Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol Extension
  • Published:

Ex vivo and in vivo stable isotope labelling of central carbon metabolism and related pathways with analysis by LC–MS/MS

Abstract

Targeted tandem mass spectrometry (LC–MS/MS) has been extremely useful for profiling small molecules extracted from biological sources, such as cells, bodily fluids and tissues. Here, we present a protocol for analysing incorporation of the non-radioactive stable isotopes carbon-13 (13C) and nitrogen-15 (15N) into polar metabolites in central carbon metabolism and related pathways. Our platform utilizes selected reaction monitoring (SRM) with polarity switching and amide hydrophilic interaction liquid chromatography (HILIC) to capture transitions for carbon and nitrogen incorporation into selected metabolites using a hybrid triple quadrupole (QQQ) mass spectrometer. This protocol represents an extension of a previously published protocol for targeted metabolomics of unlabeled species and has been used extensively in tracing the metabolism of nutrients such as 13C-labeled glucose, 13C-glutamine and 15N-glutamine in a variety of biological settings (e.g., cell culture experiments and in vivo mouse labelling via i.p. injection). SRM signals are integrated to produce an array of peak areas for each labelling form that serve as the output for further analysis. The processed data are then used to obtain the degree and distribution of labelling of the targeted molecules (termed fluxomics). Each method can be customized on the basis of known unlabeled Q1/Q3 SRM transitions and adjusted to account for the corresponding 13C or 15N incorporation. The entire procedure takes ~6–7 h for a single sample from experimental labelling and metabolite extraction to peak integration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Isotopomer depiction of 13C-glutamine incorporation into the TCA cycle.
Fig. 2: Targeted 13C metabolomics workflow.
Fig. 3: Fractional labelling of central carbon metabolism in cancer cell lines with 13C-glucose and 13C-glutamine.
Fig. 4: Isotope labelling of de novo pyrimidine biosynthesis.
Fig. 5: Clustering of unlabeled (12C) metabolites and labeled (13C) isotopomers from targeted LC–MS/MS data.
Fig. 6: Clustergrams of labeled cancer cells.
Fig. 7: In vivo 13C/15N labelling for flux analysis.
Fig. 8: Visualization of metabolic flux analyses with Omix Visualization.

Similar content being viewed by others

References

  1. Jorda, J. et al. Quantitative metabolomics and instationary 13C-metabolic flux analysis reveals impact of recombinant protein production on trehalose and energy metabolism in Pichia pastoris. Metabolites 4, 281–299 (2014).

    Article  Google Scholar 

  2. Metallo, C. M., Walther, J. L. & Stephanopoulos, G. Evaluation of 13C isotopic tracers for metabolic flux analysis in mammalian cells. J. Biotechnol. 144, 167–174 (2009).

    Article  CAS  Google Scholar 

  3. Nissim, I. et al. Effects of a glucokinase activator on hepatic intermediary metabolism: study with 13C-isotopomer-based metabolomics. Biochem. J. 444, 537–551 (2012).

    Article  CAS  Google Scholar 

  4. Zamboni, N. & Sauer, U. Novel biological insights through metabolomics and 13C-flux analysis. Curr. Opin. Microbiol. 12, 553–558 (2009).

    Article  CAS  Google Scholar 

  5. Wills, J., Edwards-Hicks, J. & Finch, A. J. AssayR: a simple mass spectrometry software tool for targeted metabolic and stable isotope tracer analyses. Anal. Chem. 89, 9616–9619 (2017).

    Article  CAS  Google Scholar 

  6. Zamboni, N., Saghatelian, A. & Patti, G. J. Defining the metabolome: size, flux, and regulation. Mol. Cell 58, 699–706 (2015).

    Article  CAS  Google Scholar 

  7. Zamboni, N., Fendt, S.-M., Rühl, M. & Sauer, U. 13C-based metabolic flux analysis. Nat. Protoc. 4, 878–892 (2009).

    Article  CAS  Google Scholar 

  8. Nanchen, A., Fuhrer, T. & Sauer, U. Determination of metabolic flux ratios from 13C-experiments and gas chromatography-mass spectrometry data: protocol and principles. Methods Mol. Biol. 358, 177–197 (2007).

    Article  CAS  Google Scholar 

  9. Crown, S. B., Long, C. P. & Antoniewicz, M. R. Optimal tracers for parallel labeling experiments and (13)C metabolic flux analysis: a new precision and synergy scoring system. Metab. Eng. 38, 10–18 (2016).

    Article  CAS  Google Scholar 

  10. Wiechert, W. 13C metabolic flux analysis. Metab. Eng. 3, 195–206 (2001).

    Article  CAS  Google Scholar 

  11. Wiechert, W., Mollney, M., Petersen, S. & de Graaf, A. A. A universal framework for 13C metabolic flux analysis. Metab. Eng. 3, 265–283 (2001).

    Article  CAS  Google Scholar 

  12. Weitzel, M. et al. 13CFLUX2--high-performance software suite for (13)C-metabolic flux analysis. Bioinformatics 29, 143–145 (2013).

    Article  CAS  Google Scholar 

  13. Huang, X. et al. X13CMS: global tracking of isotopic labels in untargeted metabolomics. Anal. Chem. 86, 1632–1639 (2014).

    Article  CAS  Google Scholar 

  14. Noh, K., Droste, P. & Wiechert, W. Visual workflows for 13C-metabolic flux analysis. Bioinformatics 31, 346–354 (2015).

    Article  Google Scholar 

  15. Yuan, M., Breitkopf, S. B., Yang, X. & Asara, J. M. A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat. Protoc. 7, 872–881 (2012).

    Article  CAS  Google Scholar 

  16. Ying, H. et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149, 656–670 (2012).

    Article  CAS  Google Scholar 

  17. Ben-Sahra, I., Howell, J. J., Asara, J. M. & Manning, B. D. Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science 339, 1323–1328 (2013).

    Article  CAS  Google Scholar 

  18. Ben-Sahra, I., Hoxhaj, G., Ricoult, S. J. H., Asara, J. M. & Manning, B. D. mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle. Science 351, 728–733 (2016).

    Article  CAS  Google Scholar 

  19. Shyh-Chang, N. et al. Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 339, 222–226 (2013).

    Article  Google Scholar 

  20. Son, J. et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496, 101–105 (2013).

    Article  CAS  Google Scholar 

  21. Nicolay, B. N. et al. Loss of RBF1 changes glutamine catabolism. Genes Dev. 27, 182–196 (2013).

    Article  CAS  Google Scholar 

  22. Cox, A. G. et al. Yap reprograms glutamine metabolism to increase nucleotide biosynthesis and enable liver growth. Nat. Cell Biol. 18, 886–896 (2016).

    Article  CAS  Google Scholar 

  23. Locasale, J. W. et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat. Genet. 43, 869–874 (2011).

    Article  CAS  Google Scholar 

  24. Hu, H. et al. Phosphoinositide 3-kinase regulates glycolysis through mobilization of aldolase from the actin cytoskeleton. Cell 164, 433–446 (2016).

    Article  CAS  Google Scholar 

  25. Lien, E. C. et al. Glutathione biosynthesis is a metabolic vulnerability in PI(3)K/Akt-driven breast cancer. Nat. Cell Biol. 18, 572–578 (2016).

    Article  CAS  Google Scholar 

  26. Sousa, C. M. et al. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 536, 479–483 (2016).

    Article  CAS  Google Scholar 

  27. Viale, A. et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514, 628–632 (2014).

    Article  CAS  Google Scholar 

  28. Breitkopf, S. B., Taveira, M. O., Yuan, M., Wulf, G. M. & Asara, J. M. Serial-omics of P53–/–, Brca1–/– mouse breast tumor and normal mammary gland. Sci. Rep. 7, 14503 (2017).

  29. Breitkopf, S. B. et al. A relative quantitative positive/negative ion switching method for untargeted lipidomics via high resolution LC-MS/MS from any biological source. Metabolomics 13, 30 (2017).

  30. Breitkopf, S. B., Yuan, M., Helenius, K. P., Lyssiotis, C. A. & Asara, J. M. Triomics analysis of imatinib-treated myeloma cells connects kinase inhibition to RNA processing and decreased lipid biosynthesis. Anal. Chem. 87, 10995–11006 (2015).

    Article  CAS  Google Scholar 

  31. Hensley, C. T. et al. Metabolic heterogeneity in human lung tumors. Cell 164, 681–694 (2016).

    Article  CAS  Google Scholar 

  32. Davidson, S. M. et al. Environment impacts the metabolic dependencies of Ras-driven non-small cell lung cancer. Cell Metab. 23, 517–528 (2016).

    Article  CAS  Google Scholar 

  33. Lane, A.N., Yan, J. & Fan, T.W. 13C Tracer studies of metabolism in mouse tumor xenografts. Bio Protoc. 5, e1650 (2015).

  34. Mashimo, T. et al. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell 159, 1603–1614 (2014).

    Article  CAS  Google Scholar 

  35. Glick, G. D. et al. Anaplerotic metabolism of alloreactive T cells provides a metabolic approach to treat graft-versus-host disease. J. Pharmacol. Exp. Ther. 351, 298–307 (2014).

    Article  Google Scholar 

  36. Juvekar, A. et al. Phosphoinositide 3-kinase inhibitors induce DNA damage through nucleoside depletion. Proc. Natl. Acad. Sci. USA 113, E4338–E4347 (2016).

    Article  CAS  Google Scholar 

  37. Huang, H., Yuan, M., Wulf, G. M. & Asara, J. M. in Proceedings from the ASMS Conference on Mass Spectrometry and Allied Topics (San Diego, CA, 2018).

  38. Wang, J. B. et al. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell 18, 207–219 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the National Institutes of Health (5P01CA120964 to J.M.A. and B.D.M.; 5R35CA197459 to B.D.M. and J.M.A.; and 5P30CA006516 to J.M.A.) and the BIDMC Research Capital Fund for funding the mass spectrometry instrumentation. C.A.L. was supported by a Pancreatic Cancer Action Network/AACR Pathway to Leadership award (13-70-25-LYSS), a Dale F. Frey Award for Breakthrough Scientists from the Damon Runyon Cancer Research Foundation (DFS-09-14), a Junior Scholar Award from The V Foundation for Cancer Research (V2016-009), a Kimmel Scholar Award from the Sidney Kimmel Foundation for Cancer Research (SKF-16-005), and a 2017 AACR NextGen Grant for Transformative Cancer Research (17-20-01-LYSS). D.M.K was supported by a University of Michigan Program in Chemical Biology Graduate Assistance in Areas of National Need (GAANN) award. We thank L.C. Cantley (Weill-Cornell MC) and G.M. Wulf (BIDMC/HMS) for helpful discussions and the donation of K14 cells.

Author information

Authors and Affiliations

Authors

Contributions

J.M.A. developed the platform, incorporated the methods, analysed data and wrote the protocol. C.A.L. and D.M.K. helped to develop the SRM transitions for labeled metabolites, generated samples for testing the protocol, analysed data and edited the protocol. B.D.M. and I.B.S. helped to generate the SRM transitions for labeled metabolites, generated samples for testing the protocol and edited the protocol. M.Y. helped to incorporate methods, maintained the platform and helped with sample generation and data analysis. H.H. helped to develop the SRM transitions for labeled metabolites, generated samples for testing the protocol and helped with data analysis. S.B.B. incorporated methods and generated labeled samples for testing the protocol.

Corresponding authors

Correspondence to Costas A. Lyssiotis or John M. Asara.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Protocol to which this paper is an extension

Yuan, M., Breitkopf, S. B., Yang, X. & Asara, J. M. Nat. Protoc. 7, 872–881 (2012) https://www.nature.com/articles/nprot.2012.024

Key references using this protocol

Son, J. et al. Nature 496, 101–105 (2013): http://www.nature.com/articles/nature12040

Ben-Sahra, I., Howell, J. J., Asara, J. M. & Manning, B. D. Science 339, 1323–1328 (2013): http://science.sciencemag.org/content/339/6125/1323

Ying, H. et al. Cell 149, 656–670 (2012): https://www.cell.com/cell/abstract/S0092-8674(12)00352-2

Ben-Sahra, I., Hoxhaj, G., Ricoult, S. J. H., Asara, J. M. & Manning, B. D.: Science 351, 728–733 (2016) http://science.sciencemag.org/content/351/6274/728

This protocol is an extension to: Yuan, M. et al., Nat. Protoc. 7, 872–881 (2012), doi:10.1038/nprot.2012.024; published online 12 April 2012.

Supplementary information

Reporting Summary

Supplementary Dataset 1

Supplementary Dataset 1

Supplementary Dataset 2

Supplementary Dataset 2

Supplementary Dataset 3

Supplementary Dataset 3

Supplementary Dataset 4

Supplementary Dataset 4

Supplementary Dataset 5

Supplementary Dataset 5

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, M., Kremer, D.M., Huang, H. et al. Ex vivo and in vivo stable isotope labelling of central carbon metabolism and related pathways with analysis by LC–MS/MS. Nat Protoc 14, 313–330 (2019). https://doi.org/10.1038/s41596-018-0102-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-018-0102-x

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research