

    Article  CAS  Google Scholar 

  14. Hogrebe, N. J., Augsornworawat, P., Maxwell, K. G., Velazco-Cruz, L. & Millman, J. R. Targeting the cytoskeleton to direct pancreatic differentiation of human pluripotent stem cells. Nat. Biotechnol. 38, 460–470 (2020).

    Article  CAS  Google Scholar 

  15. Pagliuca, FeliciaW. et al. Generation of functional human pancreatic β cells in vitro. Cell 159, 428–439 (2014).

    Article  CAS  Google Scholar 

  16. Rezania, A. et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat. Biotechnol. 32, 1121–1133 (2014).

    Article  CAS  Google Scholar 

  17. Yoshihara, E. et al. Immune-evasive human islet-like organoids ameliorate diabetes. Nature 586, 606–611 (2020).

    Article  CAS  Google Scholar 

  18. González, B. J., Creusot, R. J., Sykes, M. & Egli, D. How safe are universal pluripotent stem cells? Cell Stem Cell 26, 307–308 (2020).

    Article  Google Scholar 

  19. Valdez, I. A., Teo, A. K. K. & Kulkarn, R. N. Cellular stress drives pancreatic plasticity. Sci. Transl. Med. 7, 273ps272 (2015).

    Article  Google Scholar 

  20. Wang, D. et al. Long-term expansion of pancreatic islet organoids from resident Procr+ progenitors. Cell 180, 1198–1211.e19 (2020).

    Article  CAS  Google Scholar 

  21. Gittes, G. K. Developmental biology of the pancreas: a comprehensive review. Dev. Biol. 326, 4–35 (2009).

    Article  CAS  Google Scholar 

  22. Lammert, E., Cleaver, O. & Melton, D. Induction of pancreatic differentiation by signals from blood vessels. Science 294, 564–567 (2001).

    Article  CAS  Google Scholar 

  23. Zhou, Q., Brown, J., Kanarek, A., Rajagopal, J. & Melton, D. A. In vivo reprogramming of adult pancreatic exocrine cells to β-cells. Nature 455, 627–632 (2008).

    Article  CAS  Google Scholar 

  24. Lemper, M. et al. Reprogramming of human pancreatic exocrine cells to β-like cells. Cell Death Differ. 22, 1117–1130 (2014).

    Article  Google Scholar 

  25. Lee, J. et al. Expansion and conversion of human pancreatic ductal cells into insulin-secreting endocrine cells. eLife 2, e00940 (2013).

    Article  Google Scholar 

  26. Pan, F. C. & Wright, C. Pancreas organogenesis: from bud to plexus to gland. Dev. Dyn. 240, 530–565 (2011).

    Article  CAS  Google Scholar 

  27. Furuyama, K. et al. Diabetes relief in mice by glucose-sensing insulin-secreting human α-cells. Nature 567, 43–48 (2019).

    Article  CAS  Google Scholar 

  28. Clevers, H. Modeling development and disease with organoids. Cell 165, 1586–1597 (2016).

    Article  CAS  Google Scholar 

  29. McCall, M. D., Maciver, A. H., Pawlick, R. L., Edgar, R. & Shapiro, A. M. J. Histopaque provides optimal mouse islet purification kinetics: comparison study with Ficoll, iodixanol and dextran. Islets 3, 144–149 (2014).

    Article  Google Scholar 

  30. Zmuda, E. J., Powell, C. A. & Hai, T. A method for murine islet isolation and subcapsular kidney transplantation. J. Vis. Exp. 2011, 2096 (2011).

    Google Scholar 

  31. Akira Shiroi, M. et al. Identification of insulin-producing cells derived from embryonic stem cells by zinc-chelating dithizone. Stem Cells Int. 20, 284–292 (2002).

    Article  Google Scholar 

  32. Crowley, L. C., Marfell, B. J., Christensen, M. E., and Waterhouse, N. J. Measuring cell death by trypan blue uptake and light microscopy. Cold Spring Harb. Protoc. https://doi.org/10.1101/pdb.prot087155 (2016).

  33. Corbin, K. L. et al. A practical guide to rodent islet isolation and assessment revisited. Biol. Proced. Online 23, 7 (2021).

    Article  CAS  Google Scholar 

  34. Huang, C. & Gu, G. Effective isolation of functional islets from neonatal mouse pancreas. J. Vis. Exp. 2017, 55160 (2017).

    Google Scholar 

  35. Junod, A., Lambert, A. E., Stauffacher, W. & Renold, A. E. Diabetogenic action of streptozotocin: relationship of dose to metabolic response. J. Clin. Invest. 48, 2129–2139 (1969).

    Article  CAS  Google Scholar 

  36. Lenzen, S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 51, 216–226 (2007).

    Article  Google Scholar 

  37. Deeds, M. C. et al. Single dose streptozotocin-induced diabetes: considerations for study design in islet transplantation models. Lab. Anim. 45, 131–140 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the Chinese Academy of Sciences (XDA16020200 to Y.A.Z.), the National Key Research and Development Program of China (2020YFA0509002 to Y.A.Z.) and the National Natural Science Foundation of China (31830056, and 31861163006 to Y.A.Z.).

Author information

Authors and Affiliations

Authors

Contributions

Y.A.Z. and D.W. envisioned the original idea and developed the protocol. J.W., L.B., C.L. and S.Y. helped protocol optimization. X.C. drew illustrations. J.W., D.W. and Y.A.Z. wrote the manuscript.

Corresponding author

Correspondence to Yi Arial Zeng.

Ethics declarations

Competing interests

Y.A.Z. and D.W. have a patent on islet organoid technology.

Peer review

Peer review information

Nature Protocols thanks Ekaterine Berishvili, Jeffrey R. Millman, Fong Cheng Pan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Wang, D. et al. Cell 180, 1198–1211.e19 (2020); https://doi.org/10.1016/j.cell.2020.02.048

Source data

Source Data Fig. 5

Statistical source data

Source Data Fig. 6

Statistical source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, D., Chen, X. et al. Isolation of mouse pancreatic islet Procr+ progenitors and long-term expansion of islet organoids in vitro. Nat Protoc 17, 1359–1384 (2022). https://doi.org/10.1038/s41596-022-00683-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-022-00683-w

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing