Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Direct fluorine-18 labeling of heat-sensitive biomolecules for positron emission tomography imaging using the Al18F-RESCA method

Abstract

Positron emission tomography (PET) is a quickly expanding, non-invasive molecular imaging technology, and there is high demand for new specific imaging probes. Herein, we present a generic protocol for direct radiolabeling of heat-sensitive biomolecules with the positron-emitting radioisotope fluorine-18 (18F) using the aluminum fluoride restrained complexing agent (Al18F-RESCA) method. The Al18F-RESCA method combines the chemical advantages of a chelator-based radiolabeling method with the unique physical properties of the radionuclide of choice, fluorine-18. Proteins of interest can be conjugated to RESCA via amine coupling using (±)-H3RESCA-TFP, followed by purification using size-exclusion chromatography (SEC). Next, RESCA-derivatized biomolecules can be labeled in one step, at room temperature (~20 °C) in an aqueous medium with aluminum fluoride (Al18F). Al18F-labeled proteins can be obtained with moderate (12–17 GBq/µmol) to good (80–85 GBq/µmol) apparent molar activity, depending on the starting activity of 18F. In addition, satisfactory radiochemical yields (35–55%, non–decay corrected) and high radiochemical purity (>98%, using gel filtration or solid-phase purification) are obtained. The mild radiolabeling procedure takes 0.5 h to complete and can be used for direct labeling of vector molecules such as peptides, protein scaffolds, and engineered antibody fragments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemical structures of the RESCA derivatives (±)-H3RESCA-TFP and (±)-H3RESCA-Mal.
Fig. 2: Schematic representation of nanobody modification with (±)-H3RESCA-TFP and subsequent labeling with Al18F at room temperature.
Fig. 3: SEC radiochromatogram of purified (±)-[18F]AlF(RESCA)-V4m119 nanobody, eluting with a retention time of 26.9 min.

Similar content being viewed by others

References

  1. Naumova, A. V., Modo, M., Moore, A., Murry, C. E. & Frank, J. A. Clinical imaging in regenerative medicine. Nat. Biotechnol. 32, 804–818 (2014).

    Article  CAS  Google Scholar 

  2. Serdons, K., Verbruggen, A. & Bormans, G. Developing new molecular imaging probes for PET. Methods 48, 104–111 (2009).

    Article  CAS  Google Scholar 

  3. Bateman, T. M. Advantages and disadvantages of PET and SPECT in a busy clinical practice. J. Nucl. Cardiol. 19, S3–S11 (2012).

    Article  Google Scholar 

  4. Le Bars, D. Fluorine-18 and medical imaging: radiopharmaceuticals for positron emission tomography. J. Fluor. Chem. 127, 1488–1493 (2006).

    Article  Google Scholar 

  5. Sanchez-Crespo, A. Comparison of gallium-68 and fluorine-18 imaging characteristics in positron emission tomography. Appl. Radiat. Isot. 76, 55–62 (2013).

    Article  CAS  Google Scholar 

  6. Smith, G. E., Sladen, H. L., Biagini, S. C. G. & Blower, P. J. Inorganic approaches for radiolabelling biomolecules with fluorine-18 for imaging with positron emission tomography. Dalton Trans. 40, 6196–6205 (2011).

    Article  CAS  Google Scholar 

  7. Krishnan, H., Ma, L., Vasdev, N. & Liang, S. H. 18F-labeling of sensitive biomolecules for positron emission tomography. Chemistry 23, 15553–15577 (2017).

    Article  CAS  Google Scholar 

  8. Jacobson, O., Kiesewetter, D. O. & Chen, X. Fluorine-18 radiochemistry, labeling strategies and synthetic routes. Bioconjug. Chem. 26, 1–18 (2015).

    Article  CAS  Google Scholar 

  9. Richter, S. et al. Rerouting the metabolic pathway of 18F-labeled peptides: the influence of prosthetic groups. Bioconjug. Chem. 26, 201–212 (2015).

    Article  CAS  Google Scholar 

  10. Thonon, D. et al. Fully automated preparation and conjugation of N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB) with RGD peptide using a GE FASTlab™ synthesizer. Mol. Imaging Biol. 13, 1088–1095 (2011).

    Article  Google Scholar 

  11. Olberg, D. E. et al. One step radiosynthesis of 6-[(18)F]fluoronicotinic acid 2,3,5,6-tetrafluorophenyl ester ([[18F]F-Py-TFP): a new prosthetic group for efficient labeling of biomolecules with fluorine-18. J. Med. Chem. 53(4), 1732–1740 (2010).

    Article  CAS  Google Scholar 

  12. Wängler, C. et al. One-step 18F-labeling of peptides for positron emission tomography imaging using the SiFA methodology. Nat. Protoc. 7, 1946–1955 (2012).

    Article  Google Scholar 

  13. Liu, Z. et al. One-step 18F-labeling of biomolecules using organotrifluoroborates. Nat. Protoc. 10, 1423–1432 (2015).

    Article  CAS  Google Scholar 

  14. Wängler, B. et al. Protein labeling with the labeling precursor [18F]SiFa-SH for positron emission tomography. Nat. Protoc. 7, 1964–1969 (2012).

    Article  Google Scholar 

  15. McBride, W. J., D’Souza, C. A., Sharkey, R. M. & Goldenberg, D. M. The radiolabeling of proteins by the [18F]AlF method. Appl. Radiat. Isot. 70, 200–204 (2012).

    Article  CAS  Google Scholar 

  16. Cleeren, F. et al. New chelators for low temperature Al18F-labeling of biomolecules. Bioconjug. Chem. 27, 790–798 (2016).

    Article  CAS  Google Scholar 

  17. McBride, W. J., Sharkey, R. M. & Goldenberg, D. M. Radiofluorination using aluminum-fluoride (Al18F). EJNMMI Res. 3, 36–47 (2013).

    Article  Google Scholar 

  18. McBride, W. J. et al. A novel method of 18F radiolabeling for PET. J. Nucl. Med. 50, 991–998 (2009).

    Article  CAS  Google Scholar 

  19. Wang, W., Liu, Z. & Li, Z. One-step 18F labeling of non-peptidic bivalent integrin α. Bioconjug. Chem. 26, 24–28 (2015).

    Article  CAS  Google Scholar 

  20. Kiesewetter, D. O. et al. Evaluation of an [18F]AlF-NOTA analog of exendin-4 for imaging of GLP-1 receptor in insulinoma. Theranostics 2, 999–1009 (2012).

    Article  CAS  Google Scholar 

  21. Da Pieve, C. et al. Efficient [18F]AlF radiolabeling of ZHER3:8698 affibody molecule for imaging of HER3 positive tumors. Bioconjug. Chem. 27, 1839–1849 (2016).

    Article  Google Scholar 

  22. Kumar, K. & Ghosh, A. 18F-AlF labeled peptide and protein conjugates as Positron Emission Tomography imaging pharmaceuticals. Bioconjug. Chem. 29, 953–975 (2018).

  23. Wan, W. et al. One-step 18F labeling of non-peptidic bivalent integrin α. Bioconjug. Chem. 26, 24–28 (2015).

    Article  Google Scholar 

  24. Jadvar, H., Desai, B. & Conti, P. S. Sodium 18F-fluoride PET/CT of bone, joint, and other disorders. Semin. Nucl. Med. 45, 58–65 (2015).

    Article  Google Scholar 

  25. Chatalic, K. L. S. et al. Preclinical comparison of Al18F- and 68Ga-labeled gastrin-releasing peptide receptor antagonists for PET imaging of prostate cancer. J. Nucl. Med. 55, 2050–2056 (2014).

    Article  CAS  Google Scholar 

  26. Heskamp, S. et al. Imaging of human epidermal growth factor receptor type 2 expression with 18F-labeled affibody molecule ZHER2:2395 in a mouse model for ovarian cancer. J. Nucl. Med. 53, 146–153 (2012).

    Article  CAS  Google Scholar 

  27. Cleeren, F. et al. Al18F-labeling of heat-sensitive biomolecules for positron emission tomography imaging. Theranostics 7, 2924–2939 (2017).

    Article  Google Scholar 

  28. Brom, M. et al. Non-invasive quantification of the beta cell mass by SPECT with ¹¹¹In-labelled exendin. Diabetologia 57, 950–959 (2014).

    Article  CAS  Google Scholar 

  29. Laverman, P. et al. A novel facile method of labeling octreotide with 18F-fluorine. J. Nucl. Med. 51, 454–461 (2010).

    Article  CAS  Google Scholar 

  30. Sandström, M. et al. Biodistribution and radiation dosimetry of the anti-HER2 affibody molecule 68Ga-ABY-025 in breast cancer patients. J. Nucl. Med. 57, 867–871 (2016).

    Article  Google Scholar 

  31. Goldstein, R. et al. Development of the designed ankyrin repeat protein (DARPin) G3 for HER2 molecular imaging. Eur. J. Nucl. Med. Mol. Imaging 42, 288–301 (2015).

    Article  Google Scholar 

  32. Garousi, J. et al. Influence of the N-terminal composition on targeting properties of radiometal-labeled anti-HER2 scaffold protein ADAPT6. Bioconjug. Chem. 27, 2678–2688 (2016).

    Article  CAS  Google Scholar 

  33. Chakravarty, R. et al. Matching the decay half-life with the biological half-life: ImmunoPET imaging with 44Sc-labeled cetuximab Fab fragment. Bioconjug. Chem. 25, 2197–2204 (2014).

    Article  CAS  Google Scholar 

  34. Sharma, S. K. et al. Synthesis and pre-clinical evaluation of an 18F-labeled single-chain antibody fragment for PET imaging of epithelial ovarian cancer. Am. J. Nucl. Med. Mol. Imaging 6, 185–198 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. De Vos, J., Devoogdt, N., Lahoutte, T. & Muyldermans, S. Camelid single-domain antibody-fragment engineering for (pre)clinical in vivo molecular imaging applications: adjusting the bullet to its target. Expert Opin. Biol. Ther. 13, 1149–1160 (2013).

  36. Pandit-Taskar, N. et al. First-in-human imaging with 89Zr-Df-IAB2M anti-PSMA minibody in patients with metastatic prostate cancer: pharmacokinetics, biodistribution, dosimetry, and lesion uptake. J. Nucl. Med. 57, 1858–1864 (2016).

    Article  CAS  Google Scholar 

  37. Bedford, R. et al. Alternative reagents to antibodies in imaging applications. Biophys. Rev. 9, 299–308 (2017).

    Article  CAS  Google Scholar 

  38. Wu, A. M. Engineered antibodies for molecular imaging of cancer. Methods 65, 139–147 (2014).

    Article  CAS  Google Scholar 

  39. De Meyer, T., Muyldermans, S. & Depicker, A. Nanobody-based products as research and diagnostic tools. Trends Biotechnol. 32, 263–270 (2014).

    Article  Google Scholar 

  40. D’Huyvetter, M. et al. Targeted radionuclide therapy with a 177Lu-labeled anti-HER2 nanobody. Theranostics 4, 708–720 (2014).

    Article  Google Scholar 

  41. Wen, Y. et al. Structural evaluation of a nanobody targeting complement receptor Vsig4 and its cross reactivity. Immunobiology 222, 807–813 (2017).

    Article  CAS  Google Scholar 

  42. Massa, S., Xavier, C., Muyldermans, S. & Devoogdt, N. Emerging site-specific bioconjugation strategies for radioimmunotracer development. Expert Opin. Drug Deliv. 13, 1149–1163 (2016).

    Article  CAS  Google Scholar 

  43. Adumeau, P., Sharma, S. K., Brent, C. & Zeglis, B. M. Site-specifically labeled immunoconjugates for molecular imaging—part 1: cysteine residues and glycans. Mol. Imaging Biol. 18, 1–17 (2016).

    Article  CAS  Google Scholar 

  44. Adumeau, P., Sharma, S. K., Brent, C. & Zeglis, B. M. Site-specifically labeled immunoconjugates for molecular imaging—part 2: peptide tags and unnatural amino acids. Mol. Imaging Biol. 18, 153–165 (2016).

    Article  CAS  Google Scholar 

  45. Kramer-Marek, G. et al. [18F]FBEM-ZHER2:342–affibody molecule—a new molecular tracer for in vivo monitoring of HER2 expression by positron emission tomography. Eur. J. Nucl. Med. Mol. Imaging 35, 1008–1018 (2008).

    Article  CAS  Google Scholar 

  46. Füchtner, F. et al. Factors affecting the specific activity of [18F]fluoride from a [18O]water target. Nuklearmedizin 47, 116–119 (2008).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank J. Cleynhens, J. Cornelis, I. Sannen, J. Peetroons, S. Celen, H.-J. Verhaegen, and P. Haspeslagh from the Laboratory for Radiopharmaceutical Research (University of Leuven); J. De Jonge from the In vivo Cellular and Molecular Imaging Center (Vrije Universiteit Brussel); and S. Muyldermans from the Cellular and Molecular Imaging Laboratory (Vrije Universiteit Brussel). This research received support from IWT Flanders (SBO 130065 MIRIAD, G.B., N.D.; SBO S000218N MATATUM, N.D.), the EU (H2020-MSCA-ITN PET3D, C.X., J.B., N.D.), and the FWO (G0D8817N, G.B.; G066615N, C.X., N.D.). F.C. is a Postdoctoral Fellow of FWO (12R3119N).

Author information

Authors and Affiliations

Authors

Contributions

F.C., J.L., N.D., C.X., and G.B. designed the research. J.L. synthesized the RESCA ligands. F.C., T.T., and J.B. performed the experimental work. F.C., T.T., and G.B. wrote the manuscript. G.B. is the corresponding author.

Corresponding author

Correspondence to Guy Bormans.

Ethics declarations

Competing interests

A patent application related to this work has been filed (WO/2016/065435; F.C., J.L., G.B.). The RESCA chelator will be made commercially available from Chematech in the near future. F.C., J.L., and G.B. will receive a part of the profit. The remaining authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Cleeren, F. et al. Theranostics 7, 2924–2939 (2017) http://www.thno.org/v07p2924.htm

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cleeren, F., Lecina, J., Bridoux, J. et al. Direct fluorine-18 labeling of heat-sensitive biomolecules for positron emission tomography imaging using the Al18F-RESCA method. Nat Protoc 13, 2330–2347 (2018). https://doi.org/10.1038/s41596-018-0040-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-018-0040-7

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing