Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Periods of synchronized myelin changes shape brain function and plasticity

Abstract

Myelin, a lipid membrane that wraps axons, enabling fast neurotransmission and metabolic support to axons, is conventionally thought of as a static structure that is set early in development. However, recent evidence indicates that in the central nervous system (CNS), myelination is a protracted and plastic process, ongoing throughout adulthood. Importantly, myelin is emerging as a potential modulator of neuronal networks, and evidence from human studies has highlighted myelin as a major player in shaping human behavior and learning. Here we review how myelin changes throughout life and with learning. We discuss potential mechanisms of myelination at different life stages, explore whether myelin plasticity provides the regenerative potential of the CNS white matter, and question whether changes in myelin may underlie neurological disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Myelin changes across the life span.
Fig. 2: Two modes of myelination.
Fig. 3: Mechanisms of remyelination.
Fig. 4: Oligodendrocyte, myelin changes and onset of neurological and psychiatric conditions.

Similar content being viewed by others

References

  1. Nave, K. A. Myelination and the trophic support of long axons. Nat. Rev. Neurosci. 11, 275–283 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Alcami, P. & El Hady, A. Axonal computations. Front. Cell. Neurosci. 13, 413 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pease-Raissi, S. E. & Chan, J. R. Building a (w)rapport between neurons and oligodendroglia: reciprocal interactions underlying adaptive myelination. Neuron 109, 1258–1273 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chorghay, Z., Karadottir, R. T. & Ruthazer, E. S. White matter plasticity keeps the brain in tune: axons conduct while glia wrap. Front. Cell. Neurosci. 12, 428 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Norbom, L. B. et al. Maturation of cortical microstructure and cognitive development in childhood and adolescence: a T1w/T2w ratio MRI study. Hum. Brain Mapp. https://doi.org/10.1002/hbm.25149 (2020).

  6. Grydeland, H. et al. Waves of maturation and senescence in micro-structural MRI markers of human cortical myelination over the life span. Cereb. Cortex 29, 1369–1381 (2019).

    Article  PubMed  Google Scholar 

  7. Reynolds, J. E., Grohs, M. N., Dewey, D. & Lebel, C. Global and regional white matter development in early childhood. Neuroimage 196, 49–58 (2019).

    Article  PubMed  Google Scholar 

  8. Westlye, L. T. et al. Life-span changes of the human brain white matter: diffusion tensor imaging and volumetry. Cereb. Cortex 20, 2055–2068 (2010).

    Article  PubMed  Google Scholar 

  9. Bernheimer, S. Über die Entwicklung und den Verlauf der Markfasern im Chiasma Nervorum Opticorum des Menschen (1889).

  10. Westphal, A. Uber die Markscheidenbildung der Gehirnnerven des Menschen (1897).

  11. Flechsig, P. Developmental (mye-logenetic) localisation of the cerebral cortex in the human subject. Lancet 2, 1027–1029 (1901).

    Article  Google Scholar 

  12. Kaes, T. Die Grosshirnrinde des Menschen in ihren Massen und in inhrem Fasergehalt (Gustav Fischer, 1907). A detailed histological study providing clear evidence that human cortical myelination is a protracted process going well into the sixth or seventh decade.

  13. Flechsig, P. E. Meine Myelogenetische Hirnlehre (Springer, 1927); https://doi.org/10.1007/978-3-662-32788-3. Summary of Flechsig’s pioneering histological studies providing clear evidence of human myelination during development and the notion of a link between myelination and circuit function.

  14. Yakovlev, P. L. & Lecours, A. R. in Regional Development of the Brain in Early Life (ed. Minkowski, A.) 33–70 (Blackwell Scientific, 1967). An important paper detailing myelination in early human life providing evidence that myelination occurs in different stages through development and that brain areas myelinate at different times and rates. Provides evidence for myelination cycles.

  15. Li, M. et al. Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science https://doi.org/10.1126/science.aat7615 (2018).

  16. Hill, R. A., Li, A. M. & Grutzendler, J. Lifelong cortical myelin plasticity and age-related degeneration in the live mammalian brain. Nat. Neurosci. 21, 683–695 (2018). Provides evidence that myelination is a protracted process in the mouse, and that myelin sheath lengths are plastic.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hughes, E. G., Orthmann-Murphy, J. L., Langseth, A. J. & Bergles, D. E. Myelin remodeling through experience-dependent oligodendrogenesis in the adult somatosensory cortex. Nat. Neurosci. 21, 696–706 (2018). Provides evidence that myelination is a protracted process in the mouse, and that myelin sheath lengths are plastic.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Young, K. M. et al. Oligodendrocyte dynamics in the healthy adult CNS: evidence for myelin remodeling. Neuron 77, 873–885 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang, S. M., Michel, K., Jokhi, V., Nedivi, E., Arlotta, P. Neuron-class-specific responses govern adaptive remodeling of myelination in the neocortex. Science https://doi.org/10.1126/science.abd2109 (2020). Longitudinal study indicating that existing myelin internodes change, dissappear and new ones appear, with experience in the mouse.

  20. Gibson, E. M. et al. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344, 1252304 (2014). This paper provides in vivo evidence that direct changes in neuronal activity change myelin thickness and OPC proliferation and differentiation in the adult mouse. Provides important evidence for the notion of myelin plasticity.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Sinclair, J. L. et al. Sound-evoked activity influences myelination of brainstem axons in the trapezoid body. J. Neurosci. 37, 8239–8255 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mitew, S. et al. Pharmacogenetic stimulation of neuronal activity increases myelination in an axon-specific manner. Nat. Commun. 9, 306 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Miyata, S. et al. Association between chronic stress-induced structural abnormalities in Ranvier nodes and reduced oligodendrocyte activity in major depression. Sci. Rep. 6, 23084 (2016). Cross-sectional study indicating that nodes change with experience in the mouse.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cullen, C. L. et al. Periaxonal and nodal plasticities modulate action potential conduction in the adult mouse brain. Cell Rep. https://doi.org/10.1016/j.celrep.2020.108641 (2021).

  25. Prins, N. D. & Scheltens, P. White matter hyperintensities, cognitive impairment and dementia: an update. Nat. Rev. Neurol. 11, 157–165 (2015).

    Article  PubMed  Google Scholar 

  26. Koshiyama, D. et al. White matter microstructural alterations across four major psychiatric disorders: mega-analysis study in 2,937 individuals. Mol. Psychiatry 25, 883–895 (2020).

    Article  PubMed  Google Scholar 

  27. Hoglinger, G. U. et al. Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nat. Genet. 43, 699–705 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Mathys, H. et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570, 332–337 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Castelijns, B. et al. Hominin-specific regulatory elements selectively emerged in oligodendrocytes and are disrupted in autism patients. Nat. Commun. 11, 301 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nagy, C. et al. Single-nucleus transcriptomics of the prefrontal cortex in major depressive disorder implicates oligodendrocyte precursor cells and excitatory neurons. Nat. Neurosci. 23, 771–781 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Phan, B. N. et al. A myelin-related transcriptomic profile is shared by Pitt–Hopkins syndrome models and human autism spectrum disorder. Nat. Neurosci. 23, 375–385 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhao, B. et al. Common genetic variation influencing human white matter microstructure. Science https://doi.org/10.1126/science.abf3736 (2021).

  33. Dean, D. C. 3rd et al. Characterizing longitudinal white matter development during early childhood. Brain Struct. Funct. 220, 1921–1933 (2015).

    Article  PubMed  Google Scholar 

  34. Flurkey, K., Currer, J. M. & Harrison, D. E. in The Mouse in Biomedical Research (eds Fox J. G. et al.) Ch. 20 (Academic Press, 2007).

  35. Miller, D. J. et al. Prolonged myelination in human neocortical evolution. Proc. Natl Acad. Sci. USA 109, 16480–16485 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gibson, K. R. Sequence of myelinization in the brain of Macaca mulatta. Dissertation, Univ. California, Berkeley (1970).

  37. Tilney, F. & Casamajor, L. Myelinogeny as applied to the study of behavior. Arch. NeurPsych 12, 1–66 (1924).

    Article  Google Scholar 

  38. Raz, N. in The Handbook of Aging and Cognition (eds Salthouse, T. A. & Criag, F. M.) 1–90 (Lawrence Erlbaum Associates, 2000).

  39. Benes, F. M., Turtle, M., Khan, Y. & Farol, P. Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence and adulthood. Arch. Gen. Psychiatry 51, 477–484 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Olson, I. R., Von Der Heide, R. J., Alm, K. H. & Vyas, G. Development of the uncinate fasciculus: implications for theory and developmental disorders. Dev. Cogn. Neurosci. 14, 50–61 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Burgel, U. et al. White matter fiber tracts of the human brain: three-dimensional mapping at microscopic resolution, topography and intersubject variability. Neuroimage 29, 1092–1105 (2006).

    Article  PubMed  Google Scholar 

  42. Skoff, R. P., Toland, D. & Nast, E. Pattern of myelination and distribution of neuroglial cells along the developing optic system of the rat and rabbit. J. Comp. Neurol. 191, 237–253 (1980).

    Article  CAS  PubMed  Google Scholar 

  43. Tomassy, G. S. et al. Distinct profiles of myelin distribution along single axons of pyramidal neurons in the neocortex. Science 344, 319–324 (2014). This study changed the view of myelinated axons, providing clear evidence that axons can be intermittently myelinated.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dangata, Y. Y., Findlater, G. S. & Kaufman, M. H. Postnatal development of the optic nerve in (C57BL × CBA)F1 hybrid mice: general changes in morphometric parameters. J. Anat. 189, 117–125 (1996).

    PubMed  PubMed Central  Google Scholar 

  45. Yeung, M. S. et al. Dynamics of oligodendrocyte generation and myelination in the human brain. Cell 159, 766–774 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Hughes, E. G., Kang, S. H., Fukaya, M. & Bergles, D. E. Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain. Nat. Neurosci. 16, 668–676 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kamen, Y., Pivonkova, H., Evans, K. A. & Káradóttir, R. T. A matter of state: diversity in oligodendrocyte lineage cells. Neuroscientist https://doi.org/10.1177/1073858420987208 (2020).

  48. Xiao, L. et al. Rapid production of new oligodendrocytes is required in the earliest stages of motor-skill learning. Nat. Neurosci. 19, 1210–1217 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Emery, B. Regulation of oligodendrocyte differentiation and myelination. Science 330, 779–782 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Makinodan, M., Rosen, K. M., Ito, S. & Corfas, G. A critical period for social experience-dependent oligodendrocyte maturation and myelination. Science 337, 1357–1360 (2012). This study shows distinct regulation of myelination in specific brain regions in juvenile mice. Provides evidence for the notion that a different mechanism exists for myelination during the putative second wave of myelin changes in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Scholz, J., Klein, M. C., Behrens, T. E. & Johansen-Berg, H. Training induces changes in white matter architecture. Nat. Neurosci. 12, 1370–1371 (2009). This MRI study provides evidence that motor skill learning induces white matter changes in humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. McKenzie, I. A. et al. Motor skill learning requires active central myelination. Science 346, 318–322 (2014). This study provides evidence for motor skill learning evoking oligodendrogenesis in mice and that oligodendrogenesis is required for motor skill task performance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pfeiffer, S., Warrington, A. & Bansal, R. The oligodendrocyte and its many cellular processes. Trends Cell Biol. 3, 191–197 (1993).

    Article  CAS  PubMed  Google Scholar 

  54. Bacmeister, C. M. et al. Motor learning promotes remyelination via new and surviving oligodendrocytes. Nat. Neurosci. 23, 819–831 (2020). This paper, along with Orthmann-Murphy et al., 2020, provides evidence for the importance of myelin patterns.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Auer, F., Vagionitis, S. & Czopka, T. Evidence for myelin sheath remodeling in the CNS revealed by in vivo imaging. Curr. Biol. 28, 549–559 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Carreiras, M. et al. An anatomical signature for literacy. Nature 461, 983–986 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Bengtsson, S. L. et al. Extensive piano practicing has regionally specific effects on white matter development. Nat. Neurosci. 8, 1148–1150 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Sampaio-Baptista, C. et al. Motor skill learning induces changes in white matter microstructure and myelination. J. Neurosci. 33, 19499–19503 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Steadman, P. E. et al. Disruption of oligodendrogenesis impairs memory consolidation in adult mice. Neuron 105, 150–164 e156 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. Pan, S., Mayoral, S. R., Choi, H. S., Chan, J. R. & Kheirbek, M. A. Preservation of a remote fear memory requires new myelin formation. Nat. Neurosci. 23, 487–499 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu, J. et al. Impaired adult myelination in the prefrontal cortex of socially isolated mice. Nat. Neurosci. 15, 1621–1623 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Swire, M., Kotelevtsev, Y., Webb, D. J., Lyons, D. A. & ffrench-Constant, C. Endothelin signalling mediates experience-dependent myelination in the CNS. eLife https://doi.org/10.7554/eLife.49493 (2019).

  63. Barrera, K. et al. Organization of myelin in the mouse somatosensory barrel cortex and the effects of sensory deprivation. Dev. Neurobiol. 73, 297–314 (2013).

    Article  PubMed  Google Scholar 

  64. Osanai, Y. et al. Length of myelin internodes of individual oligodendrocytes is controlled by microenvironment influenced by normal and input-deprived axonal activities in sensory deprived mouse models. Glia 66, 2514–2525 (2018).

    Article  PubMed  Google Scholar 

  65. Etxeberria, A. et al. Dynamic modulation of myelination in response to visual stimuli alters optic nerve conduction velocity. J. Neurosci. 36, 6937–6948 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chorghay, Z. et al. Activity-dependent alteration of early myelin ensheathment in a developing sensory circuit. Preprint at BioRxiv https://doi.org/10.1101/2021.04.18.440312 (2021).

  67. Stedehouder, J., Brizee, D., Shpak, G. & Kushner, S. A. Activity-dependent myelination of parvalbumin interneurons mediated by axonal morphological plasticity. J. Neurosci. 38, 3631–3642 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Giedd, J. N. et al. Brain development during childhood and adolescence: a longitudinal MRI study. Nat. Neurosci. 2, 861–863 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Tripathi, R. B. et al. Remarkable stability of myelinating oligodendrocytes in mice. Cell Rep. 21, 316–323 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Foster, A. Y., Bujalka, H. & Emery, B. Axoglial interactions in myelin plasticity: evaluating the relationship between neuronal activity and oligodendrocyte dynamics. Glia 67, 2038–2049 (2019).

    Article  PubMed  Google Scholar 

  71. Stadelmann, C., Timmler, S., Barrantes-Freer, A. & Simons, M. Myelin in the central nervous system: structure, function, and pathology. Physiol. Rev. 99, 1381–1431 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. de Faria, O. Jr., Pama, E. A. C., Evans, K., Luzhynskaya, A. & Karadottir, R. T. Neuroglial interactions underpinning myelin plasticity. Dev. Neurobiol. 78, 93–107 (2018).

    Article  PubMed  Google Scholar 

  73. Monje, M. Myelin plasticity and nervous system function. Annu. Rev. Neurosci. 41, 61–76 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Andreae, L. C. & Burrone, J. The role of neuronal activity and transmitter release on synapse formation. Curr. Opin. Neurobiol. 27, 47–52 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pringle, N. P., Mudhar, H. S., Collarini, E. J. & Richardson, W. D. PDGF receptors in the rat CNS: during late neurogenesis, PDGF-alpha-receptor expression appears to be restricted to glial cells of the oligodendrocyte lineage. Development 115, 535–551 (1992).

    Article  CAS  PubMed  Google Scholar 

  76. Dawson, M. R., Polito, A., Levine, J. M. & Reynolds, R. NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS. Mol. Cell. Neurosci. 24, 476–488 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Bergles, D. E., Roberts, J. D., Somogyi, P. & Jahr, C. E. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405, 187–191 (2000). This study provides evidence that OPCs receive direct synaptic inputs from neurons.

    Article  CAS  PubMed  Google Scholar 

  78. Karadottir, R., Cavelier, P., Bergersen, L. H. & Attwell, D. NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature 438, 1162–1166 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kukley, M., Capetillo-Zarate, E. & Dietrich, D. Vesicular glutamate release from axons in white matter. Nat. Neurosci. 10, 311–320 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Ziskin, J. L., Nishiyama, A., Rubio, M., Fukaya, M. & Bergles, D. E. Vesicular release of glutamate from unmyelinated axons in white matter. Nat. Neurosci. 10, 321–330 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lin, S. C. & Bergles, D. E. Synaptic signaling between GABAergic interneurons and oligodendrocyte precursor cells in the hippocampus. Nat. Neurosci. 7, 24–32 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Karadottir, R., Hamilton, N. B., Bakiri, Y. & Attwell, D. Spiking and nonspiking classes of oligodendrocyte precursor glia in CNS white matter. Nat. Neurosci. 11, 450–456 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Benamer, N., Vidal, M., Balia, M. & Angulo, M. C. Myelination of parvalbumin interneurons shapes the function of cortical sensory inhibitory circuits. Nat. Commun. 11, 5151 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mensch, S. et al. Synaptic vesicle release regulates myelin sheath number of individual oligodendrocytes in vivo. Nat. Neurosci. 18, 628–630 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hines, J. H., Ravanelli, A. M., Schwindt, R., Scott, E. K. & Appel, B. Neuronal activity biases axon selection for myelination in vivo. Nat. Neurosci. 18, 683–689 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chen, T. J. et al. In vivo regulation of oligodendrocyte precursor cell proliferation and differentiation by the AMPA-receptor subunit GluA2. Cell Rep. 25, 852–861 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. Wake, H., Lee, P. R. & Fields, R. D. Control of local protein synthesis and initial events in myelination by action potentials. Science 333, 1647–1651 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Li, C. et al. A functional role of NMDA receptor in regulating the differentiation of oligodendrocyte precursor cells and remyelination. Glia 61, 732–749 (2013).

    Article  PubMed  Google Scholar 

  89. Simon, C., Gotz, M. & Dimou, L. Progenitors in the adult cerebral cortex: cell cycle properties and regulation by physiological stimuli and injury. Glia 59, 869–881 (2011).

    Article  PubMed  Google Scholar 

  90. Okuda, H. et al. Environmental enrichment stimulates progenitor cell proliferation in the amygdala. J. Neurosci. Res. 87, 3546–3553 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Xu, T. et al. Rapid formation and selective stabilization of synapses for enduring motor memories. Nature 462, 915–919 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lee, S., Chong, S. Y. C., Tuck, S. J., Corey, J. M. & Chan, J. R. A rapid and reproducible assay for modeling myelination by oligodendrocytes using engineered nanofibers. Nat. Protoc. 8, 771–782 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Bechler, M. E., Byrne, L. & ffrench-Constant, C. CNS myelin sheath lengths are an intrinsic property of oligodendrocytes. Curr. Biol. 25, 2411–2416 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Rosenberg, S. S., Kelland, E. E., Tokar, E., De la Torre, A. R. & Chan, J. R. The geometric and spatial constraints of the microenvironment induce oligodendrocyte differentiation. Proc. Natl Acad. Sci. USA 105, 14662–14667 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Colello, R. J., Devey, L. R., Imperato, E. & Pott, U. The chronology of oligodendrocyte differentiation in the rat optic nerve: evidence for a signaling step initiating myelination in the CNS. J. Neurosci. 15, 7665–7672 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. De Biase, L. M. et al. NMDA receptor signaling in oligodendrocyte progenitors is not required for oligodendrogenesis and myelination. J. Neurosci. 31, 12650–12662 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Guo, F. et al. Disruption of NMDA receptors in oligodendroglial lineage cells does not alter their susceptibility to experimental autoimmune encephalomyelitis or their normal development. J. Neurosci. 32, 639–645 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kougioumtzidou, E. et al. Signalling through AMPA receptors on oligodendrocyte precursors promotes myelination by enhancing oligodendrocyte survival. eLife https://doi.org/10.7554/eLife.28080 (2017).

  99. Barres, B. A. & Raff, M. C. Proliferation of oligodendrocyte precursor cells depends on electrical activity in axons. Nature 361, 258–260 (1993).

    Article  CAS  PubMed  Google Scholar 

  100. Demerens, C. et al. Induction of myelination in the central nervous system by electrical activity. Proc. Natl Acad. Sci. USA 93, 9887–9892 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Marisca, R. et al. Functionally distinct subgroups of oligodendrocyte precursor cells integrate neural activity and execute myelin formation. Nat. Neurosci. 23, 363–374 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Li, Q., Brus-Ramer, M., Martin, J. H. & McDonald, J. W. Electrical stimulation of the medullary pyramid promotes proliferation and differentiation of oligodendrocyte progenitor cells in the corticospinal tract of the adult rat. Neurosci. Lett. 479, 128–133 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ambronn, H. & Held, H. Beitrage zur kenntnis des nervenmarks. I. Uber entwicklung und bedeutung des nervenmarks. Arch. Anat. Physiol. 202–213 (1896).

  104. Koudelka, S. et al. Individual neuronal subtypes exhibit diversity in CNS myelination mediated by synaptic vesicle release. Curr. Biol. 26, 1447–1455 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lundgaard, I. et al. Neuregulin and BDNF induce a switch to NMDA receptor-dependent myelination by oligodendrocytes. PLoS Biol. 11, e1001743 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Saab, A. S. et al. Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism. Neuron 91, 119–132 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Spitzer, S. O. et al. Oligodendrocyte progenitor cells become regionally diverse and heterogeneous with age. Neuron 101, 459–471 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Brinkmann, B. G. et al. Neuregulin-1/ErbB signaling serves distinct functions in myelination of the peripheral and central nervous system. Neuron 59, 581–595 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Taveggia, C. et al. Type III neuregulin-1 promotes oligodendrocyte myelination. Glia 56, 284–293 (2008).

    Article  PubMed  Google Scholar 

  110. Geraghty, A. C. et al. Loss of adaptive myelination contributes to methotrexate chemotherapy-related cognitive impairment. Neuron 103, 250–265 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Micu, I. et al. NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia. Nature 439, 988–992 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Micu, I. et al. The molecular physiology of the axo-myelinic synapse. Exp. Neurol. 276, 41–50 (2016).

    Article  CAS  PubMed  Google Scholar 

  113. Baraban, M., Koudelka, S. & Lyons, D. A. Ca2+ activity signatures of myelin sheath formation and growth in vivo. Nat. Neurosci. 21, 19–23 (2018). This paper provides in vivo evidence in zebrafish that during development calcium transient length and frequency leads to changes in myelin sheath length at an individual internode level.

    Article  CAS  PubMed  Google Scholar 

  114. Krasnow, A. M., Ford, M. C., Valdivia, L. E., Wilson, S. W. & Attwell, D. Regulation of developing myelin sheath elongation by oligodendrocyte calcium transients in vivo. Nat. Neurosci. 21, 24–28 (2018). This paper provides in vivo evidence in zebrafish that during development neuronal activity evokes calcium transients and leads to changes in myelin sheath length at an individual internode level.

    Article  CAS  PubMed  Google Scholar 

  115. Hughes, A. N. & Appel, B. Microglia phagocytose myelin sheaths to modify developmental myelination. Nat. Neurosci. 23, 1055–1066 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Dutta, D. J. et al. Regulation of myelin structure and conduction velocity by perinodal astrocytes. Proc. Natl Acad. Sci. USA 115, 11832–11837 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Noori, R. et al. Activity-dependent myelination: a glial mechanism of oscillatory self-organization in large-scale brain networks. Proc. Natl Acad. Sci. USA 117, 13227–13237 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lubetzki, C., Zalc, B., Williams, A., Stadelmann, C. & Stankoff, B. Remyelination in multiple sclerosis: from basic science to clinical translation. Lancet Neurol. 19, 678–688 (2020).

    Article  PubMed  Google Scholar 

  119. Foerster, S., Hill, M. F. E. & Franklin, R. J. M. Diversity in the oligodendrocyte lineage: plasticity or heterogeneity? Glia 67, 1797–1805 (2019).

    PubMed  Google Scholar 

  120. Gautier, H. O. et al. Neuronal activity regulates remyelination via glutamate signalling to oligodendrocyte progenitors. Nat. Commun. 6, 8518 (2015). This paper provides evidence that myelin regeneration is regulated by neuronal activity in vivo.

    Article  CAS  PubMed  Google Scholar 

  121. Li, Q., Houdayer, T., Liu, S. & Belegu, V. Induced neural activity promotes an oligodendroglia regenerative response in the injured spinal cord and improves motor function after spinal cord injury. J. Neurotrauma 34, 3351–3361 (2017).

    Article  PubMed  Google Scholar 

  122. Ortiz, F. C. et al. Neuronal activity in vivo enhances functional myelin repair. JCI Insight https://doi.org/10.1172/jci.insight.123434 (2019).

  123. Prakash, R. S., Snook, E. M., Motl, R. W. & Kramer, A. F. Aerobic fitness is associated with gray matter volume and white matter integrity in multiple sclerosis. Brain Res. 1341, 41–51 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Etxeberria, A., Mangin, J. M., Aguirre, A. & Gallo, V. Adult-born SVZ progenitors receive transient synapses during remyelination in corpus callosum. Nat. Neurosci. 13, 287–289 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sahel, A. et al. Alteration of synaptic connectivity of oligodendrocyte precursor cells following demyelination. Front. Cell. Neurosci. 9, 77 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Wolswijk, G. Chronic stage multiple sclerosis lesions contain a relatively quiescent population of oligodendrocyte precursor cells. J. Neurosci. 18, 601–609 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kuhlmann, T. et al. Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain 131, 1749–1758 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Segel, M. et al. Niche stiffness underlies the ageing of central nervous system progenitor cells. Nature 573, 130–134 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Rawji, K. S. et al. Deficient surveillance and phagocytic activity of myeloid cells within demyelinated lesions in aging mice visualized by ex vivo live multiphoton imaging. J. Neurosci. 38, 1973–1988 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Neely, S. A. et al. New oligodendrocytes exhibit more abundant and accurate myelin regeneration than those that survive demyelination. Preprint at BioRxiv https://doi.org/10.1101/2020.05.22.110551 (2020).

  131. Snaidero, N. et al. Myelin replacement triggered by single-cell demyelination in mouse cortex. Nat. Commun. 11, 4901 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Yeung, M. S. Y. et al. Dynamics of oligodendrocyte generation in multiple sclerosis. Nature 566, 538–542 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Jakel, S. et al. Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature 566, 543–547 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Franklin, R. J. M., Frisen, J. & Lyons, D. A. Revisiting remyelination: towards a consensus on the regeneration of CNS myelin. Semin. Cell Dev. Biol. https://doi.org/10.1016/j.semcdb.2020.09.009 (2020).

  135. Neumann, B. et al. Problems and pitfalls of identifying remyelination in multiple sclerosis. Cell Stem Cell 26, 617–619 (2020).

    Article  CAS  PubMed  Google Scholar 

  136. Orthmann-Murphy, J. et al. Remyelination alters the pattern of myelin in the cerebral cortex. eLife https://doi.org/10.7554/eLife.56621 (2020). This paper, along with Bacmeister et al., 2020, provides evidence for the importance of myelin patterns.

  137. Wang, F. et al. Myelin degeneration and diminished myelin renewal contribute to age-related deficits in memory. Nat. Neurosci. 23, 481–486 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. de Curtis, M., Garbelli, R. & Uva, L. A hypothesis for the role of axon demyelination in seizure generation. Epilepsia 62, 583–595 (2021).

    Article  PubMed  Google Scholar 

  139. Zhou, B., Zhu, Z., Ransom, B. R. & Tong, X. Oligodendrocyte lineage cells and depression. Mol. Psychiatry 26, 103–117 (2021).

    Article  PubMed  Google Scholar 

  140. Barres, B. A. et al. Cell death and control of cell survival in the oligodendrocyte lineage. Cell 70, 31–46 (1992).

    Article  CAS  PubMed  Google Scholar 

  141. Sakry, D. et al. Oligodendrocyte precursor cells modulate the neuronal network by activity-dependent ectodomain cleavage of glial NG2. PLoS Biol. 12, e1001993 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Thornton, M. A. & Hughes, E. G. Neuron–oligodendroglia interactions: activity-dependent regulation of cellular signaling. Neurosci. Lett. 727, 134916 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Bakiri, Y., Karadottir, R., Cossell, L. & Attwell, D. Morphological and electrical properties of oligodendrocytes in the white matter of the corpus callosum and cerebellum. J. Physiol. 589, 559–573 (2011).

    Article  CAS  PubMed  Google Scholar 

  144. Moore, S. et al. A role of oligodendrocytes in information processing. Nat. Commun. 11, 5497 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Sturrock, R. R. Myelination of the mouse corpus callosum. Neuropathol. Appl Neurobiol. 6, 415–420 (1980).

    Article  CAS  PubMed  Google Scholar 

  146. Hamilton, N. B. et al. Endogenous GABA controls oligodendrocyte lineage cell number, myelination, and CNS internode length. Glia 65, 309–321 (2017).

    Article  PubMed  Google Scholar 

  147. Arancibia-Carcamo, I. L. et al. Node of Ranvier length as a potential regulator of myelinated axon conduction speed. eLife https://doi.org/10.7554/eLife.23329 (2017).

  148. LaMantia, A. S. & Rakic, P. Axon overproduction and elimination in the corpus callosum of the developing rhesus monkey. J. Neurosci. 10, 2156–2175 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ford, M. C. et al. Tuning of Ranvier node and internode properties in myelinated axons to adjust action potential timing. Nat. Commun. 6, 8073 (2015).

    Article  CAS  PubMed  Google Scholar 

  150. Osanai, Y. et al. Rabies virus-mediated oligodendrocyte labeling reveals a single oligodendrocyte myelinates axons from distinct brain regions. Glia 65, 93–105 (2017).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank I. Mohorianu and O. Oniciuc for bioinformatic advice on RNA transcriptomic and GWAS analysis. We thank S. Hall for comments on the manuscript. This work was supported by the European Research Council (the European Union’s Horizon 2020 research and innovation programme grant agreement no. 771411; to R.T.K., S.T. and K.A.E.), the Paul G. Allen Frontiers Group (Allen Distinguished Investigator program no. 12076; to R.T.K. and B.V.), the Wellcome (Pathfinder Award 204488/Z/16/Z; to R.T.K. and H.P.), the UK Multiple Sclerosis Society (Centre of Excellence Award no. 132; to R.T.K. and O.F.) and the Lister Institute of Preventive Medicine (a research prize; to R.T.K.). The funders had no role in decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ragnhildur Thóra Káradóttir.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Neuroscience thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Faria, O., Pivonkova, H., Varga, B. et al. Periods of synchronized myelin changes shape brain function and plasticity. Nat Neurosci 24, 1508–1521 (2021). https://doi.org/10.1038/s41593-021-00917-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-021-00917-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing