Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dynamics of mature myelin

Abstract

Myelin, which is produced by oligodendrocytes, insulates axons to facilitate rapid and efficient action potential propagation in the central nervous system. Traditionally viewed as a stable structure, myelin is now known to undergo dynamic modulation throughout life. This Review examines these dynamics, focusing on two key aspects: (1) the turnover of myelin, involving not only the renewal of constituents but the continuous wholesale replacement of myelin membranes; and (2) the structural remodeling of pre-existing, mature myelin, a newly discovered form of neural plasticity that can be stimulated by external factors, including neuronal activity, behavioral experience and injury. We explore the mechanisms regulating these dynamics and speculate that myelin remodeling could be driven by an asymmetry in myelin turnover or reactivation of pathways involved in myelin formation. Finally, we outline how myelin remodeling could have profound impacts on neural function, serving as an integral component of behavioral adaptation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Myelin components and turnover.
Fig. 2: Myelin remodeling.
Fig. 3: Potential functions of myelin remodeling.

Similar content being viewed by others

References

  1. Young, K. M. et al. Oligodendrocyte dynamics in the healthy adult CNS: evidence for myelin remodeling. Neuron 77, 873–885 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tripathi, R. B. et al. Remarkable stability of myelinating oligodendrocytes in mice. Cell Rep. 21, 316–323 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hill, R. A., Li, A. M. & Grutzendler, J. Lifelong cortical myelin plasticity and age-related degeneration in the live mammalian brain. Nat. Neurosci. 21, 683–695 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang, F. et al. Myelin degeneration and diminished myelin renewal contribute to age-related deficits in memory. Nat. Neurosci. 23, 481–486 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yeung, M. S. et al. Dynamics of oligodendrocyte generation and myelination in the human brain. Cell 159, 766–774 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Price, J. C., Guan, S., Burlingame, A., Prusiner, S. B. & Ghaemmaghami, S. Analysis of proteome dynamics in the mouse brain. Proc. Natl Acad. Sci. USA 107, 14508–14513 (2010). Landmark study finding that myelin proteins are some of the longest lived in the body.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fornasiero, E. F. et al. Precisely measured protein lifetimes in the mouse brain reveal differences across tissues and subcellular fractions. Nat. Commun. 9, 4230 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Goh, B., Kim, J., Seo, S. & Kim, T.-Y. High-throughput measurement of lipid turnover rates using partial metabolic heavy water labeling. Anal. Chem. 90, 6509–6518 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Poitelon, Y., Kopec, A. M. & Belin, S. Myelin fat facts: an overview of lipids and fatty acid metabolism. Cells 9, 812 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ando, S., Tanaka, Y., Toyoda, Y. & Kon, K. Turnover of myelin lipids in aging brain. Neurochem. Res. 28, 5–13 (2003). Demonstration of variable lifetimes of myelin lipids.

    Article  CAS  PubMed  Google Scholar 

  11. Dustin, E. et al. Compromised myelin and axonal molecular organization following adult-onset sulfatide depletion. Biomedicines 11, 1431 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Snaidero, N. et al. Myelin membrane wrapping of CNS axons by PI(3,4,5)P3-dependent polarized growth at the inner tongue. Cell 156, 277–290 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Simons, M., Krämer, E.-M., Thiele, C., Stoffel, W. & Trotter, J. Assembly of myelin by association of proteolipid protein with cholesterol- and galactosylceramide-rich membrane domains. J. Cell Biol. 151, 143–154 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pralle, A., Keller, P., Florin, E.-L., Simons, K. & Hörber, J. K. H. Sphingolipid–cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J. Cell Biol. 148, 997–1008 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kato, D. et al. Regulation of lipid synthesis in myelin modulates neural activity and is required for motor learning. Glia 71, 2591–2608 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Zhou, X. et al. Mature myelin maintenance requires Qki to coactivate PPARβ–RXRα-mediated lipid metabolism. J. Clin. Invest. 130, 2220–2236 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stadelmann, C., Timmler, S., Barrantes-Freer, A. & Simons, M. Myelin in the central nervous system: structure, function, and pathology. Physiol. Rev. 99, 1381–1431 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Toyama, B. H. et al. Identification of long-lived proteins reveals exceptional stability of essential cellular structures. Cell 154, 971–982 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Savas, J. N., Toyama, B. H., Xu, T., Yates, J. R. & Hetzer, M. W. Extremely long-lived nuclear pore proteins in the rat brain. Science 335, 942 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lüders, K. A. et al. Maintenance of high proteolipid protein level in adult central nervous system myelin is required to preserve the integrity of myelin and axons. Glia 67, 634–649 (2019).

    Article  PubMed  Google Scholar 

  21. Meschkat, M. et al. White matter integrity in mice requires continuous myelin synthesis at the inner tongue. Nat. Commun. 13, 1163 (2022). Landmark observations on the continuous turnover of entire myelin membranes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lin, Y. et al. Impaired eukaryotic translation initiation factor 2B activity specifically in oligodendrocytes reproduces the pathology of vanishing white matter disease in mice. J. Neurosci. 34, 12182–12191 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ishii, A., Furusho, M., Dupree, J. L. & Bansal, R. Role of ERK1/2 MAPK signaling in the maintenance of myelin and axonal integrity in the adult CNS. J. Neurosci. 34, 16031–16045 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Aber, E. R. et al. Oligodendroglial macroautophagy is essential for myelin sheath turnover to prevent neurodegeneration and death. Cell Rep. 41, 111480 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ktena, N. et al. Autophagic degradation of CNS myelin maintains axon integrity. Cell Stress 6, 93–107 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Readhead, C. et al. Expression of a myelin basic protein gene in transgenic shiverer mice: correction of the dysmyelinating phenotype. Cell 48, 703–712 (1987).

    Article  CAS  PubMed  Google Scholar 

  27. Hildebrand, C., Remahl, S., Persson, H. & Bjartmar, C. Myelinated nerve fibres in the CNS. Prog. Neurobiol. 40, 319–384 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Djannatian, M. et al. Myelination generates aberrant ultrastructure that is resolved by microglia. J. Cell Biol. 222, e202204010 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Krämer‐Albers, E.-M. et al. Oligodendrocytes secrete exosomes containing major myelin and stress‐protective proteins: trophic support for axons? Proteomics Clin. Appl. 1, 1446–1461 (2007).

    Article  PubMed  Google Scholar 

  30. Mills, E. A. et al. Astrocytes phagocytose focal dystrophies from shortening myelin segments in the optic nerve of Xenopus laevis at metamorphosis. Proc. Natl Acad. Sci. USA 112, 10509–10514 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hughes, A. N. & Appel, B. Microglia phagocytose myelin sheaths to modify developmental myelination. Nat. Neurosci. 23, 1055–1066 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chapman, T. W., Olveda, G. E., Bame, X., Pereira, E. & Hill, R. A. Oligodendrocyte death initiates synchronous remyelination to restore cortical myelin patterns in mice. Nat. Neurosci. 26, 555–569 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sturrock, R. R. Myelination of the mouse corpus callosum. Neuropathol. Appl. Neurobiol. 6, 415–420 (1980).

    Article  CAS  PubMed  Google Scholar 

  34. McNamara, N. B. et al. Microglia regulate central nervous system myelin growth and integrity. Nature 613, 120–129 (2023).

    Article  CAS  PubMed  Google Scholar 

  35. Peters, A., Sethares, C. & Killiany, R. J. Effects of age on the thickness of myelin sheaths in monkey primary visual cortex. J. Comp. Neurol. 435, 241–248 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Furusho, M., Dupree, J. L., Nave, K.-A. & Bansal, R. Fibroblast growth factor receptor signaling in oligodendrocytes regulates myelin sheath thickness. J. Neurosci. 32, 6631–6641 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Blakemore, W. F. Pattern of remyelination in the CNS. Nature 249, 577–578 (1974).

    Article  CAS  PubMed  Google Scholar 

  38. Shepherd, M. N., Pomicter, A. D., Velazco, C. S., Henderson, S. C. & Dupree, J. L. Paranodal reorganization results in the depletion of transverse bands in the aged central nervous system. Neurobiol. Aging 33, 203.e13–203.e24 (2012).

    Article  PubMed  Google Scholar 

  39. Geraghty, A. C. et al. Loss of adaptive myelination contributes to methotrexate chemotherapy-related cognitive impairment. Neuron 103, 250–265 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mitew, S. et al. Pharmacogenetic stimulation of neuronal activity increases myelination in an axon-specific manner. Nat. Commun. 9, 306 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Knowles, J. K. et al. Maladaptive myelination promotes generalized epilepsy progression. Nat. Neurosci. 25, 596–606 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu, J. et al. Clemastine enhances myelination in the prefrontal cortex and rescues behavioral changes in socially isolated mice. J. Neurosci. 36, 957–962 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu, J. et al. Impaired adult myelination in the prefrontal cortex of socially isolated mice. Nat. Neurosci. 15, 1621–1623 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bonnefil, V. et al. Region-specific myelin differences define behavioral consequences of chronic social defeat stress in mice. eLife 8, e40855 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Nicholson, M. et al. Remodelling of myelinated axons and oligodendrocyte differentiation is stimulated by environmental enrichment in the young adult brain. Eur. J. Neurosci. 56, 6099–6114 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sinclair, J. L. et al. Sound-evoked activity influences myelination of brainstem axons in the trapezoid body. J. Neurosci. 37, 8239–8255 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gibson, E. M. et al. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344, 1252304 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Makinodan, M., Rosen, K. M., Ito, S. & Corfas, G. A critical period for social experience-dependent oligodendrocyte maturation and myelination. Science 337, 1357–1360 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang, Y. et al. Neonatal maternal separation impairs prefrontal cortical myelination and cognitive functions in rats through activation of Wnt signaling. Cereb. Cortex 27, 2871–2884 (2017).

    Google Scholar 

  50. Osanai, Y. et al. Dark rearing in the visual critical period causes structural changes in myelinated axons in the adult mouse visual pathway. Neurochem. Res. 47, 2815–2825 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Jeffries, M. A. et al. ERK1/2 activation in preexisting oligodendrocytes of adult mice drives new myelin synthesis and enhanced CNS function. J. Neurosci. 36, 9186–9200 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Snaidero, N. et al. Myelin replacement triggered by single-cell demyelination in mouse cortex. Nat. Commun. 11, 4901 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lebrun-Julien, F. et al. Balanced mTORC1 activity in oligodendrocytes is required for accurate CNS myelination. J. Neurosci. 34, 8432–8448 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ishii, A., Furusho, M., Dupree, J. L. & Bansal, R. Strength of ERK1/2 MAPK activation determines its effect on myelin and axonal integrity in the adult CNS. J. Neurosci. 36, 6471–6487 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Goebbels, S. et al. Elevated phosphatidylinositol 3,4,5-trisphosphate in glia triggers cell-autonomous membrane wrapping and myelination. J. Neurosci. 30, 8953–8964 (2010). This study demonstrated that mature sheaths can reinitiate rapid radial growth.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Furusho, M., Ishii, A. & Bansal, R. Signaling by FGF receptor 2, not FGF receptor 1, regulates myelin thickness through activation of ERK1/2–MAPK, which promotes mTORC1 activity in an Akt-independent manner. J. Neurosci. 37, 2931–2946 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Asadollahi, E. et al. Myelin lipids as nervous system energy reserves. Preprint at bioRxiv https://doi.org/10.1101/2022.02.24.481621 (2022). This study found that β-oxidation of myelin lipids is used to support neuronal energetics.

  58. Cohen, C. H. C. et al. Saltatory conduction along myelinated axons involves a periaxonal nanocircuit. Cell 180, 311–322 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Saab, A. S. et al. Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism. Neuron 91, 119–132 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cullen, C. L. et al. Periaxonal and nodal plasticities modulate action potential conduction in the adult mouse brain. Cell Rep. 34, 108641 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Marcus, J., Dupree, J. L. & Popko, B. Myelin-associated glycoprotein and myelin galactolipids stabilize developing axo–glial interactions. J. Cell Biol. 156, 567–577 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li, C. et al. Myelination in the absence of myelin-associated glycoprotein. Nature 369, 747–750 (1994).

    Article  CAS  PubMed  Google Scholar 

  63. Montag, D. et al. Mice deficient for the glycoprotein show subtle abnormalities in myelin. Neuron 13, 229–246 (1994).

    Article  CAS  PubMed  Google Scholar 

  64. Pronker, M. F. et al. Structural basis of myelin-associated glycoprotein adhesion and signalling. Nat. Commun. 7, 13584 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Menichella, D. M., Goodenough, D. A., Sirkowski, E., Scherer, S. S. & Paul, D. L. Connexins are critical for normal myelination in the CNS. J. Neurosci. 23, 5963–5973 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Menichella, D. M. et al. Genetic and physiological evidence that oligodendrocyte gap junctions contribute to spatial buffering of potassium released during neuronal activity. J. Neurosci. 26, 10984–10991 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Larson, V. A. et al. Oligodendrocytes control potassium accumulation in white matter and seizure susceptibility. eLife 7, e34829 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Schirmer, L. et al. Oligodendrocyte-encoded Kir4.1 function is required for axonal integrity. eLife 7, e36428 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Marshall-Phelps, K. L. H. et al. Neuronal activity disrupts myelinated axon integrity in the absence of NKCC1b. J. Cell Biol. 219, e201909022 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Auer, F., Vagionitis, S. & Czopka, T. Evidence for myelin sheath remodeling in the CNS revealed by in vivo imaging. Curr. Biol. 28, 549–559 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Bacmeister, C. M. et al. Motor learning promotes remyelination via new and surviving oligodendrocytes. Nat. Neurosci. 23, 819–831 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yang, S. M., Michel, K., Jokhi, V., Nedivi, E. & Arlotta, P. Neuron class-specific responses govern adaptive myelin remodeling in the neocortex. Science 370, eabd2109 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bacmeister, C. M. et al. Motor learning drives dynamic patterns of intermittent myelination on learning-activated axons. Nat. Neurosci. 25, 1300–1313 (2022). This study found internode retraction along learning-activated axons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hughes, E. G., Orthmann-Murphy, J. L., Langseth, A. J. & Bergles, D. E. Myelin remodeling through experience-dependent oligodendrogenesis in the adult somatosensory cortex. Nat. Neurosci. 21, 696–706 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lasiene, J., Matsui, A., Sawa, Y., Wong, F. & Horner, P. J. Age related myelin dynamics revealed by increased oligodendrogenesis and short internodes. Aging Cell 8, 201–213 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Mezydlo, A. et al. Remyelination by surviving oligodendrocytes is inefficient in the inflamed mammalian cortex. Neuron 111, 1748–1759 (2023).

    Article  CAS  PubMed  Google Scholar 

  77. Fu, Y., Sun, W., Shi, Y., Shi, R. & Cheng, J.-X. Glutamate excitotoxicity inflicts paranodal myelin splitting and retraction. PLoS ONE 4, e6705 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Huff, T. B. et al. Real-time CARS imaging reveals a calpain-dependent pathway for paranodal myelin retraction during high-frequency stimulation. PLoS ONE 6, e17176 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hughes, A. N. & Appel, B. Oligodendrocytes express synaptic proteins that modulate myelin sheath formation. Nat. Commun. 10, 4125 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Elazar, N. et al. Axoglial adhesion by Cadm4 regulates CNS myelination. Neuron 101, 224–231 (2019).

    Article  CAS  PubMed  Google Scholar 

  81. Djannatian, M. et al. Two adhesive systems cooperatively regulate axon ensheathment and myelin growth in the CNS. Nat. Commun. 10, 4794 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Kearns, C. A., Ravanelli, A. M., Cooper, K. & Appel, B. Fbxw7 limits myelination by inhibiting mTOR signaling. J. Neurosci. 35, 14861–14871 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fu, M.-M. M. et al. The Golgi outpost protein TPPP nucleates microtubules and is critical for myelination. Cell 179, 132–146 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Swire, M. et al. Oligodendrocyte HCN2 channels regulate myelin sheath length. J. Neurosci. 41, 7954–7964 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Etxeberria, A. et al. Dynamic modulation of myelination in response to visual stimuli alters optic nerve conduction velocity. J. Neurosci. 36, 6937–6948 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Osanai, Y. et al. Length of myelin internodes of individual oligodendrocytes is controlled by microenvironment influenced by normal and input‐deprived axonal activities in sensory deprived mouse models. Glia 66, 2514–2525 (2018).

    Article  PubMed  Google Scholar 

  87. Hines, J. H., Ravanelli, A. M., Schwindt, R., Scott, E. K. & Appel, B. Neuronal activity biases axon selection for myelination in vivo. Nat. Neurosci. 18, 683–689 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Koudelka, S. et al. Individual neuronal subtypes exhibit diversity in CNS myelination mediated by synaptic vesicle release. Curr. Biol. 26, 1447–1455 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Krasnow, A. M., Ford, M. C., Valdivia, L. E., Wilson, S. W. & Attwell, D. Regulation of developing myelin sheath elongation by oligodendrocyte calcium transients in vivo. Nat. Neurosci. 21, 24–28 (2018).

    Article  CAS  PubMed  Google Scholar 

  90. Almeida, R. G. et al. Myelination induces axonal hotspots of synaptic vesicle fusion that promote sheath growth. Curr. Biol. 31, 3743–3754 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wake, H. et al. Nonsynaptic junctions on myelinating glia promote preferential myelination of electrically active axons. Nat. Commun. 6, 7844 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Baraban, M., Koudelka, S. & Lyons, D. A. Ca2+ activity signatures of myelin sheath formation and growth in vivo. Nat. Neurosci. 21, 19–23 (2018).

    Article  CAS  PubMed  Google Scholar 

  93. Iyer, M. et al. Oligodendrocyte calcium signaling promotes actin-dependent myelin sheath extension. Nat. Commun. 15, 265 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Battefeld, A., Popovic, M. A., de Vries, S. I. & Kole, M. H. P. High-frequency microdomain Ca2+ transients and waves during early myelin internode remodeling. Cell Rep. 26, 182–191 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Czopka, T., Ffrench-Constant, C. & Lyons, D. A. Individual oligodendrocytes have only a few hours in which to generate new myelin sheaths in vivo. Dev. Cell 25, 599–609 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Liu, P., Du, J. & He, C. Developmental pruning of early-stage myelin segments during CNS myelination in vivo. Cell Res. 23, 962–964 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Almeida, A. R. & Macklin, W. B. Early myelination involves the dynamic and repetitive ensheathment of axons which resolves through a low and consistent stabilization rate. eLife 12, e82111 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Neely, S. A. et al. New oligodendrocytes exhibit more abundant and accurate myelin regeneration than those that survive demyelination. Nat. Neurosci. 25, 415–420 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Duncan, I. D. et al. The adult oligodendrocyte can participate in remyelination. Proc. Natl Acad. Sci. USA 115, 11807–11816 (2018).

    Article  Google Scholar 

  100. Yeung, M. S. Y. et al. Dynamics of oligodendrocyte generation in multiple sclerosis. Nature 566, 538–542 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Swire, M., Kotelevtsev, Y., Webb, D. J., Lyons, D. A. & Ffrench-Constant, C. Endothelin signalling mediates experience-dependent myelination in the CNS. eLife 8, e49493 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Roy, K. et al. Loss of erbB signaling in oligodendrocytes alters myelin and dopaminergic function, a potential mechanism for neuropsychiatric disorders. Proc. Natl Acad. Sci. USA 104, 8131–8136 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bechler, M. E., Byrne, L. & ffrench-Constant, C. CNS myelin sheath lengths are an intrinsic property of oligodendrocytes. Curr. Biol. 25, 2411–2416 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Câmara, J. et al. Integrin-mediated axoglial interactions initiate myelination in the central nervous system. J. Cell Biol. 185, 699–712 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Chong, S. Y. et al. Neurite outgrowth inhibitor Nogo-A establishes spatial segregation and extent of oligodendrocyte myelination. Proc. Natl Acad. Sci. USA 109, 1299–1304 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Harboe, M., Torvund‐Jensen, J., Kjaer‐Sorensen, K. & Laursen, L. S. Ephrin‐A1–EphA4 signaling negatively regulates myelination in the central nervous system. Glia 66, 934–950 (2018).

    Article  PubMed  Google Scholar 

  107. Rasband, M. N. & Peles, E. Mechanisms of node of Ranvier assembly. Nat. Rev. Neurosci. 22, 7–20 (2021).

    Article  CAS  PubMed  Google Scholar 

  108. Kuba, H., Oichi, Y. & Ohmori, H. Presynaptic activity regulates Na+ channel distribution at the axon initial segment. Nature 465, 1075–1078 (2010).

    Article  CAS  PubMed  Google Scholar 

  109. Grubb, M. S. & Burrone, J. Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability. Nature 465, 1070–1074 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Dutta, D. J. et al. Regulation of myelin structure and conduction velocity by perinodal astrocytes. Proc. Natl Acad. Sci. USA 115, 11832–11837 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Orthmann-Murphy, J. et al. Remyelination alters the pattern of myelin in the cerebral cortex. eLife 9, e56621 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Craner, M. J., Lo, A. C., Black, J. A. & Waxman, S. G. Abnormal sodium channel distribution in optic nerve axons in a model of inflammatory demyelination. Brain 126, 1552–1561 (2003).

    Article  PubMed  Google Scholar 

  113. Coman, I. et al. Nodal, paranodal and juxtaparanodal axonal proteins during demyelination and remyelination in multiple sclerosis. Brain 129, 3186–3195 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Vagionitis, S. et al. Clusters of neuronal neurofascin prefigure the position of a subset of nodes of Ranvier along individual central nervous system axons in vivo. Cell Rep. 38, 110366 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Young, R. G., Castelfranco, A. M. & Hartline, D. K. The ‘Lillie transition’: models of the onset of saltatory conduction in myelinating axons. J. Comput. Neurosci. 34, 533–546 (2013).

    Article  PubMed  Google Scholar 

  116. Moore, S. et al. A role of oligodendrocytes in information processing. Nat. Commun. 11, 5497 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Arancibia-Cárcamo, I. L. et al. Node of Ranvier length as a potential regulator of myelinated axon conduction speed. eLife 6, e23329 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Ford, M. C. et al. Tuning of Ranvier node and internode properties in myelinated axons to adjust action potential timing. Nat. Commun. 6, 8073 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. Tomassy, G. et al. Distinct profiles of myelin distribution along single axons of pyramidal neurons in the neocortex. Science 344, 319–324 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Micheva, K. D., Kiraly, M., Perez, M. M. & Madison, D. V. Conduction velocity along the local axons of parvalbumin interneurons correlates with the degree of axonal myelination. Cereb. Cortex 31, 3374–3392 (2021).

    Article  Google Scholar 

  121. Lang, E. J. & Rosenbluth, J. Role of myelination in the development of a uniform olivocerebellar conduction time. J. Neurophysiol. 89, 2259–2270 (2003).

    Article  PubMed  Google Scholar 

  122. Kato, D. et al. Motor learning requires myelination to reduce asynchrony and spontaneity in neural activity. Glia 68, 193–210 (2020).

    Article  PubMed  Google Scholar 

  123. Steadman, P. E. et al. Disruption of oligodendrogenesis impairs memory consolidation in adult mice. Neuron 105, 150–164 (2020). This study identified a role for new oligodendrocytes in promoting neuronal synchrony.

    Article  CAS  PubMed  Google Scholar 

  124. Talidou, A., Frankland, P. W., Mabbott, D. & Lefebvre, J. Homeostatic coordination and up-regulation of neural activity by activity-dependent myelination. Nat. Comput. Sci. 2, 665–676 (2022).

    Article  CAS  PubMed  Google Scholar 

  125. Pajevic, S., Plenz, D., Basser, P. J. & Fields, R. D. Oligodendrocyte-mediated myelin plasticity and its role in neural synchronization. eLife 12, e81982 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Cordano, C. et al. Validating visual evoked potentials as a preclinical, quantitative biomarker for remyelination efficacy. Brain 145, 3943–3952 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Stedehouder, J., Brizee, D., Shpak, G. & Kushner, S. A. Activity-dependent myelination of parvalbumin interneurons mediated by axonal morphological plasticity. J. Neurosci. 38, 3631–3642 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kerkoerle, T., van, Marik, S. A., Borgloh, S. M., zum, A. & Gilbert, C. D. Axonal plasticity associated with perceptual learning in adult macaque primary visual cortex. Proc. Natl Acad. Sci. USA 115, 10464–10469 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Johnson, C. M., Peckler, H., Tai, L.-H. & Wilbrecht, L. Rule learning enhances structural plasticity of long-range axons in frontal cortex. Nat. Commun. 7, 10785 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hasegawa, R., Ebina, T., Tanaka, Y. R., Kobayashi, K. & Matsuzaki, M. Structural dynamics and stability of corticocortical and thalamocortical axon terminals during motor learning. PLoS ONE 15, e0234930 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Pan-Vazquez, A., Wefelmeyer, W., Sabater, V. G., Neves, G. & Burrone, J. Activity-dependent plasticity of axo-axonic synapses at the axon initial segment. Neuron 106, 265–276 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Stedehouder, J. et al. Fast-spiking parvalbumin interneurons are frequently myelinated in the cerebral cortex of mice and humans. Cereb. Cortex 27, 5001–5013 (2017).

    Article  CAS  Google Scholar 

  133. Stedehouder, J. et al. Local axonal morphology guides the topography of interneuron myelination in mouse and human neocortex. eLife 8, e48615 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Benamer, N., Vidal, M., Balia, M. & Angulo, M. C. Myelination of parvalbumin interneurons shapes the function of cortical sensory inhibitory circuits. Nat. Commun. 11, 5151 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wang, K. C. et al. Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature 417, 941–944 (2002).

    Article  CAS  PubMed  Google Scholar 

  136. McGee, A. W., Yang, Y., Fischer, Q. S., Daw, N. W. & Strittmatter, S. M. Experience-driven plasticity of visual cortex limited by myelin and Nogo receptor. Science 309, 2222–2226 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lee, Y. et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487, 443–448 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Meyer, N., Richter, N., Fan, Z., Siemonsmeier, G. & Pivneva, T. Oligodendrocytes in the mouse corpus callosum maintain axonal function by delivery of glucose. Cell Rep. 22, 2383–2394 (2018).

    Article  CAS  PubMed  Google Scholar 

  139. Fünfschilling, U. et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485, 517–521 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Nave, K.-A. Myelination and the trophic support of long axons. Nat. Rev. Neurosci. 11, 275–283 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Rao-Ruiz, P., Yu, J., Kushner, S. A. & Josselyn, S. A. Neuronal competition: microcircuit mechanisms define the sparsity of the engram. Curr. Opin. Neurobiol. 54, 163–170 (2019).

    Article  CAS  PubMed  Google Scholar 

  142. Bollmann, Y. et al. Prominent in vivo influence of single interneurons in the developing barrel cortex. Nat. Neurosci. 26, 1555–1565 (2023).

    Article  CAS  PubMed  Google Scholar 

  143. Shenoy, K. V. & Kao, J. C. Measurement, manipulation and modeling of brain-wide neural population dynamics. Nat. Commun. 12, 633 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Colman, D. R., Kreibich, G., Frey, A. B. & Sabatini, D. D. Synthesis and incorporation of myelin polypeptides into CNS myelin. J. Cell Biol. 95, 598–608 (1982).

    Article  CAS  PubMed  Google Scholar 

  145. Zuchero, J. B. et al. CNS myelin wrapping is driven by actin disassembly. Dev. Cell 34, 152–167 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Nawaz, S. et al. Actin filament turnover drives leading edge growth during myelin sheath formation in the central nervous system. Dev. Cell 34, 139–151 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Bishop, G. H., Clare, M. H. & Landau, W. M. The relation of axon sheath thickness to fiber size in the central nervous system of vertebrates. Int. J. Neurosci. 2, 69–77 (1971).

    Article  CAS  PubMed  Google Scholar 

  148. Velumian, A. A., Samoilova, M. & Fehlings, M. G. Visualization of cytoplasmic diffusion within living myelin sheaths of CNS white matter axons using microinjection of the fluorescent dye Lucifer yellow. NeuroImage 56, 27–34 (2011).

    Article  CAS  PubMed  Google Scholar 

  149. Marques, S. et al. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science 352, 1326–1329 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Hughes laboratory for their helpful comments. Funding was provided by the National Multiple Sclerosis Society (FG-2208-40305) and the Department of Defense Congressionally Directed Medical Research Programs (MS220187) to L.A.O. Funding was provided by a University of Colorado Department of Cell and Developmental Biology pilot grant, the Whitehall Foundation, the National Multiple Sclerosis Society (RG-1701–26733) and the National Institute of Neurological Disorders and Stroke (NS115975, NS125230 and NS132859) to E.G.H.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: L.A.O. and E.G.H. Original draft: L.A.O. Editing and review: L.A.O. and E.G.H.

Corresponding author

Correspondence to Ethan G. Hughes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Maria Cecilia Angulo, Klaus-Armin Nave, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osso, L.A., Hughes, E.G. Dynamics of mature myelin. Nat Neurosci (2024). https://doi.org/10.1038/s41593-024-01642-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41593-024-01642-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing