Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Systems-level analysis of isotopic labeling in untargeted metabolomic data by X13CMS

Abstract

Identification of previously unreported metabolites (so-called ‘unknowns’) in untargeted metabolomic data has become an increasingly active area of research. Considerably less attention, however, has been dedicated to identifying unknown metabolic pathways. Yet, for each unknown metabolite structure, there is potentially a yet-to-be-discovered chemical transformation. Elucidating these biochemical connections is essential to advancing our knowledge of cellular metabolism and can be achieved by tracking an isotopically labeled precursor to an unexpected product. In addition to their role in mapping metabolic fates, isotopic labels also provide critical insight into pathway dynamics (i.e., metabolic fluxes) that cannot be obtained from conventional label-free metabolomic analyses. When labeling is compared quantitatively between conditions, for example, isotopic tracers can enable relative pathway activities to be inferred. To discover unexpected chemical transformations or unanticipated differences in metabolic pathway activities, we have developed X13CMS, a platform for analyzing liquid chromatography/mass spectrometry (LC/MS) data at the systems level. After providing cells, animals, or patients with an isotopically enriched metabolite (e.g., 13C, 15N, or 2H), X13CMS identifies compounds that have incorporated the isotopic tracer and reports the extent of labeling for each. The analysis can be performed with a single condition, or isotopic fates can be compared between multiple conditions. The choice of which metabolite to enrich and which isotopic label to use is highly context dependent, but 13C-glucose and 13C-glutamine are often applied because they feed a large number of metabolic pathways. X13CMS is freely available.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tracking of glucose labels through central carbon metabolism.
Fig. 2: Tracking multiple isotopic labels in the same experiment requires high-resolution mass spectrometry.
Fig. 3: General workflow for global tracking of isotopic labels from an enriched nutrient with untargeted metabolomics.
Fig. 4: Schematic illustrating the relationship between steps in the overall X13CMS workflow.
Fig. 5: Representative data for citrate.
Fig. 6: Comprehensive tracking of isotopic labels from uniformly 13C-labeled lactate with untargeted metabolomics revealed that lactate carbon fuels the TCA cycle and lipid synthesis in some cancer cells.
Fig. 7: Comprehensive tracking of isotopic labels from uniformly 13C-labeled 2HG with untargeted metabolomics revealed that 2HG is not readily metabolized in colorectal carcinoma cells harboring mutations in isocitrate dehydrogenase 1.
Fig. 8: After 6 h of labeling with uniformly 13C-labeled glucose, X13CMS identified differences in the enrichment of palmitate between proliferating and quiescent fibroblasts.
Fig. 9: Graphical user interface of MSConvert.
Fig. 10: Representative plots created by X13CMS.

Similar content being viewed by others

Data availability

A zip file with example data can be downloaded from http://pattilab.wustl.edu/software/x13cms/x13cms.php or http://pattilab.wustl.edu/download/Example.zip.

Code availability

X13CMS is freely available at http://pattilab.wustl.edu/software/x13cms/x13cms.php.

References

  1. Guggenheim, K. Y. Rudolf Schoenheimer and the concept of the dynamic state of body constituents. J. Nutr. 121, 1701–1704 (1991).

    Article  CAS  Google Scholar 

  2. Bloch, K. & Rittenberg, D. On the utilization of acetic acid for cholesterol formation. J. Biol. Chem. 145, 625–636 (1942).

    CAS  Google Scholar 

  3. Chance, E. M., Seeholzer, S. H., Kobayashi, K. & Williamson, J. R. Mathematical analysis of isotope labeling in the citric acid cycle with applications to 13C NMR studies in perfused rat hearts. J. Biol. Chem. 258, 13785–13794 (1983).

    CAS  Google Scholar 

  4. Malloy, C. R., Sherry, A. D. & Jeffrey, F. M. Carbon flux through citric acid cycle pathways in perfused heart by 13C NMR spectroscopy. FEBS Lett. 212, 58–62 (1987).

    Article  CAS  Google Scholar 

  5. Plentl, A. & Schoenheimer, R. Studies in the metabolism of purines and pyrimidines by means of isotopic nitrogen. J. Biol. Chem. 153, 203–217 (1944).

  6. Katz, J. & Wood, H. G. The use of glucose-C14 for the evaluation of the pathways of glucose metabolism. J. Biol. Chem. 235, 2165–2177 (1960).

  7. Wilson, A. T. & Calvin, M. The photosynthetic cycle. CO 2 dependent transients. J. Am. Chem. Soc. 77, 5948–5957 (1955).

    Article  CAS  Google Scholar 

  8. Calvin, M. & Benson, A. The path of carbon in photosynthesis. Science 107, 476–480 (1948).

    Article  CAS  Google Scholar 

  9. Schoenheimer, R. & Rittenberg, D. The application of isotopes to the study of intermidiary metabolism. Science 87, 221–226 (1938).

    Article  CAS  Google Scholar 

  10. Breitling, R., Pitt, A. R. & Barrett, M. P. Precision mapping of the metabolome. Trends Biotechnol. 24, 543–548 (2006).

    Article  CAS  Google Scholar 

  11. Creek, D. J. et al. Stable isotope-assisted metabolomics for network-wide metabolic pathway elucidation. Anal. Chem. 84, 8442–8447 (2012).

    Article  CAS  Google Scholar 

  12. Fan, T. W. M. et al. Stable isotope-resolved metabolomics and applications for drug development. Pharmacol. Ther. 133, 366–391 (2012).

    Article  CAS  Google Scholar 

  13. Wilkinson, D. J. Historical and contemporary stable isotope tracer approaches to studying mammalian protein metabolism. Mass Spectrom. Rev. 37, 57–80 (2018).

    Article  CAS  Google Scholar 

  14. Weindl, D., Wegner, A. & Hiller, K. Metabolome-wide analysis of stable isotope labeling-is it worth the effort? Front. Physiol. 6, 344 (2015).

    Article  Google Scholar 

  15. Zamboni, N., Fendt, S.-M., Rühl, M. & Sauer, U. 13C-based metabolic flux analysis. Nat. Protoc. 4, 878–892 (2009).

    Article  CAS  Google Scholar 

  16. Yuan, J., Bennett, B. D. & Rabinowitz, J. D. Kinetic flux profiling for quantitation of cellular metabolic fluxes. Nat. Protoc. 3, 1328–1340 (2008).

    Article  CAS  Google Scholar 

  17. Patti, G. J., Yanes, O. & Siuzdak, G. Metabolomics: the apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 13, 263–269 (2012).

    Article  CAS  Google Scholar 

  18. da Silva, R. R., Dorrestein, P. C. & Quinn, R. A. Illuminating the dark matter in metabolomics. Proc. Natl. Acad. Sci. USA 112, 12549–12550 (2015).

    Article  Google Scholar 

  19. Dunn, W. B. et al. Mass appeal: metabolite identification in mass spectrometry-focused untargeted metabolomics. Metabolomics 9, 44–66 (2013).

    Article  CAS  Google Scholar 

  20. Mahieu, N. G. & Patti, G. J. Systems-level annotation of a metabolomics data set reduces 25000 features to fewer than 1000 unique metabolites. Anal. Chem. 89, 10397–10406 (2017).

    Article  CAS  Google Scholar 

  21. Dias, D. A. et al. Current and future perspectives on the structural identification of small molecules in biological systems. Metabolites 6, (2016).

    Article  Google Scholar 

  22. Kind, T. & Fiehn, O. Advances in structure elucidation of small molecules using mass spectrometry. Bioanal. Rev. 2, 23–60 (2010).

    Article  Google Scholar 

  23. Bingol, K. & Brüschweiler, R. Knowns and unknowns in metabolomics identified by multidimensional NMR and hybrid MS/NMR methods. Curr. Opin. Biotechnol. 43, 17–24 (2017).

    Article  CAS  Google Scholar 

  24. Huang, X. et al. X13CMS: global tracking of isotopic labels in untargeted metabolomics. Anal. Chem. 86, 1632–1639 (2014).

    Article  CAS  Google Scholar 

  25. Zamboni, N., Saghatelian, A. & Patti, G. J. Defining the metabolome: size, flux, and regulation. Mol. Cell 58, 699–706 (2015).

    Article  CAS  Google Scholar 

  26. Milne, S. B., Mathews, T. P., Myers, D. S., Ivanova, P. T. & Brown, H. A. Sum of the parts: mass spectrometry-based metabolomics. Biochemistry 52, 3829–3840 (2013).

    Article  CAS  Google Scholar 

  27. Zhu, Z.-J. et al. Liquid chromatography quadrupole time-of-flight mass spectrometry characterization of metabolites guided by the METLIN database. Nat. Protoc. 8, 451–460 (2013).

    Article  CAS  Google Scholar 

  28. Patti, G. J. Separation strategies for untargeted metabolomics. J. Sep. Sci. 34, 3460–3469 (2011).

    Article  CAS  Google Scholar 

  29. Buescher, J. M. et al. A roadmap for interpreting 13C metabolite labeling patterns from cells. Curr. Opin. Biotechnol. 34, 189–201 (2015).

    Article  CAS  Google Scholar 

  30. Mahieu, N. G., Genenbacher, J. L. & Patti, G. J. A roadmap for the XCMS family of software solutions in metabolomics. Curr. Opin. Chem. Biol. 30, 87–93 (2016).

    Article  CAS  Google Scholar 

  31. Tautenhahn, R., Patti, G. J., Rinehart, D. & Siuzdak, G. XCMS Online: a web-based platform to process untargeted metabolomic data. Anal. Chem. 84, 5035–5039 (2012).

    Article  CAS  Google Scholar 

  32. Forsberg, E. M. et al. Data processing, multi-omic pathway mapping, and metabolite activity analysis using XCMS Online. Nat. Protoc. 13, 633–651 (2018).

    Article  CAS  Google Scholar 

  33. Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R. & Siuzdak, G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779–787 (2006).

    Article  CAS  Google Scholar 

  34. Tautenhahn, R., Böttcher, C. & Neumann, S. Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformatics 9, 504 (2008).

    Article  Google Scholar 

  35. Prince, J. T. & Marcotte, E. M. Chromatographic alignment of ESI-LC-MS proteomics data sets by ordered bijective interpolated warping. Anal. Chem. 78, 6140–6152 (2006).

    Article  CAS  Google Scholar 

  36. Mackie, A., Keseler, I. M., Nolan, L., Karp, P. D. & Paulsen, I. T. Dead end metabolites—defining the known unknowns of the E. coli metabolic network. PLoS ONE 8, e75210 (2013).

    Article  CAS  Google Scholar 

  37. Chen, Y.-J. et al. Lactate metabolism is associated with mammalian mitochondria. Nat. Chem. Biol. 12, 937–943 (2016).

    Article  CAS  Google Scholar 

  38. Faubert, B. et al. Lactate metabolism in human lung tumors. Cell 171, 358–371.e9 (2017).

    Article  CAS  Google Scholar 

  39. Hui, S. et al. Glucose feeds the TCA cycle via circulating lactate. Nature 551, 115–118 (2017).

    Article  Google Scholar 

  40. Gelman, S. J. et al. Evidence that 2-hydroxyglutarate is not readily metabolized in colorectal carcinoma cells. Cancer Metab. 3, 13 (2015).

    Article  Google Scholar 

  41. Büscher, J. M., Czernik, D., Ewald, J. C., Sauer, U. & Zamboni, N. Cross-platform comparison of methods for quantitative metabolomics of primary metabolism. Anal. Chem. 81, 2135–2143 (2009).

    Article  Google Scholar 

  42. Villas-Bôas, S. G., Mas, S., Åkesson, M., Smedsgaard, J. & Nielsen, J. Mass spectrometry in metabolome analysis. Mass Spectrom. Rev. 24, 613–646 (2005).

    Article  Google Scholar 

  43. Roberts, L. D., Souza, A. L., Gerszten, R. E. & Clish, C. B. Targeted metabolomics. Curr. Protoc. Mol. Biol. Chapter 30, Unit 30.2.1–24 (2012).

  44. Yao, C.-H. et al. Exogenous fatty acids are the preferred source of membrane lipids in proliferating fibroblasts. Cell Chem. Biol. 23, 483–493 (2016).

    Article  CAS  Google Scholar 

  45. Hiller, K., Metallo, C. M., Kelleher, J. K. & Stephanopoulos, G. Nontargeted elucidation of metabolic pathways using stable-isotope tracers and mass spectrometry. Anal. Chem. 82, 6621–6628 (2010).

    Article  CAS  Google Scholar 

  46. Weindl, D., Wegner, A. & Hiller, K. MIA: non-targeted mass isotopolome analysis. Bioinformatics 32, 2875–2876 (2016).

    Article  CAS  Google Scholar 

  47. Hoffmann, F., Jaeger, C., Bhattacharya, A., Schmitt, C. A. & Lisec, J. Nontargeted identification of tracer incorporation in high-resolution mass spectrometry. Anal. Chem. 90, 7253–7260 (2018).

    Article  CAS  Google Scholar 

  48. Kiefer, P. et al. DynaMet: a fully automated pipeline for dynamic LC–MS data. Anal. Chem. 87, 9679–9686 (2015).

    Article  CAS  Google Scholar 

  49. Kiefer, P., Schmitt, U. & Vorholt, J. A. eMZed: an open source framework in Python for rapid and interactive development of LC/MS data analysis workflows. Bioinformatics 29, 963–964 (2013).

    Article  CAS  Google Scholar 

  50. Chokkathukalam, A. et al. mzMatch-ISO: an R tool for the annotation and relative quantification of isotope-labelled mass spectrometry data. Bioinformatics 29, 281–283 (2013).

    Article  CAS  Google Scholar 

  51. Capellades, J. et al. geoRge: a computational tool to detect the presence of stable isotope labeling in LC/MS-based untargeted metabolomics. Anal. Chem. 88, 621–628 (2016).

    Article  CAS  Google Scholar 

  52. Scheltema, R. A., Jankevics, A., Jansen, R. C., Swertz, M. A. & Breitling, R. PeakML/mzMatch: a file format, java library, r library, and tool-chain for mass spectrometry data analysis. Anal. Chem. 83, 2786–2793 (2011).

    Article  CAS  Google Scholar 

  53. Mahieu, N. G., Huang, X., Chen, Y.-J. & Patti, G. J. Credentialing features: a platform to benchmark and optimize untargeted metabolomic methods. Anal. Chem. 86, 9583–9589 (2014).

    Article  CAS  Google Scholar 

  54. Bueschl, C. et al. MetExtract: a new software tool for the automated comprehensive extraction of metabolite-derived LC/MS signals in metabolomics research. Bioinformatics 28, 736–738 (2012).

    Article  CAS  Google Scholar 

  55. Leeming, M. G. et al. High-resolution twin-ion metabolite extraction (HiTIME) mass spectrometry: nontargeted detection of unknown drug metabolites by isotope labeling, liquid chromatography mass spectrometry, and automated high-performance computing. Anal. Chem. 87, 4104–4109 (2015).

    Article  CAS  Google Scholar 

  56. Su, X., Lu, W. & Rabinowitz, J. D. Metabolite spectral accuracy on Orbitraps. Anal. Chem. 89, 5940–5948 (2017).

    Article  CAS  Google Scholar 

  57. Gelman, S. J. & Patti, G. J. Profiling cancer metabolism at the ‘omic’ level: a last resort or the next frontier?. Cancer Metab. 4, 2 (2016).

    Article  Google Scholar 

  58. Cotter, D. G. et al. Ketogenesis prevents diet-induced fatty liver injury and hyperglycemia. J. Clin. Invest. 124, 5175–5190 (2014).

    Article  Google Scholar 

  59. Yao, C.-H. et al. Identifying off-target effects of etomoxir reveals that carnitine palmitoyltransferase I is essential for cancer cell proliferation independent of β-oxidation. PLoS Biol. 16, e2003782 (2018).

    Article  Google Scholar 

  60. Rashmi, R. et al. Radioresistant cervical cancers are sensitive to inhibition of glycolysis and redox metabolism. Cancer Res. 78, 1392–1403 (2018).

    Article  CAS  Google Scholar 

  61. d’Avignon, D. A. et al. Hepatic ketogenic insufficiency reprograms hepatic glycogen metabolism and the lipidome. JCI Insight 3, 99762 (2018).

    Article  Google Scholar 

  62. Kurczy, M. E. et al. Global isotope metabolomics reveals adaptive strategies for nitrogen assimilation. ACS Chem. Biol. 11, 1677–1685 (2016).

    Article  CAS  Google Scholar 

  63. Johnson, C. H. et al. Metabolism links bacterial biofilms and colon carcinogenesis. Cell Metab. 21, 891–897 (2015).

    Article  CAS  Google Scholar 

  64. Mahieu, N. G., Spalding, J. L., Gelman, S. J. & Patti, G. J. Defining and detecting complex peak relationships in mass spectral data: the Mz.unity algorithm. Anal. Chem. 88, 9037–9046 (2016).

    Article  CAS  Google Scholar 

  65. Chambers, M. C. et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 30, 918–920 (2012).

    Article  CAS  Google Scholar 

  66. Patti, G. J., Tautenhahn, R. & Siuzdak, G. Meta-analysis of untargeted metabolomic data from multiple profiling experiments. Nat. Protoc. 7, 508–516 (2012).

    Article  CAS  Google Scholar 

  67. Libiseller, G. et al. IPO: a tool for automated optimization of XCMS parameters. BMC Bioinformatics 16, 118 (2015).

    Article  Google Scholar 

  68. Cho, K. et al. isoMETLIN: a database for isotope-based metabolomics. Anal. Chem. 86, 9358–9361 (2014).

    Article  CAS  Google Scholar 

  69. Millard, P., Letisse, F., Sokol, S. & Portais, J.-C. IsoCor: correcting MS data in isotope labeling experiments. Bioinformatics 28, 1294–1296 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

G.J.P. received financial support for this work from National Institutes of Health grants R35ES028365, U01CA235482, and R24OD024624, as well as the Alfred P. Sloan Foundation, the Pew Scholars Program in the Biomedical Sciences, and the Edward Mallinckrodt, Jr., Foundation. We thank N.G. Mahieu for his contributions to Figure 2.

Author information

Authors and Affiliations

Authors

Contributions

All authors equally developed and tested the protocol based on ref. 24. All authors drafted the manuscript and contributed to manuscript editing and revision.

Corresponding author

Correspondence to Gary J. Patti.

Ethics declarations

Competing interests

G.J.P. is a scientific advisory board member for Cambridge Isotope Laboratories and a recipient of the 2017 Agilent Early Career Professor Award. The remaining authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Huang, X. et al. Anal. Chem. 86, 1632–1639 (2014): https://pubs.acs.org/doi/10.1021/ac403384n

Key data used in this protocol

A zip file with example data can be downloaded from http://pattilab.wustl.edu/software/x13cms/x13cms.php or http://pattilab.wustl.edu/download/Example.zip

Supplementary information

Supplementary Methods

Representative example of preparing labeled samples for untargeted metabolomics.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Llufrio, E.M., Cho, K. & Patti, G.J. Systems-level analysis of isotopic labeling in untargeted metabolomic data by X13CMS. Nat Protoc 14, 1970–1990 (2019). https://doi.org/10.1038/s41596-019-0167-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-019-0167-1

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research