Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A mass spectrometry workflow for measuring protein turnover rates in vivo

Abstract

Proteins are continually produced and degraded, to avoid the accumulation of old or damaged molecules and to maintain the efficiency of physiological processes. Despite its importance, protein turnover has been difficult to measure in vivo. Previous approaches to evaluating turnover in vivo have required custom labeling approaches, involved complex mass spectrometry (MS) analyses, or used comparative strategies that do not allow direct quantitative measurements. Here, we describe a robust protocol for quantitative proteome turnover analysis in mice that is based on a commercially available diet for stable isotope labeling of amino acids in mammals (SILAM). We start by discussing fundamental concepts of protein turnover, including different methodological approaches. We then cover in detail the practical aspects of metabolic labeling and explain both the experimental and computational steps that must be taken to obtain accurate in vivo results. Finally, we present a simple experimental workflow that enables measurement of precise turnover rates in a time frame of ~4–5 weeks, including the labeling time. We also provide all the scripts needed for the interpretation of the MS results and for comparing turnover across different conditions. Overall, the workflow presented here comprises several improvements in the determination of protein lifetimes with respect to other available methods, including a minimally invasive labeling strategy and a robust interpretation of MS results, thus enhancing reproducibility across laboratories.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flowchart of the protocol.
Fig. 2: Mouse metabolic labeling setup and SILAC food estimates for a minimal experimental design.
Fig. 3: Mathematical modeling and fitting of the data.
Fig. 4: Custom-made gel cutter and 96-well washing setup.
Fig. 5
Fig. 6
Fig. 7: Exemplary screenshot of the graphical interface from the ‘template’ tab of the turnover script.
Fig. 8: Sample screenshot of the graphical interface from the ‘import’ tab of the turnover script.
Fig. 9: Sample screenshot of the graphical interface from the ‘pool fit’ tab of the turnover script.
Fig. 10: Sample screenshot of the graphical interface from the ‘dataset fit’ tab of the turnover script.
Fig. 11: Sample screenshot of the graphical interface from the ‘statistics’ tab of the turnover script.
Fig. 12: Variation in the determination of protein lifetimes depending on labeling intervals, biological samples and technical replicates.
Fig. 13: Evaluation of lifetime determination precision in a subset of the data that is not used to calculate the lysine pool.

Similar content being viewed by others

Data and code availability

The dataset presented in this protocol was originally generated in ref. 4. All data are available from the corresponding authors on reasonable request. All code from Supplementary Data 1 is also publicly available at GitHub: https://github.com/malevra/protein-turnover.

References

  1. Labbadia, J. & Morimoto, R. I. The biology of proteostasis in aging and disease. Annu. Rev. Biochem. 84, 435–464 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ong, S.-E. & Mann, M. A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat. Protoc. 1, 2650–2660 (2006).

    CAS  PubMed  Google Scholar 

  3. Schoenheimer, R. The Dynamic State of Body Constituents (Harvard University Press, 1946).

  4. Fornasiero, E. F. et al. Precisely measured protein lifetimes in the mouse brain reveal differences across tissues and subcellular fractions. Nat. Commun. 9, 4230 (2018).

    PubMed  PubMed Central  Google Scholar 

  5. Chan, X. C. Y., Black, C. M., Lin, A. J., Ping, P. & Lau, E. Mitochondrial protein turnover: Methods to measure turnover rates on a large scale. J. Mol. Cell. Cardiol. 78, 54–61 (2015).

    CAS  PubMed  Google Scholar 

  6. Busch, R. et al. Measurement of protein turnover rates by heavy water labeling of nonessential amino acids. Biochim. Biophys. Acta 1760, 730–744 (2006).

    CAS  PubMed  Google Scholar 

  7. Price, J. C., Guan, S., Burlingame, A., Prusiner, S. B. & Ghaemmaghami, S. Analysis of proteome dynamics in the mouse brain. Proc. Natl. Acad. Sci. USA 107, 14508–14513 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. McClatchy, D. B., Dong, M., Wu, C. C., Venable, J. D. & Yates, J. R. 15N metabolic labeling of mammalian tissue with slow protein turnover. J. Proteome Res. 6, 2005–2010 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Savas, J. N., Toyama, B. H., Xu, T., Yates, J. R. & Hetzer, M. W. Extremely long-lived nuclear pore proteins in the rat brain. Science 335, 942 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Toyama, B. H. et al. Identification of long-lived proteins reveals exceptional stability of essential cellular structures. Cell 154, 971–982 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Heo, S. et al. Identification of long-lived synaptic proteins by proteomic analysis of synaptosome protein turnover. Proc. Natl Acad. Sci. USA 115, E3827–E3836 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Claydon, A. J. & Beynon, R. J. Proteome dynamics: revisiting turnover with a global perspective. Mol. Cell. Proteom. 11, 1551–1565 (2012).

    Google Scholar 

  13. Basisty, N., Meyer, J. G. & Schilling, B. Protein turnover in aging and longevity. Proteomics 18, e1700108 (2018).

    PubMed  Google Scholar 

  14. Claydon, A. J. et al. Heterogenous turnover of sperm and seminal vesicle proteins in the mouse revealed by dynamic metabolic labeling. Mol. Cell. Proteom. 11, M111.014993 (2012).

    Google Scholar 

  15. Claydon, A. J., Thom, M. D., Hurst, J. L. & Beynon, R. J. Protein turnover: measurement of proteome dynamics by whole animal metabolic labelling with stable isotope labelled amino acids. Proteomics 12, 1194–1206 (2012).

    CAS  PubMed  Google Scholar 

  16. Guan, S., Price, J. C., Ghaemmaghami, S., Prusiner, S. B. & Burlingame, A. L. Compartment modeling for mammalian protein turnover studies by stable isotope metabolic labeling. Anal. Chem. 84, 4014–4021 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, Y. et al. Proteome scale turnover analysis in live animals using stable isotope metabolic labeling. Anal. Chem. 83, 1665–1672 (2011).

    CAS  PubMed  Google Scholar 

  18. Vogt, J. A. et al. Determination of fractional synthesis rates of mouse hepatic proteins via metabolic 13C-labeling, MALDI-TOF MS and analysis of relative isotopologue abundances using average masses. Anal. Chem. 77, 2034–2042 (2005).

    CAS  PubMed  Google Scholar 

  19. Rahman, M., Previs, S. F., Kasumov, T. & Sadygov, R. G. Gaussian process modeling of protein turnover. J. Proteome Res. 15, 2115–2122 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Toyama, B. H. et al. Visualization of long-lived proteins reveals age mosaicism within nuclei of postmitotic cells. J. Cell Biol. 218, 1–16 (2018).

  21. Lau, E. et al. A large dataset of protein dynamics in the mammalian heart proteome. Sci. Data 3, 1–15 (2016).

  22. Sadygov, R. G. et al. d2ome, software for in vivo protein turnover analysis using heavy water labeling and LC-MS, reveals alterations of hepatic proteome dynamics in a mouse model of NAFLD. J. Proteome Res. 17, 3740–3748 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Naylor, B. C. et al. DeuteRater: a tool for quantifying peptide isotope precision and kinetic proteomics. Bioinformatics 33, 1514–1520 (2017).

    CAS  PubMed  Google Scholar 

  24. Dufner, D. & Previs, S. F. Measuring in vivo metabolism using heavy water. Curr. Opin. Clin. Nutr. Metab. Care 6, 511–517 (2003).

    CAS  PubMed  Google Scholar 

  25. Krüger, M. et al. SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 134, 353–364 (2008).

    PubMed  Google Scholar 

  26. Chen, X., Wei, S., Ji, Y., Guo, X. & Yang, F. Quantitative proteomics using SILAC: principles, applications, and developments. Proteomics 15, 3175–3192 (2015).

    CAS  PubMed  Google Scholar 

  27. Hanke, S., Besir, H., Oesterhelt, D. & Mann, M. Absolute SILAC for accurate quantitation of proteins in complex mixtures down to the attomole level. J. Proteome Res. 7, 1118–1130 (2008).

    CAS  PubMed  Google Scholar 

  28. Zanivan, S., Krueger, M. & Mann, M. In vivo quantitative proteomics: the SILAC mouse. Methods Mol. Biol. 757, 435–450 (2012).

    PubMed  Google Scholar 

  29. Pena, I. A. et al. Mouse lysine catabolism to aminoadipate occurs primarily through the saccharopine pathway; implications for pyridoxine dependent epilepsy (PDE). Biochim. Biophys. Acta 1863, 121–128 (2017).

    CAS  Google Scholar 

  30. Mandad, S. et al. The codon sequences predict protein lifetimes and other parameters of the protein life cycle in the mouse brain. Sci. Rep. 8, 16913 (2018).

    PubMed  PubMed Central  Google Scholar 

  31. Cox, J. et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteomics 13, 2513–2526 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Phillip, Y. & Schreiber, G. Formation of protein complexes in crowded environments-from in vitro to in vivo. FEBS Lett. 587, 1046–1052 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Venable, J. D., Dong, M.-Q., Wohlschlegel, J., Dillin, A. & Yates, J. R. Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra. Nat. Methods 1, 39–45 (2004).

    CAS  PubMed  Google Scholar 

  34. Collins, B. C. et al. Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry. Nat. Commun. 8, 1–11 (2017).

    Google Scholar 

  35. Meier, F., Geyer, P. E., Virreira Winter, S., Cox, J. & Mann, M. BoxCar acquisition method enables single-shot proteomics at a depth of 10,000 proteins in 100 minutes. Nat. Methods 15, 440–448 (2018).

    CAS  PubMed  Google Scholar 

  36. McShane, E. et al. Kinetic analysis of protein stability reveals age-dependent degradation. Cell 167, 803–815 (2016).

    CAS  PubMed  Google Scholar 

  37. Masters, P. M., Bada, J. L. & Zigler, J. S. Aspartic acid racemisation in the human lens during ageing and in cataract formation. Nature 268, 71–73 (1977).

    CAS  PubMed  Google Scholar 

  38. John, A. M. & Bell, J. M. Amino acid requirements of the growing mouse. J. Nutr. 106, 1361–1367 (1976).

    CAS  PubMed  Google Scholar 

  39. Overmyer, K. A. et al. Multiplexed proteome analysis with neutron-encoded stable isotope labeling in cells and mice. Nat. Protoc. 13, 293–306 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V. & Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1, 2856–2860 (2006).

    CAS  PubMed  Google Scholar 

  41. Schirle, M., Heurtier, M.-A. & Kuster, B. Profiling core proteomes of human cell lines by one-dimensional PAGE and liquid chromatography-tandem mass spectrometry. Mol. Cell. Proteom. 2, 1297–1305 (2003).

    CAS  Google Scholar 

  42. Batth, T. S., Francavilla, C. & Olsen, J. V. Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics. J. Proteome Res. 13, 6176–6186 (2014).

    CAS  PubMed  Google Scholar 

  43. Lam, M. P. Y. et al. Protein kinetic signatures of the remodeling heart following isoproterenol stimulation. J. Clin. Invest. 124, 1734–1744 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ahmed, S., Holt, M., Riedel, D. & Jahn, R. Small-scale isolation of synaptic vesicles from mammalian brain. Nat. Protoc. 8, 998–1009 (2013).

    PubMed  Google Scholar 

  45. Dunkley, P. R., Jarvie, P. E. & Robinson, P. J. A rapid Percoll gradient procedure for preparation of synaptosomes. Nat. Protoc. 3, 1718–1728 (2008).

    CAS  PubMed  Google Scholar 

  46. Sims, N. R. & Anderson, M. F. Isolation of mitochondria from rat brain using Percoll density gradient centrifugation. Nat. Protoc. 3, 1228–1239 (2008).

    CAS  PubMed  Google Scholar 

  47. Cox, B. & Emili, A. Tissue subcellular fractionation and protein extraction for use in mass-spectrometry-based proteomics. Nat. Protoc. 1, 1872–1878 (2006).

    CAS  PubMed  Google Scholar 

  48. Alvarez-Castelao, B., Schanzenbächer, C. T., Langer, J. D. & Schuman, E. M. Cell-type-specific metabolic labeling, detection and identification of nascent proteomes in vivo. Nat. Protoc. 14, 556–575 (2019).

  49. Tu, R. Comparison between confidence intervals of linear regression models with and without restrication. Commun. Stat. Theory Methods 28, 2879–2898 (1999).

    Google Scholar 

  50. Feil, R., Brocard, J., Mascrez, B. & Lemeur, M. Ligand-activated site-specific recombination in mice. Proc. Natl. Acad. Sci. USA 93, 10887–10890 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Erdmann, G., Schütz, G. & Berger, S. Inducible gene inactivation in neurons of the adult mouse forebrain. BMC Neurosci. 8, 63 (2007).

    PubMed  PubMed Central  Google Scholar 

  52. Gage, G. J., Kipke, D. R. & Shain, W. Whole animal perfusion fixation for rodents. J. Vis. Exp. 65, 3564 (2012).

    Google Scholar 

  53. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    CAS  PubMed  Google Scholar 

  54. Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805 (2011).

    CAS  PubMed  Google Scholar 

  55. Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Truckenbrodt (IST, Austria) for initial suggestions on manuscript preparation. We thank S. Reshetniak (University Medical Center Göttingen), T. Dankovich (University Medical Center Göttingen) and I. Atanassov (Max Planck Institute for Biology of Ageing, Germany) for carefully reading and commenting on the final version of the manuscript. We thank U. Plessmann (University Medical Center Göttingen) for setting up and maintaining the LCMS configuration. The work was supported by grants to S. O. R. from the European Research Council (ERC-2013-CoG NeuroMolAnatomy) and the Deutsche Forschungsgemeinschaft (DFG 1967/7-1, SFB1286/A3, ExC 2067/Multiscale Bioimaging) and to HU from the SFB-1286/A10.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: E.F.F. and S.O.R. Methodology: E.F.F., S.M., T.I. and H.U. Software: M.A. Formal analysis: M.A., E.F.F. and S.O.R. Resources and funding acquisition: S.O.R. Writing—initial draft: E.F.F. and S.O.R. Writing—final draft, review and editing: M.A., S.M., T.I., H.U., S.O.R. and E.F.F. Supervision: E.F.F.

Corresponding authors

Correspondence to Silvio O. Rizzoli or Eugenio F. Fornasiero.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related link

Key references using this protocol

Fornasiero, E. F. et al. Nat. Commun. 9, 4230 (2018): https://www.nature.com/articles/s41467-018-06519-0

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2

Reporting Summary

Supplementary Data 1

MATLAB scripts, also available online at GitHub

Supplementary Data 2

Testing dataset for evaluation of the MATLAB scripts

Supplementary Data 3

Simulated dataset for evaluation of the MATLAB scripts (pools)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alevra, M., Mandad, S., Ischebeck, T. et al. A mass spectrometry workflow for measuring protein turnover rates in vivo. Nat Protoc 14, 3333–3365 (2019). https://doi.org/10.1038/s41596-019-0222-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-019-0222-y

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research