Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A positive/negative ion–switching, targeted mass spectrometry–based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue

Abstract

The revival of interest in cancer cell metabolism in recent years has prompted the need for quantitative analytical platforms for studying metabolites from in vivo sources. We implemented a quantitative polar metabolomics profiling platform using selected reaction monitoring with a 5500 QTRAP hybrid triple quadrupole mass spectrometer that covers all major metabolic pathways. The platform uses hydrophilic interaction liquid chromatography with positive/negative ion switching to analyze 258 metabolites (289 Q1/Q3 transitions) from a single 15-min liquid chromatography–mass spectrometry acquisition with a 3-ms dwell time and a 1.55-s duty cycle time. Previous platforms use more than one experiment to profile this number of metabolites from different ionization modes. The platform is compatible with polar metabolites from any biological source, including fresh tissues, cancer cells, bodily fluids and formalin-fixed paraffin-embedded tumor tissue. Relative quantification can be achieved without using internal standards, and integrated peak areas based on total ion current can be used for statistical analyses and pathway analyses across biological sample conditions. The procedure takes 12 h from metabolite extraction to peak integration for a data set containing 15 total samples (6 h for a single sample).

This is a preview of subscription content, access via your institution

Access options

Figure 1: Metabolomics platform schematic.
Figure 2: Reproducibility and heat maps from cancer cell metabolomics.
Figure 3: In vivo metabolomics profiling.

Similar content being viewed by others

References

  1. Bayley, J.P. & Devilee, P. Warburg tumours and the mechanisms of mitochondrial tumour suppressor genes. Barking up the right tree? Curr. Opin. Genet. Dev. 20, 324–329.

  2. Vander Heiden, M.G., Cantley, L.C. & Thompson, C.B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Article  CAS  Google Scholar 

  3. Romero-Garcia, S., Lopez-Gonzalez, J.S., Baez-Viveros, J.L., Aguilar-Cazares, D. & Prado-Garcia, H. Tumor cell metabolism: an integral view. Cancer Biol. Ther. 12, 939–948 (2011).

    Article  CAS  Google Scholar 

  4. Wishart, D.S. Advances in metabolite identification. Bioanalysis 3, 1769–1782 (2011).

    Article  CAS  Google Scholar 

  5. Mamas, M., Dunn, W.B., Neyses, L. & Goodacre, R. The role of metabolites and metabolomics in clinically applicable biomarkers of disease. Arch. Toxicol. 85, 5–17 (2011).

    Article  CAS  Google Scholar 

  6. Dunn, W.B., Broadhurst, D.I., Atherton, H.J., Goodacre, R. & Griffin, J.L. Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem. Soc. Rev. 40, 387–426 (2011).

    Article  CAS  Google Scholar 

  7. Kitteringham, N.R., Jenkins, R.E., Lane, C.S., Elliott, V.L. & Park, B.K. Multiple reaction monitoring for quantitative biomarker analysis in proteomics and metabolomics. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 877, 1229–1239 (2009).

    Article  CAS  Google Scholar 

  8. Meng, Z. & Veenstra, T.D. Targeted mass spectrometry approaches for protein biomarker verification. J. Proteomics 74, 2650–2659 (2011).

    Article  CAS  Google Scholar 

  9. Wei, R. Metabolomics and its practical value in pharmaceutical industry. Curr. Drug Metab. 12, 345–358 (2011).

    Article  CAS  Google Scholar 

  10. Lu, W. et al. Metabolomic analysis via reversed-phase ion-pairing liquid chromatography coupled to a stand alone orbitrap mass spectrometer. Anal. Chem. 82, 3212–3221 (2011).

    Article  Google Scholar 

  11. Rosenling, T. et al. The impact of delayed storage on the measured proteome and metabolome of human cerebrospinal fluid. Clin. Chem. 57, 1703–1711 (2011).

    Article  CAS  Google Scholar 

  12. De Vos, R.C. et al. Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nat. Protoc. 2, 778–791 (2007).

    Article  CAS  Google Scholar 

  13. Xia, J. & Wishart, D.S. Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat. Protoc. 6, 743–760 (2011).

    Article  CAS  Google Scholar 

  14. Xia, J., Psychogios, N., Young, N. & Wishart, D.S. MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 37 (Web Server issue): W652–W660 (2009).

    Article  CAS  Google Scholar 

  15. Rodamer, M., Elsinghorst, P.W., Kinzig, M., Gutschow, M. & Sorgel, F. Development and validation of a liquid chromatography/tandem mass spectrometry procedure for the quantification of sunitinib (SU11248) and its active metabolite, N-desethyl sunitinib (SU12662), in human plasma: application to an explorative study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 879, 695–706 (2011).

    Article  CAS  Google Scholar 

  16. Kelly, A.D. et al. Metabolomic profiling from formalin-fixed, paraffin-embedded tumor tissue using targeted LC/MS/MS: application in sarcoma. PLoS ONE 6, e25357 (2011).

    Article  CAS  Google Scholar 

  17. Yi, C.H. et al. Metabolic regulation of protein N-alpha-acetylation by Bcl-xL promotes cell survival. Cell 146, 607–620 (2011).

    Article  CAS  Google Scholar 

  18. Locasale, J.W. et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat. Genet. 43, 869–874 (2011).

    Article  CAS  Google Scholar 

  19. Vander Heiden, M.G. et al. Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science 329, 1492–1499 (2011).

    Article  Google Scholar 

  20. Yang, X. et al. A mass spectrometry platform to quantitatively profile cancer cell metabolism from cells, tumors, and fixed tissue. Am. Assoc. Cancer Res. 102nd Annu. Meeting Orlando, Florida, USA (2011).

  21. Anastasiou, D. et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334, 1278–1283 (2011).

    Article  CAS  Google Scholar 

  22. Gao, D. et al. mTOR drives its own activation via SCFβTrCP)-dependent degradation of the mTOR inhibitor DEPTOR. Mol. Cell 44, 290–303 (2011).

    Article  CAS  Google Scholar 

  23. Locasale, J.W. et al. Metabolomics of human cerebrospinal fluid identifies signatures of malignant glioma. Mol. Cell. Proteomics published online, doi:10.1074/mcp.M111.014688 (2012).

  24. Koyama, J. et al. Simultaneous determination of histamine and prostaglandin D2 using an LC-ESI-MS/MS method with positive/negative ion-switching ionization modes: application to the study of anti-allergic flavonoids on the degranulation of KU812 cells. Anal. Bioanal. Chem. 401, 1385–1392 (2011).

    Article  CAS  Google Scholar 

  25. Zhang, Y., Ren, Y., Jiao, J. & Li, D. Ultra high-performance liquid chromatography-tandem mass spectrometry for the simultaneous analysis of asparagine, sugars, and acrylamide in Maillard reactions. Anal. Chem. 83, 3297–3304 (2011).

    Article  CAS  Google Scholar 

  26. Hara, H. et al. Simultaneous analytical method for the determination of TCH346 and its four metabolites in human plasma by liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 18, 377–384 (2004).

    Article  CAS  Google Scholar 

  27. Bajad, S.U. et al. Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry. J. Chromatogr. A 1125, 76–88 (2006).

    Article  CAS  Google Scholar 

  28. Lu, W., Bennett, B.D. & Rabinowitz, J.D. Analytical strategies for LC-MS-based targeted metabolomics. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 871, 236–242 (2008).

    Article  CAS  Google Scholar 

  29. Martineau, E., Tea, I., Loaec, G., Giraudeau, P. & Akoka, S. Strategy for choosing extraction procedures for NMR-based metabolomic analysis of mammalian cells. Anal. Bioanal. Chem. 401, 2133–2142 (2011).

    Article  CAS  Google Scholar 

  30. Wikoff, W.R., Pendyala, G., Siuzdak, G. & Fox, H.S. Metabolomic analysis of the cerebrospinal fluid reveals changes in phospholipase expression in the CNS of SIV-infected macaques. J. Clin. Invest. 118, 2661–2669 (2008).

    Article  CAS  Google Scholar 

  31. Gerszten, R.E., Carr, S.A. & Sabatine, M. Integration of proteomic-based tools for improved biomarkers of myocardial injury. Clin. Chem. 56, 194–201 (2011).

    Article  Google Scholar 

  32. Guo, T., Gu, J., Soldin, O.P., Singh, R.J. & Soldin, S.J. Rapid measurement of estrogens and their metabolites in human serum by liquid chromatography-tandem mass spectrometry without derivatization. Clin. Biochem. 41, 736–741 (2008).

    Article  CAS  Google Scholar 

  33. Elstrom, R.L. et al. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res. 64, 3892–3899 (2004).

    Article  CAS  Google Scholar 

  34. Plas, D.R., Talapatra, S., Edinger, A.L., Rathmell, J.C. & Thompson, C.B. Akt and Bcl-xL promote growth factor-independent survival through distinct effects on mitochondrial physiology. J. Biol. Chem. 276, 12041–12048 (2001).

    Article  CAS  Google Scholar 

  35. Coloff, J.L. & Rathmell, J.C. Metabolic regulation of Akt: roles reversed. J. Cell Biol. 175, 845–847 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Vander Heiden, L. Cantley, J. Rabinowitz, J. Locasale, C. Lyssiotis, E. Driggers, L. Peshkin, R. Rahal and A. Sasaki for helpful and informative philosophical and technical discussions. We also thank C.-L. Wu and E. Wong for providing FFPE and CSF samples, respectively. This research was supported by grants from the US National Institutes of Health 5P01CA120964 and 5P30CA006516 (J.M.A.) and the Beth Israel Deaconess Medical Center Research Capital Fund for funding the mass spectrometry instrumentation (J.M.A.).

Author information

Authors and Affiliations

Authors

Contributions

J.M.A. developed the platform and wrote the protocol. M.Y. and S.B.B. optimized and edited the protocol. X.Y., S.B.B. and M.Y. prepared biological samples for testing the protocol. J.M.A., M.Y. and S.B.B. performed data analysis.

Corresponding author

Correspondence to John M Asara.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

A list of 258 unique polar metabolites and 289 Q1/Q3 SRM transitions for positive/negative ion switching along with collision energies (CE) and dwell time on the 5500 QTRAP for the targeted metabolites. Chemical formulas and database identifiers (KEGG, HMDB, or PubChem) for pathway analysis are also included in the table. (XLS 62 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, M., Breitkopf, S., Yang, X. et al. A positive/negative ion–switching, targeted mass spectrometry–based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat Protoc 7, 872–881 (2012). https://doi.org/10.1038/nprot.2012.024

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2012.024

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research