Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A systems identification approach using Bayes factors to deconstruct the brain bases of emotion regulation

Abstract

Cognitive reappraisal is fundamental to cognitive therapies and everyday emotion regulation. Analyses using Bayes factors and an axiomatic systems identification approach identified four reappraisal-related components encompassing distributed neural activity patterns across two independent functional magnetic resonance imaging (fMRI) studies (n = 182 and n = 176): (1) an anterior prefrontal system selectively involved in cognitive reappraisal; (2) a fronto-parietal-insular system engaged by both reappraisal and emotion generation, demonstrating a general role in appraisal; (3) a largely subcortical system activated during negative emotion generation but unaffected by reappraisal, including amygdala, hypothalamus and periaqueductal gray; and (4) a posterior cortical system of negative emotion-related regions downregulated by reappraisal. These systems covaried with individual differences in reappraisal success and were differentially related to neurotransmitter binding maps, implicating cannabinoid and serotonin systems in reappraisal. These findings challenge ‘limbic’-centric models of reappraisal and provide new systems-level targets for assessing and enhancing emotion regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of experimental paradigm and analysis pipeline.
Fig. 2: Consensus brain regions for reappraisal system components across both independent studies (see Methods for details on consensus maps).
Fig. 3: Consensus brain regions for emotion generation–related system components across both independent studies.
Fig. 4: Region of interest analysis on amygdala and PAG.
Fig. 5: Correlation of reappraisal success with average activation from each component system.
Fig. 6: Function annotation using Neurosynth topic maps.
Fig. 7: Neurochemical annotation of system component maps.

Similar content being viewed by others

Data availability

The single-subject univariate beta images for both datasets, which are sufficient to reproduce the main results, are available at NeuroVault (https://neurovault.org/collections/16266/). Persistent identifier: https://identifiers.org/neurovault.collection:16266. The Neurosynth dataset used in the present study is compiled on GitHub and can be found at https://github.com/canlab/Neuroimaging_Pattern_Masks/tree/master/neurosynth. The neurotransmitter receptor/transporter maps are also compiled on GitHub and are available at https://github.com/canlab/Neuroimaging_Pattern_Masks/tree/master/Atlases_and_parcellations/2022_Hansen_PET_tracer_maps. The system component maps are available for visualization and further analysis at https://github.com/canlab/Neuroimaging_Pattern_Masks/tree/master/Individual_study_maps/2024_Bo_EmotionRegulation_BayesFactor.

Code availability

MATLAB codes and toolboxes for analyses are available at https://github.com/canlab. Customized codes for Bayes factor and corresponding analysis are available at https://github.com/KeBo2018/KeBo2023_EmotionReg_BayesFactor.

References

  1. Koban, L., Gianaros, P. J., Kober, H. & Wager, T. D. The self in context: brain systems linking mental and physical health. Nat. Rev. Neurosci. 22, 309–322 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sheppes, G., Suri, G. & Gross, J. J. Emotion regulation and psychopathology. Annu. Rev. Clin. Psychol. 11, 379–405 (2015).

    Article  PubMed  Google Scholar 

  3. Peterson, C. & Park, N. Explanatory style and emotion regulation. In Handbook of Emotion Regulation (ed. Gross, J. J.) 159–179 (Guilford Press, 2007).

  4. Gross, J. J. Handbook of Emotion Regulation, 2nd edn (Guilford Press, 2014).

  5. McRae, K., Ciesielski, B. & Gross, J. J. Unpacking cognitive reappraisal: goals, tactics, and outcomes. Emotion 12, 250–255 (2012).

    Article  PubMed  Google Scholar 

  6. Beck, J. S. Cognitive Behavior Therapy, Third Edition: Basics and Beyond (Guilford Press, 2020).

  7. Ochsner, K. N. & Gross, J. J. The cognitive control of emotion. Trends Cogn. Sci. 9, 242–249 (2005).

    Article  PubMed  Google Scholar 

  8. Baler, R. D. & Volkow, N. D. Drug addiction: the neurobiology of disrupted self-control. Trends Mol. Med. 12, 559–566 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Heatherton, T. F. & Wagner, D. D. Cognitive neuroscience of self-regulation failure. Trends Cogn. Sci. 15, 132–139 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Buhle, J. T. et al. Cognitive reappraisal of emotion: a meta-analysis of human neuroimaging studies. Cereb. Cortex 24, 2981–2990 (2014).

    Article  PubMed  Google Scholar 

  11. Morawetz, C., Bode, S., Derntl, B. & Heekeren, H. R. The effect of strategies, goals and stimulus material on the neural mechanisms of emotion regulation: a meta-analysis of fMRI studies. Neurosci. Biobehav. Rev. 72, 111–128 (2017).

    Article  PubMed  Google Scholar 

  12. Ochsner, K. N., Silvers, J. A. & Buhle, J. T. Functional imaging studies of emotion regulation: a synthetic review and evolving model of the cognitive control of emotion. Ann. N. Y. Acad. Sci. 1251, E1–E24 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dörfel, D. et al. Common and differential neural networks of emotion regulation by detachment, reinterpretation, distraction, and expressive suppression: a comparative fMRI investigation. Neuroimage 101, 298–309 (2014).

  14. Reddan, M. C., Wager, T. D. & Schiller, D. Attenuating neural threat expression with imagination. Neuron 100, 994–1005 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Etkin, A., Büchel, C. & Gross, J. J. The neural bases of emotion regulation. Nat. Rev. Neurosci. 16, 693–700 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Smith, K. S., Tindell, A. J., Aldridge, J. W. & Berridge, K. C. Ventral pallidum roles in reward and motivation. Behav. Brain Res. 196, 155–167 (2009).

    Article  PubMed  Google Scholar 

  17. Cohen, J. R. & Lieberman, M. D. The common neural basis of exerting self-control in multiple domains. In Self Control in Society, Mind, and Brain (eds. Hassin, R. et al.) 141–160 (Oxford Univ. Press, 2010).

  18. Craig, A. D. B. How do you feel–now? The anterior insula and human awareness. Nat. Rev. Neurosci. 10, 59–70 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Shackman, A. J. et al. The integration of negative affect, pain and cognitive control in the cingulate cortex. Nat. Rev. Neurosci. 12, 154–167 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chikazoe, J., Lee, D. H., Kriegeskorte, N. & Anderson, A. K. Population coding of affect across stimuli, modalities and individuals. Nat. Neurosci. 17, 1114–1122 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chang, L. J., Gianaros, P. J., Manuck, S. B., Krishnan, A. & Wager, T. D. A sensitive and specific neural signature for picture-induced negative affect. PLoS Biol. 13, e1002180 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Čeko, M., Kragel, P. A., Woo, C.-W., López-Solà, M. & Wager, T. D. Common and stimulus-type-specific brain representations of negative affect. Nat. Neurosci. 25, 760–770 (2022).

    Article  PubMed  Google Scholar 

  23. Gross, J. J. & Barrett, L. F. Emotion generation and emotion regulation: one or two depends on your point of view. Emot. Rev. 3, 8–16 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Barrett, L. F., Wilson-Mendenhall, C. D. & Barsalou, L. W. The conceptual act theory: a roadmap. In The Psychological Construction of Emotion (eds. Barrett, L. F. & Russell, J. A.) 83–110 (Guilford Press, 2015).

  25. Rutledge, R. B., Dean, M., Caplin, A. & Glimcher, P. W. Testing the reward prediction error hypothesis with an axiomatic model. J. Neurosci. 30, 13525–13536 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Morey, R. D. & Rouder, J. N. Bayes factor approaches for testing interval null hypotheses. Psychol. Methods 16, 406–419 (2011).

    Article  PubMed  Google Scholar 

  27. Schönbrodt, F. D. & Wagenmakers, E.-J. Bayes factor design analysis: planning for compelling evidence. Psychon. Bull. Rev. 25, 128–142 (2018).

  28. Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D. & Iverson, G. Bayesian t tests for accepting and rejecting the null hypothesis. Psychon. Bull. Rev. 16, 225–237 (2009).

    Article  PubMed  Google Scholar 

  29. Kragel, P. A. et al. Generalizable representations of pain, cognitive control, and negative emotion in medial frontal cortex. Nat. Neurosci. 21, 283–289 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C. & Wager, T. D. Large-scale automated synthesis of human functional neuroimaging data. Nat. Methods 8, 665–670 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hansen, J. Y. et al. Mapping neurotransmitter systems to the structural and functional organization of the human neocortex. Nat. Neurosci. 25, 1569–1581 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yeo, B. T. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

    Article  PubMed  Google Scholar 

  33. Denny, B. T., Ochsner, K. N., Weber, J. & Wager, T. D. Anticipatory brain activity predicts the success or failure of subsequent emotion regulation. Soc. Cogn. Affect. Neurosci. 9, 403–411 (2014).

    Article  PubMed  Google Scholar 

  34. Vanderhasselt, M.-A., Kühn, S. & De Raedt, R. ‘Put on your poker face’: neural systems supporting the anticipation for expressive suppression and cognitive reappraisal. Soc. Cogn. Affect. Neurosci. 8, 903–910 (2013).

    Article  PubMed  Google Scholar 

  35. Braver, T. S. The variable nature of cognitive control: a dual mechanisms framework. Trends Cogn. Sci. 16, 106–113 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gilmour, S. G. The interpretation of Mallows’s CP-statistic. J. R. Stat. Soc. 45, 49–56 (1996).

    Google Scholar 

  37. Wager, T. D., Davidson, M. L., Hughes, B. L., Lindquist, M. A. & Ochsner, K. N. Prefrontal-subcortical pathways mediating successful emotion regulation. Neuron 59, 1037–1050 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Morawetz, C., Bode, S., Baudewig, J., Kirilina, E. & Heekeren, H. R. Changes in effective connectivity between dorsal and ventral prefrontal regions moderate emotion regulation. Cereb. Cortex 26, 1923–1937 (2016).

    Article  PubMed  Google Scholar 

  39. Schönbrodt, F. D. & Perugini, M. At what sample size do correlations stabilize? J. Res. Pers. 47, 609–612 (2013).

    Article  Google Scholar 

  40. Kross, E., Berman, M. G., Mischel, W., Smith, E. E. & Wager, T. D. Social rejection shares somatosensory representations with physical pain. Proc. Natl Acad. Sci. USA 108, 6270–6275 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Modinos, G., Ormel, J. & Aleman, A. Individual differences in dispositional mindfulness and brain activity involved in reappraisal of emotion. Soc. Cogn. Affect. Neurosci. 5, 369–377 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hu, M. X. et al. Associations of immunometabolic risk factors with symptoms of depression and anxiety: the role of cardiac vagal activity. Brain Behav. Immun. 73, 493–503 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gianaros, P. J. et al. Affective brain patterns as multivariate neural correlates of cardiovascular disease risk. Soc. Cogn. Affect. Neurosci. 15, 1034–1045 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Barrett, L. F. How Emotions Are Made: The Secret Life of the Brain (HarperCollins, 2017).

  45. Pessoa, L. The entangled brain. J. Cogn. Neurosci. 35, 349–360 (2023).

    Article  PubMed  Google Scholar 

  46. Hill, J. et al. Similar patterns of cortical expansion during human development and evolution. Proc. Natl Acad. Sci. USA 107, 13135–13140 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Margulies, D. S. et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc. Natl Acad. Sci. USA 113, 12574–12579 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wei, Y. et al. Genetic mapping and evolutionary analysis of human-expanded cognitive networks. Nat. Commun. 10, 4839 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Shekhar, M. & Rahnev, D. Distinguishing the roles of dorsolateral and anterior PFC in visual metacognition. J. Neurosci. 38, 5078–5087 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Masís-Obando, R., Norman, K. A. & Baldassano, C. Schema representations in distinct brain networks support narrative memory during encoding and retrieval. eLife 11, e70445 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Okuda, J. et al. Thinking of the future and past: the roles of the frontal pole and the medial temporal lobes. Neuroimage 19, 1369–1380 (2003).

    Article  PubMed  Google Scholar 

  52. Koechlin, E., Basso, G., Pietrini, P., Panzer, S. & Grafman, J. The role of the anterior prefrontal cortex in human cognition. Nature 399, 148–151 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Koechlin, E., Ody, C. & Kouneiher, F. The architecture of cognitive control in the human prefrontal cortex. Science 302, 1181–1185 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Badre, D. & D’Esposito, M. Is the rostro-caudal axis of the frontal lobe hierarchical? Nat. Rev. Neurosci. 10, 659–669 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bludau, S. et al. Cytoarchitecture, probability maps and functions of the human frontal pole. Neuroimage 93, 260–275 (2014).

    Article  PubMed  Google Scholar 

  56. Carter, R. M. & Huettel, S. A. A nexus model of the temporal–parietal junction. Trends Cogn. Sci. 17, 328–336 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Jung, H., Wager, T. D. & Carter, R. M. Novel cognitive functions arise at the convergence of macroscale gradients. J. Cogn. Neurosci. 34, 381–396 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Silvers, J. A., Wager, T. D., Weber, J. & Ochsner, K. N. The neural bases of uninstructed negative emotion modulation. Soc. Cogn. Affect. Neurosci. 10, 10–18 (2015).

    Article  PubMed  Google Scholar 

  59. Phan, K. L., Wager, T., Taylor, S. F. & Liberzon, I. Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage 16, 331–348 (2002).

    Article  PubMed  Google Scholar 

  60. Kober, H. et al. Functional grouping and cortical–subcortical interactions in emotion: a meta-analysis of neuroimaging studies. Neuroimage 42, 998–1031 (2008).

    Article  PubMed  Google Scholar 

  61. Kohn, N. et al. Neural network of cognitive emotion regulation—an ALE meta-analysis and MACM analysis. Neuroimage 87, 345–355 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Morawetz, C. et al. Multiple large-scale neural networks underlying emotion regulation. Neurosci. Biobehav. Rev. 116, 382–395 (2020).

    Article  PubMed  Google Scholar 

  63. Burt, J. B. et al. Hierarchy of transcriptomic specialization across human cortex captured by structural neuroimaging topography. Nat. Neurosci. 21, 1251–1259 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ochsner, K. N. & Gross, J. J. The neural bases of emotion and emotion regulation: a valuation perspective. In Handbook of Emotion Regulation, 2nd edn (ed. Gross, J. J.) 23–42 (Guilford Press, 2014).

  65. Hutcherson, C. A., Plassmann, H., Gross, J. J. & Rangel, A. Cognitive regulation during decision making shifts behavioral control between ventromedial and dorsolateral prefrontal value systems. J. Neurosci. 32, 13543–13554 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Woo, C.-W. et al. Separate neural representations for physical pain and social rejection. Nat. Commun. 5, 5380 (2014).

    Article  PubMed  Google Scholar 

  67. Kalisch, R. & Gerlicher, A. M. V. Making a mountain out of a molehill: on the role of the rostral dorsal anterior cingulate and dorsomedial prefrontal cortex in conscious threat appraisal, catastrophizing, and worrying. Neurosci. Biobehav. Rev. 42, 1–8 (2014).

    Article  PubMed  Google Scholar 

  68. McRae, K., Reiman, E. M., Fort, C. L., Chen, K. & Lane, R. D. Association between trait emotional awareness and dorsal anterior cingulate activity during emotion is arousal-dependent. Neuroimage 41, 648–655 (2008).

    Article  PubMed  Google Scholar 

  69. Vollenweider, F. X. & Preller, K. H. Psychedelic drugs: neurobiology and potential for treatment of psychiatric disorders. Nat. Rev. Neurosci. 21, 611–624 (2020).

    Article  CAS  PubMed  Google Scholar 

  70. Tiger, M. et al. Reduced 5-HT1B receptor binding in the dorsal brain stem after cognitive behavioural therapy of major depressive disorder. Psychiatry Res. 223, 164–170 (2014).

    Article  PubMed  Google Scholar 

  71. Karlsson, H., Hirvonen, J., Salminen, J. & Hietala, J. Increased serotonin receptor 1A binding in major depressive disorder after psychotherapy, but not after SSRI pharmacotherapy, is related to improved social functioning capacity. Psychother. Psychosom. 82, 260–261 (2013).

    Article  PubMed  Google Scholar 

  72. Shen, C.-J. et al. Cannabinoid CB1 receptors in the amygdalar cholecystokinin glutamatergic afferents to nucleus accumbens modulate depressive-like behavior. Nat. Med. 25, 337–349 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Mayberg, H. S. et al. Deep brain stimulation for treatment-resistant depression. Neuron 45, 651–660 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Scheinost, D. et al. Orbitofrontal cortex neurofeedback produces lasting changes in contamination anxiety and resting-state connectivity. Transl. Psychiatry 3, e250 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Frank, D. W. et al. Emotion regulation: quantitative meta-analysis of functional activation and deactivation. Neurosci. Biobehav. Rev. 45, 202–211 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Goodman, M. et al. Dialectical behavior therapy alters emotion regulation and amygdala activity in patients with borderline personality disorder. J. Psychiatr. Res. 57, 108–116 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Méndez-Bértolo, C. et al. A fast pathway for fear in human amygdala. Nat. Neurosci. 19, 1041–1049 (2016).

  78. Atlas, L. Y., Doll, B. B., Li, J., Daw, N. D. & Phelps, E. A. Instructed knowledge shapes feedback-driven aversive learning in striatum and orbitofrontal cortex, but not the amygdala. eLife 5, e15192 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wu, X. et al. Superior emotional regulating effects of creative cognitive reappraisal. Neuroimage 200, 540–551 (2019).

    Article  PubMed  Google Scholar 

  80. Pierce, J. E., Blair, R. J. R., Clark, K. R. & Neta, M. Reappraisal-related downregulation of amygdala BOLD activation occurs only during the late trial window. Cogn. Affect. Behav. Neurosci. 22, 777–787 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Denny, B. T. et al. Unpacking reappraisal: a systematic review of fMRI studies of distancing and reinterpretation. Soc. Cogn. Affect. Neurosci. 18, nsad050 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Picó-Pérez, M., Radua, J., Steward, T., Menchón, J. M. & Soriano-Mas, C. Emotion regulation in mood and anxiety disorders: a meta-analysis of fMRI cognitive reappraisal studies. Prog. Neuropsychopharmacol. Biol. Psychiatry 79, 96–104 (2017).

    Article  PubMed  Google Scholar 

  83. Nelson, B. D., Fitzgerald, D. A., Klumpp, H., Shankman, S. A. & Phan, K. L. Prefrontal engagement by cognitive reappraisal of negative faces. Behav. Brain Res. 279, 218–225 (2015).

    Article  PubMed  Google Scholar 

  84. Munafò, M. R. et al. A manifesto for reproducible science. Nat. Hum. Behav. 1, 0021 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Nichols, T. & Hayasaka, S. Controlling the familywise error rate in functional neuroimaging: a comparative review. Stat. Methods Med. Res. 12, 419–446 (2003).

    Article  MathSciNet  PubMed  Google Scholar 

  86. Picó-Pérez, M. et al. Common and distinct neural correlates of fear extinction and cognitive reappraisal: a meta-analysis of fMRI studies. Neurosci. Biobehav. Rev. 104, 102–115 (2019).

    Article  PubMed  Google Scholar 

  87. Goldin, P. R., McRae, K., Ramel, W. & Gross, J. J. The neural bases of emotion regulation: reappraisal and suppression of negative emotion. Biol. Psychiatry 63, 577–586 (2008).

    Article  PubMed  Google Scholar 

  88. Denny, B. T., Inhoff, M. C., Zerubavel, N., Davachi, L. & Ochsner, K. N. Getting over it: long-lasting effects of emotion regulation on amygdala response. Psychol. Sci. 26, 1377–1388 (2015).

    Article  PubMed  Google Scholar 

  89. Silvers, J. A., Shu, J., Hubbard, A. D., Weber, J. & Ochsner, K. N. Concurrent and lasting effects of emotion regulation on amygdala response in adolescence and young adulthood. Dev. Sci. 18, 771–784 (2015).

    Article  PubMed  Google Scholar 

  90. Silvers, J. A., Weber, J., Wager, T. D. & Ochsner, K. N. Bad and worse: neural systems underlying reappraisal of high- and low-intensity negative emotions. Soc. Cogn. Affect. Neurosci. 10, 172–179 (2015).

    Article  PubMed  Google Scholar 

  91. van Reekum, C. M. et al. Gaze fixations predict brain activation during the voluntary regulation of picture-induced negative affect. Neuroimage 36, 1041–1055 (2007).

    Article  PubMed  Google Scholar 

  92. Urry, H. L. Seeing, thinking, and feeling: emotion-regulating effects of gaze-directed cognitive reappraisal. Emotion 10, 125–135 (2010).

    Article  PubMed  Google Scholar 

  93. Bebko, G. M., Franconeri, S. L., Ochsner, K. N. & Chiao, J. Y. Attentional deployment is not necessary for successful emotion regulation via cognitive reappraisal or expressive suppression. Emotion 14, 504–512 (2014).

    Article  PubMed  Google Scholar 

  94. Ferri, J., Schmidt, J., Hajcak, G. & Canli, T. Neural correlates of attentional deployment within unpleasant pictures. Neuroimage 70, 268–277 (2013).

    Article  PubMed  Google Scholar 

  95. Kravitz, D. J., Saleem, K. S., Baker, C. I., Ungerleider, L. G. & Mishkin, M. The ventral visual pathway: an expanded neural framework for the processing of object quality. Trends Cogn. Sci. 17, 26–49 (2013).

    Article  PubMed  Google Scholar 

  96. Huth, A. G., Nishimoto, S., Vu, A. T. & Gallant, J. L. A continuous semantic space describes the representation of thousands of object and action categories across the human brain. Neuron 76, 1210–1224 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Rodriguez, M. & Kross, E. Sensory emotion regulation. Trends Cogn. Sci. 27, 379–390 (2023).

  98. Niedenthal, P. M. Embodying emotion. Science 316, 1002–1005 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Kragel, P. A., Reddan, M. C., LaBar, K. S. & Wager, T. D. Emotion schemas are embedded in the human visual system. Sci. Adv. 5, eaaw4358 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Bo, K. et al. Decoding neural representations of affective scenes in retinotopic visual cortex. Cereb. Cortex 31, 3047–3063 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Bo, K. et al. Decoding the temporal dynamics of affective scene processing. Neuroimage 261, 119532 (2022).

    Article  PubMed  Google Scholar 

  102. Liu, T. T. et al. Layer-specific, retinotopically-diffuse modulation in human visual cortex in response to viewing emotionally expressive faces. Nat. Commun. 13, 6302 (2022).

  103. Khalsa, S. S., Rudrauf, D., Feinstein, J. S. & Tranel, D. The pathways of interoceptive awareness. Nat. Neurosci. 12, 1494–1496 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Min, J. et al. Emotion downregulation targets interoceptive brain regions while emotion upregulation targets other affective brain regions. J. Neurosci. 42, 2973–2985 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hutcherson, C. A. & Tusche, A. Evidence accumulation, not ‘self-control’, explains dorsolateral prefrontal activation during normative choice. eLife https://doi.org/10.7554/eLife.65661 (2022).

  106. O’Doherty, J., Kringelbach, M. L., Rolls, E. T., Hornak, J. & Andrews, C. Abstract reward and punishment representations in the human orbitofrontal cortex. Nat. Neurosci. 4, 95–102 (2001).

    Article  PubMed  Google Scholar 

  107. Andraszewicz, S. et al. An introduction to Bayesian hypothesis testing for management research. J. Manag. 41, 521–543 (2015).

    Google Scholar 

  108. Cousineau, D. Confidence intervals in within-subject designs: a simpler solution to Loftus and Masson’s method. Tutor. Quant. Methods Psychol. 1, 42–45 (2005).

    Article  Google Scholar 

  109. Van Essen, D. C., Glasser, M. F., Dierker, D. L., Harwell, J. & Coalson, T. Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. Cereb. Cortex 22, 2241–2262 (2012).

    Article  PubMed  Google Scholar 

  110. Wang, L., Mruczek, R. E. B., Arcaro, M. J. & Kastner, S. Probabilistic maps of visual topography in human cortex. Cereb. Cortex 25, 3911–3931 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Amunts, K., Mohlberg, H., Bludau, S. & Zilles, K. Julich-Brain: a 3D probabilistic atlas of the human brain’s cytoarchitecture. Science 369, 988–992 (2020).

    Article  CAS  PubMed  Google Scholar 

  112. Gianaros, P. J. et al. An inflammatory pathway links atherosclerotic cardiovascular disease risk to neural activity evoked by the cognitive regulation of emotion. Biol. Psychiatry 75, 738–745 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Lang, P. J., Bradley, M. M. & Cuthbert, B. N. International Affective Picture System (IAPS): technical manual and affective ratings. (NIMH Center for the Study of Emotion and Attention, 1997).

  114. Frey, M., Nau, M. & Doeller, C. F. Magnetic resonance-based eye tracking using deep neural networks. Nat. Neurosci. 24, 1772–1779 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gianaros, P. J. et al. Multivariate brain activity while viewing and reappraising affective scenes does not predict the multiyear progression of preclinical atherosclerosis in otherwise healthy midlife adults. Affect. Sci. 3, 406–424 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Lee, M. D. & Wagenmakers, E.-J. Bayesian Cognitive Modeling: A Practical Course (Cambridge Univ. Press, 2014).

  117. Poldrack, R. A. et al. Discovering relations between mind, brain, and mental disorders using topic mapping. PLoS Comput. Biol. 8, e1002707 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Boyko and C. DuPont for assisting in data collection and scoring. We thank K. Månsson, H. J. Jung, B. Graul, B. Petro, R. Botvinik-Nezer, Z. Z. Miao, A. Dehghani and B. Kim for helpful comments on earlier versions of the manuscript. We also thank S. Shohan and D. Gantz for writing assistance. This work was funded by National Institutes of Health (NIH) R01MH076136 (to T.D.W.) and NIH P01HL040962-25 (to P.J.G.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: K.B. and T.D.W. Methodology: K.B., M.K., M.S. and T.D.W. Formal analysis: K.B. and T.D.W. Investigation: K.B., P.J.G. and T.D.W. Participant recruitment: T.E.K. and P.J.G. Resources: P.J.G. and T.D.W. Data pre-processing: K.B., T.E.K. and P.J.G. Writing—original draft: K.B. and T.D.W. Writing—review and editing: K.B., T.E.K., M.K., M.S., P.J.G. and T.D.W. Funding support: P.J.G. and T.D.W.

Corresponding authors

Correspondence to Peter J. Gianaros or Tor D. Wager.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Carmen Morawetz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14 and Tables 1–6.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bo, K., Kraynak, T.E., Kwon, M. et al. A systems identification approach using Bayes factors to deconstruct the brain bases of emotion regulation. Nat Neurosci (2024). https://doi.org/10.1038/s41593-024-01605-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41593-024-01605-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing