Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The language network as a natural kind within the broader landscape of the human brain

Abstract

Language behaviour is complex, but neuroscientific evidence disentangles it into distinct components supported by dedicated brain areas or networks. In this Review, we describe the ‘core’ language network, which includes left-hemisphere frontal and temporal areas, and show that it is strongly interconnected, independent of input and output modalities, causally important for language and language-selective. We discuss evidence that this language network plausibly stores language knowledge and supports core linguistic computations related to accessing words and constructions from memory and combining them to interpret (decode) or generate (encode) linguistic messages. We emphasize that the language network works closely with, but is distinct from, both lower-level — perceptual and motor — mechanisms and higher-level systems of knowledge and reasoning. The perceptual and motor mechanisms process linguistic signals, but, in contrast to the language network, are sensitive only to these signals’ surface properties, not their meanings; the systems of knowledge and reasoning (such as the system that supports social reasoning) are sometimes engaged during language use but are not language-selective. This Review lays a foundation both for in-depth investigations of these different components of the language processing pipeline and for probing inter-component interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Brain systems that support language comprehension and language production.
Fig. 2: The topography of the language network, its variability across individuals, its stability within individuals over time and its selectivity for language over non-linguistic inputs and tasks.
Fig. 3: Sensitivity of the language network to linguistic structure at multiple information scales, and functional similarity of its different areas.
Fig. 4: Sensitivity to meaning in the language network, but not in specialized perceptual and premotor areas.
Fig. 5: Selectivity for language in the language network, but not in systems of knowledge and reasoning.

Similar content being viewed by others

Data availability

The data used to generate the activation maps in Fig. 2a,b were released as part of Lipkin et al.49 and are available for download at https://figshare.com/articles/dataset/LanADataset/20425209. The data used to generate Fig. 2c were released as a supplement to Mahowald and Fedorenko51 and are available at: https://doi.org/10.6084/m9.figshare.22183564. The data used to generate the bar graphs in Figs. 2d and 3a,b come from published and pre-printed papers but, for convenience and ease of figure reproducibility, have been consolidated and placed on a dedicated Open Science Framework (OSF) page: https://osf.io/4tdcx/ (see Supplementary methods for details).

References

  1. Simon, H. A. The architecture of complexity. Proc. Am. Philos. Soc. 106, 467–482 (1962).

    Google Scholar 

  2. Goldberg, A. E. Constructions: A Construction Grammar Approach to Argument Structure (Univ. Chicago Press, 1995).

  3. Jackendoff, R. Foundations of Language: Brain, Meaning, Grammar, Evolution (Oxford Univ. Press, 2009).

  4. Overath, T., McDermott, J. H., Zarate, J. M. & Poeppel, D. The cortical analysis of speech-specific temporal structure revealed by responses to sound quilts. Nat. Neurosci. 18, 903–911 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li, J., Hiersche, K. & Saygin, Z. M. Demystifying the visual word form area: precision fMRI of visual, linguistic, and attentional properties of ventral temporal cortex. Preprint at bioRxiv https://doi.org/10.1101/2023.06.15.544824 (2023).

  6. Guenther, F. H. Neural Control of Speech (MIT Press, 2016).

  7. Duncan, J. The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends Cogn. Sci. 14, 172–179 (2010).

    Article  PubMed  Google Scholar 

  8. Saxe, R. & Kanwisher, N. People thinking about thinking people: the role of the temporo-parietal junction in ‘theory of mind’. Neuroimage 19, 1835–1842 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Buckner, R. L. & DiNicola, L. M. The brain’s default network: updated anatomy, physiology and evolving insights. Nat. Rev. Neurosci. 20, 593–608 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Tettamanti, M. & Weniger, D. Broca’s area: a supramodal hierarchical processor? Cortex 42, 491–494 (2006).

    Article  PubMed  Google Scholar 

  11. Fadiga, L. Broca’s area in language, action, and music. Ann. N. Y. Acad. Sci. 1169, 448–458 (2009).

    Article  PubMed  Google Scholar 

  12. Fitch, W. T. & Martins, M. D. Hierarchical processing in music, language, and action: lashley revisited. Ann. N. Y. Acad. Sci. 1316, 87–104 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fedorenko, E. & Shain, C. Similarity of computations across domains does not imply shared implementation: the case of language comprehension. Curr. Dir. Psychol. Sci. 30, 526–534 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Saxe, R., Brett, M. & Kanwisher, N. Divide and conquer: a defense of functional localizers. Neuroimage 30, 1088–1096 (2006).

    Article  PubMed  Google Scholar 

  15. Nieto-Castañon, A. & Fedorenko, E. Subject-specific functional localizers increase sensitivity and functional resolution of multi-subject analyses. Neuroimage 63, 1646–1669 (2012).

    Article  PubMed  Google Scholar 

  16. Poldrack, R. A. et al. Long-term neural and physiological phenotyping of a single human. Nat. Commun. 6, 8885 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Gratton, C. & Braga, R. M. Editorial overview: deep imaging of the individual brain: past, practice, and promise. Curr. Opin. Behav. Sci. 40, https://doi.org/10.1016/j.cobeha.2021.06.011 (2021).

  18. Fedorenko, E. The early origins and the growing popularity of the individual-subject analytic approach in human neuroscience. Curr. Opin. Behav. Sci. 40, 105–112 (2021).

    Article  Google Scholar 

  19. Fedorenko, E., Hsieh, P.-J., Nieto-Castañon, A., Whitfield-Gabrieli, S. & Kanwisher, N. A new method for fMRI investigations of language: defining ROIs functionally in individual subjects. J. Neurophysiol. 104, 1177–1194 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Huth, A. G., Heer, W. A., Griffiths, T. L., Theunissen, F. E. & Gallant, J. L. Natural speech reveals the semantic maps that tile human cerebral cortex. Nature 532, 453–458 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lane, C., Kanjlia, S., Omaki, A. & Bedny, M. “Visual” cortex of congenitally blind adults responds to syntactic movement. J. Neurosci. 35, 12859–12868 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Amalric, M. & Dehaene, S. A distinct cortical network for mathematical knowledge in the human brain. Neuroimage 189, 19–31 (2019).

    Article  PubMed  Google Scholar 

  23. Braga, R. M., DiNicola, L. M., Becker, H. C. & Buckner, R. L. Situating the left-lateralized language network in the broader organization of multiple specialized large-scale distributed networks. J. Neurophysiol. 124, 1415–1448 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Quillen, I. A., Yen, M. & Wilson, S. M. Distinct neural correlates of linguistic and non-linguistic demand. Neurobiol. Lang. 2, 202–225 (2021).

    Article  Google Scholar 

  25. Hiersche, K. J., Schettini, E., Li, J. & Saygin, Z. M. Functional dissociation of the language network and other cognition in early childhood. Preprint at bioRxiv https://doi.org/10.1101/2022.08.11.503597 (2023).

  26. Goodglass, H. in Studies in Neurolinguistics Vol. 1 (eds Whitaker, H. & Whitaker, H. A.) 237–260 (Academic, 1976).

  27. Knecht, S. et al. Language lateralization in healthy right-handers. Brain 123, 74–81 (2000).

    Article  PubMed  Google Scholar 

  28. Baynes, K. & Long, D. L. Three conundrums of language lateralization. Lang. Linguist. Compass 1, 48–70 (2007).

    Article  Google Scholar 

  29. Corballis, M. C. in The Origins of Language (ed. Masataka, N.) 11–23 (Springer Japan, 2008).

  30. Ocklenburg, S., Ströckens, F. & Güntürkün, O. Lateralisation of conspecific vocalisation in non-human vertebrates. Laterality 18, 1–31 (2013).

    Article  PubMed  Google Scholar 

  31. Sha, Z. et al. The genetic architecture of structural left–right asymmetry of the human brain. Nat. Hum. Behav. 5, 1226–1239 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Knecht, S., Drager, B., Floel, A., Lohmann, H. & Breitenstein, C. Behavioral relevance of atypical language lateralization in healthy subjects. Brain 124, 1657–1665 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Van der Haegen, L. & Brysbaert, M. The relationship between behavioral language laterality, face laterality, and language performance in left-handers. PLoS ONE 13, 0208696 (2018).

    Google Scholar 

  34. Asaridou, S. S., Demir-Lira, Ö. E., Goldin-Meadow, S., Levine, S. C. & Small, S. L. Language development and brain reorganization in a child born without the left hemisphere. Cortex 127, 290–312 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tuckute, G. et al. Frontal language areas do not emerge in the absence of temporal language areas: a case study of an individual born without a left temporal lobe. Neuropsychologia 169, 108184 (2022).

    Article  PubMed  Google Scholar 

  36. Newport, E. L. et al. Language and developmental plasticity after perinatal stroke. Proc. Natl Acad. Sci. USA 119, 2207293119 (2022).

    Article  Google Scholar 

  37. Herbert, M. R., Harris, G. J., Adrien, K. T., Ziegler, D. A. & Makris, N. Abnormal asymmetry in language association cortex in autism. Ann. Neurol. 52, 588–596 (2002).

    Article  PubMed  Google Scholar 

  38. Yuan, W. et al. fMRI shows atypical language lateralization in pediatric epilepsy patients. Epilepsia 47, 593–600 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  39. De Guibert, C. et al. Abnormal functional lateralization and activity of language brain areas in typical specific language impairment (developmental dysphasia). Brain 134, 3044–3058 (2011).

    Article  PubMed  Google Scholar 

  40. Jouravlev, O. et al. Reduced language lateralization in autism and the broader autism phenotype as assessed with robust individual‐subjects analyses. Autism Res. 13, 1746–1761 (2020).

    Article  PubMed  Google Scholar 

  41. Lindell, A. K. In your right mind: right hemisphere contributions to language processing and production. Neuropsychol. Rev. 16, 131–148 (2006).

    Article  PubMed  Google Scholar 

  42. Martin, K. C. et al. A weak shadow of early life language processing persists in the right hemisphere of the mature brain. Neurobiol. Lang. 3, 364–385 (2022).

    Article  Google Scholar 

  43. Burnstine, T. H. et al. Characterization of the basal temporal language area in patients with left temporal lobe epilepsy. Neurology 40, 966–970 (1990).

    Article  CAS  PubMed  Google Scholar 

  44. Copland, D. A. & Angwin, A. J. in The Oxford Handbook of Neurolinguistics (eds Zubicaray, G. I. & Schiller, N. O.) 851–876 (Oxford Univ. Press, 2019).

  45. De Smet, H. J., Baillieux, H., Deyn, P. P., Mariën, P. & Paquier, P. The cerebellum and language: the story so far. Folia Phoniatr. Logop. 59, 165–170 (2007).

    Article  PubMed  Google Scholar 

  46. LeBel, A. & D’Mello, A. M. A seat at the (language) table: incorporating the cerebellum into frameworks for language processing. Curr. Opin. Behav. Sci. 53, 101310 (2023).

    Article  Google Scholar 

  47. Bedny, M., Pascual-Leone, A., Dodell-Feder, D., Fedorenko, E. & Saxe, R. Language processing in the occipital cortex of congenitally blind adults. Proc. Natl Acad. Sci. USA 108, 4429–4434 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Scott, T. L., Gallée, J. & Fedorenko, E. A new fun and robust version of an fMRI localizer for the frontotemporal language system. Cogn. Neurosci. 8, 167–176 (2017).

    Article  PubMed  Google Scholar 

  49. Lipkin, B. et al. Probabilistic atlas for the language network based on precision fMRI data from >800 individuals. Sci. Data 9, 529 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Malik-Moraleda, S. et al. An investigation across 45 languages and 12 language families reveals a universal language network. Nat. Neurosci. 25, 1014–1019 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mahowald, K. & Fedorenko, E. Reliable individual-level neural markers of high-level language processing: a necessary precursor for relating neural variability to behavioral and genetic variability. Neuroimage 139, 74–93 (2016).

    Article  PubMed  Google Scholar 

  52. Elliott, M. L. et al. What is the test–retest reliability of common task-functional MRI measures? New empirical evidence and a meta-analysis. Psychol. Sci. 31, 792–806 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Saur, D. et al. Ventral and dorsal pathways for language. Proc. Natl Acad. Sci. USA 105, 18035–18040 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Friederici, A. D. Pathways to language: fiber tracts in the human brain. Trends Cogn. Sci. 13, 175–181 (2009).

    Article  PubMed  Google Scholar 

  55. Dick, A. S. & Tremblay, P. Beyond the arcuate fasciculus: consensus and controversy in the connectional anatomy of language. Brain 135, 3529–3550 (2012).

    Article  PubMed  Google Scholar 

  56. Blank, I., Kanwisher, N. & Fedorenko, E. A functional dissociation between language and multiple-demand systems revealed in patterns of BOLD signal fluctuations. J. Neurophysiol. 112, 1105–1118 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Paunov, A. M., Blank, I. A. & Fedorenko, E. Functionally distinct language and Theory of Mind networks are synchronized at rest and during language comprehension. J. Neurophysiol. 121, 1244–1265 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Menenti, L., Gierhan, S. M., Segaert, K. & Hagoort, P. Shared language: overlap and segregation of the neuronal infrastructure for speaking and listening revealed by functional MRI. Psychol. Sci. 22, 1173–1182 (2011).

    Article  PubMed  Google Scholar 

  59. Silbert, L. J., Honey, C. J., Simony, E., Poeppel, D. & Hasson, U. Coupled neural systems underlie the production and comprehension of naturalistic narrative speech. Proc. Natl Acad. Sci. USA 111, 4687–4696 (2014).

    Article  Google Scholar 

  60. Hu, J. et al. Precision fMRI reveals that the language-selective network supports both phrase-structure building and lexical access during language production. Cereb. Cortex 33, 4384–4404 (2022).

    Article  PubMed Central  Google Scholar 

  61. Lichtheim, L. On aphasia. Brain 7, 433–484 (1885).

    Article  Google Scholar 

  62. Geschwind, N. The organization of language and the brain: language disorders after brain damage help in elucidating the neural basis of verbal behavior. Science 170, 940–944 (1970).

    Article  CAS  PubMed  Google Scholar 

  63. Wernicke, C. in Proc. Boston Colloquium for the Philosophy of Science 1966/1968 (eds Cohen, R. S. & Wartofsky, M. W.) 34–97 (Springer Netherlands, 1969).

  64. Neville, H. J. et al. Cerebral organization for language in deaf and hearing subjects: biological constraints and effects of experience. Proc. Natl Acad. Sci. USA 95, 922–929 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vagharchakian, L., Dehaene-Lambertz, G., Pallier, C. & Dehaene, S. A temporal bottleneck in the language comprehension network. J. Neurosci. 32, 9089–9102 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Regev, M., Honey, C. J., Simony, E. & Hasson, U. Selective and invariant neural responses to spoken and written narratives. J. Neurosci. 33, 15978–15988 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Deniz, F., Nunez-Elizalde, A. O., Huth, A. G. & Gallant, J. L. The representation of semantic information across human cerebral cortex during listening versus reading is invariant to stimulus modality. J. Neurosci. 39, 7722–7736 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Diachek, E., Blank, I., Siegelman, M., Affourtit, J. & Fedorenko, E. The domain-general multiple demand (MD) network does not support core aspects of language comprehension: a large-scale fMRI investigation. J. Neurosci. 40, 4536–4550 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Paunov, A. M. et al. Differential tracking of linguistic vs. mental state content in naturalistic stimuli by language and Theory of Mind (ToM) brain networks. Neurobiol. Lang. 3, 413–440 (2022).

    Article  Google Scholar 

  70. Olson, H. A., Chen, E. M., Lydic, K. O. & Saxe, R. R. Left-hemisphere cortical language regions respond equally to observed dialogue and monologue. Neurobiol. Lang. 4, 575–610 (2023).

    Article  Google Scholar 

  71. Chee, M. W. L. et al. Processing of visually presented sentences in Mandarin and English studied with fMRI. Neuron 23, 127–137 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Hernandez, A. E., Dapretto, M., Mazziotta, J. & Bookheimer, S. Language switching and language representation in Spanish–English bilinguals: an fMRI study. Neuroimage 14, 510–520 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Malik-Moraleda, S. et al. Functional characterization of the language network of polyglots and hyperpolyglots with precision fMRI. Cereb. Cortex 34, bhae049 (2024).

    Article  PubMed  Google Scholar 

  74. Binder, J. R. et al. Human brain language areas identified by functional magnetic resonance imaging. J. Neurosci. 17, 353–362 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Blank, I., Balewski, Z., Mahowald, K. & Fedorenko, E. Syntactic processing is distributed across the language system. Neuroimage 127, 307–323 (2016).

    Article  PubMed  Google Scholar 

  76. Regev, T. I. et al. High-level language brain regions process sublexical regularities. Cereb. Cortex 34, bhae077 (2024).

    Article  PubMed  Google Scholar 

  77. Naselaris, T., Kay, K. N., Nishimoto, S. & Gallant, J. L. Encoding and decoding in fMRI. Neuroimage 56, 400–410 (2011).

    Article  PubMed  Google Scholar 

  78. Pereira, F. et al. Toward a universal decoder of linguistic meaning from brain activation. Nat. Commun. 9, 963 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Caucheteux, C., Gramfort, A. & King, J.-R. Disentangling syntax and semantics in the brain with deep networks. Preprint at arXiv https://doi.org/10.48550/arXiv.2103.01620 (2021).

  80. Toneva, M., Mitchell, T. M. & Wehbe, L. Combining computational controls with natural text reveals aspects of meaning composition. Nat. Comput. Sci. 2, 745–757 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Gong, X. L. et al. Phonemic segmentation of narrative speech in human cerebral cortex. Nat. Commun. 14, 4309 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pasquiou, A., Lakretz, Y., Thirion, B. & Pallier, C. Information-restricted neural language models reveal different brain regions’ sensitivity to semantics, syntax, and context. Neurobiol. Lang. 4, 611–636 (2023).

    Article  Google Scholar 

  83. Luria, A. R. Traumatic Aphasia: Its Syndromes, Psychology and Treatment (Mouton, 1970).

  84. Bates, E. et al. Voxel-based lesion–symptom mapping. Nat. Neurosci. 6, 448–450 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Gorno-Tempini, M. L. et al. Classification of primary progressive aphasia and its variants. Neurology 76, 1006–1014 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Wilson, S. M. et al. Transient aphasias after left hemisphere resective surgery. J. Neurosurg. 123, 581–593 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Fridriksson, J. et al. Anatomy of aphasia revisited. Brain 141, 848–862 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Blank, I. A., Kiran, S. & Fedorenko, E. Can neuroimaging help aphasia researchers? Addressing generalizability, variability, and interpretability. Cogn. Neuropsychol. 34, 377–393 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kertesz, A. & McCabe, P. Recovery patterns and prognosis in aphasia. Brain 100, 1–18 (1977).

    Article  PubMed  Google Scholar 

  90. Wilson, S. M. et al. Recovery from aphasia in the first year after stroke. Brain 146, 1021–1039 (2023).

    Article  PubMed  Google Scholar 

  91. Fedorenko, E., Behr, M. K. & Kanwisher, N. Functional specificity for high-level linguistic processing in the human brain. Proc. Natl Acad. Sci. USA 108, 16428–16433 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Just, M. A. & Carpenter, P. A. A capacity theory of comprehension: individual differences in working memory. Psychol. Rev. 99, 122 (1992).

    Article  CAS  PubMed  Google Scholar 

  93. Thompson-Schill, S. L., D’Esposito, M., Aguirre, G. K. & Farah, M. J. Role of left inferior prefrontal cortex in retrieval of semantic knowledge: a reevaluation. Proc. Natl Acad. Sci. USA 94, 14792–14797 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Novick, J. M., Trueswell, J. C. & Thompson-Schill, S. L. Cognitive control and parsing: reexamining the role of Broca’s area in sentence comprehension. Cogn. Affect. Behav. Neurosci. 5, 263–281 (2005).

    Article  PubMed  Google Scholar 

  95. Dennett, D. C. in Sprache Und Denken/Language and Thought (ed. Burri, A.) 42–55 (De Gruyter, 1997).

  96. Gentner, D. in Language in Mind: Advances in the Study of Language and Thought (eds Gentner, D. & Goldin-Meadow, S.) 195–235 (MIT Press, 2003).

  97. Berwick, R. C. & Chomsky, N. Why Only Us: Language and Evolution (MIT Press, 2016).

  98. Rizzolatti, G. & Arbib, M. A. Language within our grasp. Trends Neurosci. 21, 188–194 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Arbib, M. A. Mirror system activity for action and language is embedded in the integration of dorsal and ventral pathways. Brain Lang. 112, 12–24 (2010).

    Article  PubMed  Google Scholar 

  100. Fedorenko, E., McDermott, J. H., Norman-Haignere, S. & Kanwisher, N. Sensitivity to musical structure in the human brain. J. Neurophysiol. 108, 3289–3300 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Deen, B., Koldewyn, K., Kanwisher, N. & Saxe, R. Functional organization of social perception and cognition in the superior temporal sulcus. Cereb. Cortex 25, 4596–4609 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Chen, X. et al. The human language system, including its inferior frontal component in ‘Broca’s area,’ does not support music perception. Cereb. Cortex 33, 7904–7929 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Monti, M. M., Parsons, L. M. & Osherson, D. N. Thought beyond language: neural dissociation of algebra and natural language. Psychol. Sci. 23, 914–922 (2012).

    Article  PubMed  Google Scholar 

  104. Chai, L. R., Mattar, M. G., Blank, I. A., Fedorenko, E. & Bassett, D. S. Functional network dynamics of the language system. Cereb. Cortex 26, 4148–4159 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Monti, M. M., Parsons, L. M. & Osherson, D. N. The boundaries of language and thought in deductive inference. Proc. Natl Acad. Sci. USA 106, 12554–12559 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Monti, M. M., Osherson, D. N., Martinez, M. J. & Parsons, L. M. Functional neuroanatomy of deductive inference: a language-independent distributed network. Neuroimage 37, 1005–1016 (2007).

    Article  PubMed  Google Scholar 

  107. Ivanova, A. A. et al. Comprehension of computer code relies primarily on domain-general executive brain regions. eLife 9, 58906 (2020).

    Article  Google Scholar 

  108. Liu, Y. F., Kim, J., Wilson, C. & Bedny, M. Computer code comprehension shares neural resources with formal logical inference in the fronto-parietal network. eLife 9, 59340 (2020).

    Article  Google Scholar 

  109. Fedorenko, E., Duncan, J. & Kanwisher, N. Language-selective and domain-general regions lie side by side within Broca’s area. Curr. Biol. 22, 2059–2062 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wolna, A. et al. Domain-general and language-specific contributions to speech production in a second language: an fMRI study using functional localizers. Sci. Rep. 14, 57 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Benn, Y. et al. No evidence for a special role of language in feature-based categorization. Cereb. Cortex 33, 10380–10400 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Ivanova, A. A. et al. The language network is recruited but not required for nonverbal event semantics. Neurobiol. Lang. 2, 176–201 (2021).

    Article  Google Scholar 

  113. Sueoka, Y. et al. The language network reliably ‘tracks’ naturalistic meaningful non-verbal stimuli. Neurobiol. Lang. (in the press).

  114. Pritchett, B. L., Hoeflin, C., Koldewyn, K., Dechter, E. & Fedorenko, E. High-level language processing regions are not engaged in action observation or imitation. J. Neurophysiol. 120, 2555–2570 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Deen, B. & Freiwald, W. A. Parallel systems for social and spatial reasoning within the cortical apex. Preprint at bioRxiv https://doi.org/10.1101/2021.09.23.461550 (2022).

  116. Jouravlev, O. et al. Speech-accompanying gestures are not processed by the language-processing mechanisms. Neuropsychologia 132, 107132 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Koster-Hale, J. & Saxe, R. Theory of mind brain regions are sensitive to the content, not the structural complexity, of belief attributions. In Proc. Annual Meeting of the Cognitive Science Society 33 3356–3361 (2011).

    Google Scholar 

  118. Shain, C., Paunov, A., Chen, X., Lipkin, B. & Fedorenko, E. No evidence of theory of mind reasoning in the human language network. Cereb. Cortex 33, 6299–6319 (2022).

    Article  PubMed Central  Google Scholar 

  119. Petersen, S. E., Fox, P. T., Snyder, A. Z. & Raichle, M. E. Activation of extrastriate and frontal cortical areas by visual words and word-like stimuli. Science 249, 1041–1044 (1990).

    Article  CAS  PubMed  Google Scholar 

  120. Noppeney, U. & Price, C. J. Retrieval of abstract semantics. Neuroimage 22, 164–170 (2004).

    Article  PubMed  Google Scholar 

  121. Varley, R. A., Klessinger, N. J., Romanowski, C. A. & Siegal, M. Agrammatic but numerate. Proc. Natl Acad. Sci. USA 102, 3519–3524 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Benn, Y. et al. Differentiating core and co-opted mechanisms in calculation: the neuroimaging of calculation in aphasia. Brain Cogn. 82, 254–264 (2013).

    Article  PubMed  Google Scholar 

  123. Varley, R. in Language and Thought: Interdisciplinary Themes (eds Boucher, J. & Carruthers, P.) 128–145 (Cambridge Univ. Press, 1998).

  124. Varley, R. & Siegal, M. Evidence for cognition without grammar from causal reasoning and ‘theory of mind’ in an agrammatic aphasic patient. Curr. Biol. 10, 723–726 (2000).

    Article  CAS  PubMed  Google Scholar 

  125. Lecours, A. & Joanette, Y. Linguistic and other psychological aspects of paroxysmal aphasia. Brain Lang. 10, 1–23 (1980).

    Article  CAS  PubMed  Google Scholar 

  126. Varley, R., Siegal, M. & Want, S. C. Severe impairment in grammar does not preclude theory of mind. Neurocase 7, 489–493 (2001).

    Article  CAS  PubMed  Google Scholar 

  127. Apperly, I. A., Samson, D., Carroll, N., Hussain, S. & Humphreys, G. Intact first- and second-order false belief reasoning in a patient with severely impaired grammar. Soc. Neurosci. 1, 334–348 (2006).

    Article  PubMed  Google Scholar 

  128. Siegal, M. & Varley, R. Aphasia, language, and theory of mind. Soc. Neurosci. 1, 167–174 (2006).

    Article  PubMed  Google Scholar 

  129. Baldo, J. et al. Is problem solving dependent on language? Brain Lang. 92, 240–250 (2005).

    Article  PubMed  Google Scholar 

  130. Baldo, J. V. & Dronkers, N. F. Neural correlates of arithmetic and language comprehension: a common substrate? Neuropsychologia 45, 229–235 (2007).

    Article  PubMed  Google Scholar 

  131. Fedorenko, E. & Blank, I. Broca’s area is not a natural kind. Trends Cogn. Sci. 24, 270–284 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  132. DiNicola, L. M., Sun, W. & Buckner, R. L. Side-by-side regions in dorsolateral prefrontal cortex estimated within the individual respond differentially to domain-specific and domain-flexible processes. J. Neurophysiol. 130, 1602–1615 (2023).

    Article  PubMed  Google Scholar 

  133. Friederici, A. D. The cortical language circuit: from auditory perception to sentence comprehension. Trends Cogn. Sci. 16, 262–268 (2012).

    Article  PubMed  Google Scholar 

  134. Price, C. J. A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. Neuroimage 62, 816–847 (2012).

    Article  PubMed  Google Scholar 

  135. Hagoort, P. The neurobiology of language beyond single-word processing. Science 366, 55–58 (2019).

    Article  CAS  PubMed  Google Scholar 

  136. Pylkkänen, L. The neural basis of combinatory syntax and semantics. Science 366, 62–66 (2019).

    Article  PubMed  Google Scholar 

  137. Hickok, G. & Poeppel, D. The cortical organization of speech processing. Nat. Rev. Neurosci. 8, 393–402 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Bornkessel-Schlesewsky, I., Schlesewsky, M., Small, S. L. & Rauschecker, J. P. Neurobiological roots of language in primate audition: common computational properties. Trends Cogn. Sci. 19, 142–150 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Bozic, M., Tyler, L. K., Ives, D. T., Randall, B. & Marslen-Wilson, W. D. Bihemispheric foundations for human speech comprehension. Proc. Natl Acad. Sci. USA 107, 17439–17444 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Snijders, T. M. et al. Retrieval and unification of syntactic structure in sentence comprehension: an fMRI study using word-category ambiguity. Cereb. Cortex 19, 1493–1503 (2009).

    Article  PubMed  Google Scholar 

  141. Pallier, C., Devauchelle, A. D. & Dehaene, S. Cortical representation of the constituent structure of sentences. Proc. Natl Acad. Sci. USA 108, 2522–2527 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lopopolo, A., Frank, S. L., Bosch, A. & Willems, R. M. Using stochastic language models (SLM) to map lexical, syntactic, and phonological information processing in the brain. PLoS One 12, 0177794 (2017).

    Article  Google Scholar 

  143. Shain, C., Blank, I., Van Schijndel, M., Schuler, W. & Fedorenko, E. fMRI reveals language-specific predictive coding during naturalistic sentence comprehension. Neuropsychologia 138, 107307 (2020).

    Article  PubMed  Google Scholar 

  144. Heilbron, M., Armeni, K., Schoffelen, J. M., Hagoort, P. & Lange, F. P. A hierarchy of linguistic predictions during natural language comprehension. Proc. Natl Acad. Sci. USA 119, 2201968119 (2022).

    Article  Google Scholar 

  145. Ben-Shachar, M., Hendler, T., Kahn, I., Ben-Bashat, D. & Grodzinsky, Y. The neural reality of syntactic transformations: evidence from functional magnetic resonance imaging. Psychol. Sci. 14, 433–440 (2003).

    Article  PubMed  Google Scholar 

  146. Constable, R. T. et al. Sentence complexity and input modality effects in sentence comprehension: an fMRI study. Neuroimage 22, 11–21 (2004).

    Article  PubMed  Google Scholar 

  147. Shain, C. et al. Graded sensitivity to structure and meaning throughout the human language network. J. Cogn. Neurosci. (in the press).

  148. Fedorenko, E., Blank, I. A., Siegelman, M. & Mineroff, Z. Lack of selectivity for syntax relative to word meanings throughout the language network. Cognition 203, 104348 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Rodd, J. M., Longe, O. A., Randall, B. & Tyler, L. K. The functional organisation of the fronto-temporal language system: evidence from syntactic and semantic ambiguity. Neuropsychologia 48, 1324–1335 (2010).

    Article  PubMed  Google Scholar 

  150. Rodd, J. M., Vitello, S., Woollams, A. M. & Adank, P. Localising semantic and syntactic processing in spoken and written language comprehension: an activation likelihood estimation meta-analysis. Brain Lang. 141, 89–102 (2015).

    Article  PubMed  Google Scholar 

  151. Grodzinsky, Y. & Santi, A. The battle for Broca’s region. Trends Cogn. Sci. 12, 474–480 (2008).

    Article  PubMed  Google Scholar 

  152. Baggio, G. & Hagoort, P. The balance between memory and unification in semantics: a dynamic account of the N400. Lang. Cogn. Process. 26, 1338–1367 (2011).

    Article  Google Scholar 

  153. Tyler, L. K. et al. Left inferior frontal cortex and syntax: function, structure and behaviour in patients with left hemisphere damage. Brain 134, 415–431 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Fedorenko, E., Nieto-Castañon, A. & Kanwisher, N. Lexical and syntactic representations in the brain: an fMRI investigation with multi-voxel pattern analyses. Neuropsychologia 50, 499–513 (2012).

    Article  PubMed  Google Scholar 

  155. Fedorenko, E. et al. Neural correlate of the construction of sentence meaning. Proc. Natl Acad. Sci. USA 113, 6256–6262 (2016).

    Article  Google Scholar 

  156. Woolnough, O. et al. Spatiotemporally distributed frontotemporal networks for sentence reading. Proc. Natl Acad. Sci. USA 120, 2300252120 (2023).

    Article  Google Scholar 

  157. Sag, I. A., Wasow, T. & Bender, E. M. Syntactic Theory: A Formal Introduction Vol. 92 (Center for the Study of Language and Information, 1999).

  158. Schabes, Y. & Joshi, A. K. in Current Issues in Parsing Technology (ed. Tomita, M.) 25–47 (Springer, 1991).

  159. Lerner, Y., Honey, C. J., Silbert, L. J. & Hasson, U. Topographic mapping of a hierarchy of temporal receptive windows using a narrated story. J. Neurosci. 31, 2906–2915 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Yeshurun, Y., Nguyen, M. & Hasson, U. Amplification of local changes along the timescale processing hierarchy. Proc. Natl Acad. Sci. USA 114, 9475–9480 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Blank, I. A. & Fedorenko, E. No evidence for differences among language regions in their temporal receptive windows. Neuroimage 219, 116925 (2020).

    Article  PubMed  Google Scholar 

  162. Jacoby, N. & Fedorenko, E. Discourse-level comprehension engages medial frontal theory of mind brain regions even for expository texts. Lang. Cogn. Neurosci. 35, 780–796 (2020).

    Article  PubMed  Google Scholar 

  163. Friederici, A. D. The brain basis of language processing: from structure to function. Physiol. Rev. 91, 1357–1392 (2011).

    Article  PubMed  Google Scholar 

  164. Dapretto, M. & Bookheimer, S. Y. Form and content: dissociating syntax and semantics in sentence comprehension. Neuron 24, 427–432 (1999).

    Article  CAS  PubMed  Google Scholar 

  165. Vigneau, M. et al. Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing. Neuroimage 30, 1414–1432 (2006).

    Article  CAS  PubMed  Google Scholar 

  166. Price, C. J. The anatomy of language: a review of 100 fMRI studies published in 2009. Ann. N. Y. Acad. Sci. 1191, 62–88 (2010).

    Article  PubMed  Google Scholar 

  167. Hagoort, P. & Indefrey, P. The neurobiology of language beyond single words. Annu. Rev. Neurosci. 37, 347–362 (2014).

    Article  CAS  PubMed  Google Scholar 

  168. Dronkers, N. F., Wilkins, D. P., Van Valin, R. D., Redfern, B. B. & Jaeger, J. J. Lesion analysis of the brain areas involved in language comprehension. Cognition 92, 145–177 (2004).

    Article  PubMed  Google Scholar 

  169. Mesulam, M.-M. et al. Primary progressive aphasia and the evolving neurology of the language network. Nat. Rev. Neurol. 10, 554–569 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Gorno‐Tempini, M. L. et al. Cognition and anatomy in three variants of primary progressive aphasia. Ann. Neurol. 55, 335–346 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Gough, P. M., Nobre, A. C. & Devlin, J. T. Dissociating linguistic processes in the left inferior frontal cortex with transcranial magnetic stimulation. J. Neurosci. 25, 8010–8016 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Hartwigsen, G. et al. Dissociating parieto-frontal networks for phonological and semantic word decisions: a condition-and-perturb TMS study. Cereb. Cortex 26, 2590–2601 (2016).

    Article  PubMed  Google Scholar 

  173. Havas, V. et al. Electrical stimulation mapping of nouns and verbs in Broca’s area. Brain Lang. 145–146, 53–63 (2015).

    Article  PubMed  Google Scholar 

  174. Sierpowska, J. et al. Morphological derivation overflow as a result of disruption of the left frontal aslant white matter tract. Brain Lang. 142, 54–64 (2015).

    Article  PubMed  Google Scholar 

  175. Chang, E. F., Kurteff, G. & Wilson, S. M. Selective interference with syntactic encoding during sentence production by direct electrocortical stimulation of the inferior frontal gyrus. J. Cogn. Neurosci. 30, 411–420 (2018).

    Article  PubMed  Google Scholar 

  176. Dragoy, O. et al. Functional linguistic specificity of the left frontal aslant tract for spontaneous speech fluency: evidence from intraoperative language mapping. Brain Lang. 208, 104836 (2020).

    Article  PubMed  Google Scholar 

  177. Kidd, E., Donnelly, S. & Christiansen, M. H. Individual differences in language acquisition and processing. Trends Cogn. Sci. 22, 154–169 (2018).

    Article  PubMed  Google Scholar 

  178. Caramazza, A. & Hillis, A. E. Lexical organization of nouns and verbs in the brain. Nature 349, 788–790 (1991).

    Article  CAS  PubMed  Google Scholar 

  179. Shapiro, K., Shelton, J. & Caramazza, A. Grammatical class in lexical production and morphological processing: evidence from a case of fluent aphasia. Cogn. Neuropsychol. 17, 665–682 (2000).

    Article  CAS  PubMed  Google Scholar 

  180. Berndt, R. S. & Caramazza, A. A redefinition of the syndrome of Broca’s aphasia: implications for a neuropsychological model of language. Appl. Psycholinguist. 1, 225–278 (1980).

    Article  Google Scholar 

  181. Friedmann, N. & Grodzinsky, Y. Tense and agreement in agrammatic production: pruning the syntactic tree. Brain Lang. 56, 397–425 (1997).

    Article  CAS  PubMed  Google Scholar 

  182. Linebarger, M. C., Schwartz, M. F. & Saffran, E. M. Sensitivity to grammatical structure in so-called agrammatic aphasics. Cognition 13, 361–392 (1983).

    Article  CAS  PubMed  Google Scholar 

  183. Bates, J. C. & Goodman, E. On the inseparability of grammar and the lexicon: evidence from acquisition, aphasia and real-time processing. Lang. Cogn. Process. 12, 507–584 (1997).

    Article  Google Scholar 

  184. Caplan, D., Hildebrandt, N. & Makris, N. Location of lesions in stroke patients with deficits in syntactic processing in sentence comprehension. Brain 119, 933–949 (1996).

    Article  PubMed  Google Scholar 

  185. Fedorenko, E., Ryskin, R. & Gibson, E. Agrammatic output in non-fluent, including Broca’s, aphasia as a rational behavior. Aphasiology 37, 1981–2000 (2023).

    Article  PubMed  Google Scholar 

  186. Brodbeck, C. et al. Parallel processing in speech perception with local and global representations of linguistic context. eLife 11, e72056 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Tuckute, G. et al. Driving and suppressing the human language network using large language models. Nat. Hum. Behav. https://doi.org/10.1038/s41562-023-01783-7 (2024).

  188. Amit, E., Hoeflin, C., Hamzah, N. & Fedorenko, E. An asymmetrical relationship between verbal and visual thinking: converging evidence from behavior and fMRI. Neuroimage 152, 619–627 (2017).

    Article  PubMed  Google Scholar 

  189. Shain, C., Blank, I. A., Fedorenko, E., Gibson, E. & Schuler, W. Robust effects of working memory demand during naturalistic language comprehension in language-selective cortex. J. Neurosci. 42, 7412–7430 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Nieuwenhuis, S., Forstmann, B. U. & Wagenmakers, E.-J. Erroneous analyses of interactions in neuroscience: a problem of significance. Nat. Neurosci. 14, 1105–1107 (2011).

    Article  CAS  PubMed  Google Scholar 

  191. Caramazza, A. & Coltheart, M. Cognitive neuropsychology twenty years on. Cogn. Neuropsychol. 23, 3–12 (2006).

    Article  PubMed  Google Scholar 

  192. Poldrack, R. A. et al. Scanning the horizon: towards transparent and reproducible neuroimaging research. Nat. Rev. Neurosci. 18, 115–126 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Jain, S. & Huth, A. G. in Advances in Neural Information Processing Systems Vol. 31 (eds Bengio, S. et al.) 1–10 (2018).

  194. Schrimpf, M. et al. The neural architecture of language: integrative modeling converges on predictive processing. Proc. Natl Acad. Sci. USA 118, 2105646118 (2021).

    Article  Google Scholar 

  195. Caucheteux, C., Gramfort, A. & King, J.-R. Deep language algorithms predict semantic comprehension from brain activity. Sci. Rep. 12, 16327 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Goldstein, A. et al. Shared computational principles for language processing in humans and deep language models. Nat. Neurosci. 25, 369–380 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Regev, T. I. et al. Intracranial recordings reveal three distinct neural response patterns in the language network. Preprint at bioRxiv https://doi.org/10.1101/2022.12.30.522216 (2022).

  198. Hasson, U., Yang, E., Vallines, I., Heeger, D. J. & Rubin, N. A hierarchy of temporal receptive windows in human cortex. J. Neurosci. 28, 2539–2550 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Jain, S. et al. Interpretable multi-timescale models for predicting fMRI responses to continuous natural speech. Adv. Neural Inf. Process. Syst. 33, 13738–13749 (2020).

    Google Scholar 

  200. Desbordes, T. et al. Dimensionality and ramping: signatures of sentence integration in the dynamics of brains and deep language models. J. Neurosci. 43, 5350–5364 (2023).

    Article  Google Scholar 

  201. Caucheteux, C., Gramfort, A. & King, J. R. Evidence of a predictive coding hierarchy in the human brain listening to speech. Nat. Hum. Behav. 7, 430–441 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Langacker, R. W. Foundations of Cognitive Grammar (Stanford Univ. Press, 1987).

  203. Bybee, J. Language, Usage and Cognition (Cambridge Univ. Press, 2010).

  204. Norman-Haignere, S., Kanwisher, N. G. & McDermott, J. H. Distinct cortical pathways for music and speech revealed by hypothesis-free voxel decomposition. Neuron 88, 1281–1296 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Boebinger, D., Norman-Haignere, S. V., McDermott, J. H. & Kanwisher, N. Music-selective neural populations arise without musical training. J. Neurophysiol. 125, 2237–2263 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Baker, C. I. et al. Visual word processing and experiential origins of functional selectivity in human extrastriate cortex. Proc. Natl Acad. Sci. USA 104, 9087–9092 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Hamamé, C. M. et al. Dejerine’s reading area revisited with intracranial EEG: selective responses to letter strings. Neurology 80, 602–603 (2013).

    Article  PubMed  Google Scholar 

  208. Flinker, A., Chang, E. F., Barbaro, N. M., Berger, M. S. & Knight, R. T. Sub-centimeter language organization in the human temporal lobe. Brain Lang. 117, 103–109 (2011).

    Article  CAS  PubMed  Google Scholar 

  209. Cibelli, E. S., Leonard, M. K., Johnson, K. & Chang, E. F. The influence of lexical statistics on temporal lobe cortical dynamics during spoken word listening. Brain Lang. 147, 66–75 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Leonard, M. K., Baud, M. O., Sjerps, M. J. & Chang, E. F. Perceptual restoration of masked speech in human cortex. Nat. Commun. 7, 13619 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Keshishian, M. et al. Joint, distributed and hierarchically organized encoding of linguistic features in the human auditory cortex. Nat. Hum. Behav. 7, 740–753 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Scott, S. K., Blank, C. C., Rosen, S. & Wise, R. J. Identification of a pathway for intelligible speech in the left temporal lobe. Brain 123, 2400–2406 (2000).

    Article  PubMed  Google Scholar 

  213. Mesgarani, N., Cheung, C., Johnson, K. & Chang, E. F. Phonetic feature encoding in human superior temporal gyrus. Science 343, 1006–1010 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Price, C., Thierry, G. & Griffiths, T. Speech-specific auditory processing: where is it? Trends Cogn. Sci. 9, 271–276 (2005).

    Article  PubMed  Google Scholar 

  215. Leaver, A. M. & Rauschecker, J. P. Cortical representation of natural complex sounds: effects of acoustic features and auditory object category. J. Neurosci. 30, 7604–7612 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Norman-Haignere, S. V. et al. A neural population selective for song in human auditory cortex. Curr. Biol. 32, 1470–1484.e12 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Leonard, M. K. et al. Large-scale single-neuron speech sound encoding across the depth of human cortex. Nature 626, 593–602 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Oganian, Y., Bhaya-Grossman, I., Johnson, K. & Chang, E. F. Vowel and formant representation in the human auditory speech cortex. Neuron 111, 2105–2118.e4 (2023).

    Article  CAS  PubMed  Google Scholar 

  219. Broca, P. Remarques sur le siège de la faculté du langage articulé, suivies d’une observation d’aphémie (perte de la parole) [French]. Bull. de. la. Soci.été d’anatomie 6, 330–357 (1861).

    Google Scholar 

  220. Tremblay, P. & Dick, A. S. Broca and Wernicke are dead, or moving past the classic model of language neurobiology. Brain Lang. 162, 60–71 (2016).

    Article  PubMed  Google Scholar 

  221. Hillis, A. E. et al. Re‐examining the brain regions crucial for orchestrating speech articulation. Brain 127, 1479–1487 (2004).

    Article  PubMed  Google Scholar 

  222. Flinker, A. et al. Redefining the role of Broca’s area in speech. Proc. Natl Acad. Sci. USA 112, 2871–2875 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Basilakos, A., Smith, K. G., Fillmore, P., Fridriksson, J. & Fedorenko, E. Functional characterization of the human speech articulation network. Cereb. Cortex 28, 1816–1830 (2018).

    Article  PubMed  Google Scholar 

  224. Long, M. A. et al. Functional segregation of cortical regions underlying speech timing and articulation. Neuron 89, 1187–1193 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Dronkers, N. F. A new brain region for coordinating speech articulation. Nature 384, 159–161 (1996).

    Article  CAS  PubMed  Google Scholar 

  226. Richardson, J. D., Fillmore, P., Rorden, C., Lapointe, L. L. & Fridriksson, J. Re-establishing Broca’s initial findings. Brain Lang. 123, 125–130 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Fedorenko, E., Fillmore, P., Smith, K., Bonilha, L. & Fridriksson, J. The superior precentral gyrus of the insula does not appear to be functionally specialized for articulation. J. Neurophysiol. 113, 2376–2382 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Wolpert, D. M., Goodbody, S. J. & Husain, M. Maintaining internal representations: the role of the human superior parietal lobe. Nat. Neurosci. 1, 529–533 (1998).

    Article  CAS  PubMed  Google Scholar 

  229. Gale, D. J., Flanagan, J. R. & Gallivan, J. P. Human somatosensory cortex is modulated during motor planning. J. Neurosci. 41, 5909–5922 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Ariani, G., Pruszynski, J. A. & Diedrichsen, J. Motor planning brings human primary somatosensory cortex into action-specific preparatory states. eLife 11, e69517 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Segawa, J. A., Tourville, J. A., Beal, D. S. & Guenther, F. H. The neural correlates of speech motor sequence learning. J. Cogn. Neurosci. 27, 819–831 (2015).

    Article  PubMed  Google Scholar 

  232. Penfield, W. & Rasmussen, T. The Cerebral Cortex of Man; a Clinical Study of Localization of Function (Macmillan, 1950).

  233. Bouchard, K. E., Mesgarani, N., Johnson, K. & Chang, E. F. Functional organization of human sensorimotor cortex for speech articulation. Nature 495, 327–332 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Darley, F. L., Aronson, A. E. & Brown, J. R. Differential diagnostic patterns of dysarthria. J. Speech Hear. Res. 12, 246–269 (1969).

    Article  CAS  PubMed  Google Scholar 

  235. Mackenzie, C. Dysarthria in stroke: a narrative review of its description and the outcome of intervention. Int. J. Speech Lang. Pathol. 13, 125–136 (2011).

    Article  PubMed  Google Scholar 

  236. Eberhard, D. M., Simons, G. F. & Fennig, C. D. Ethnologue: Languages of the World (SIL International, 2023).

  237. Dejerine, J. Sur un cas de cécité verbale avec agraphie suivi d’autopsie [French]. Mémoires de. la. Soci.été de. Biologie 3, 197–201 (1891).

    Google Scholar 

  238. McCandliss, B. D., Cohen, L. & Dehaene, S. The visual word form area: expertise for reading in the fusiform gyrus. Trends Cogn. Sci. 7, 293–299 (2003).

    Article  PubMed  Google Scholar 

  239. Glezer, L. S. & Riesenhuber, M. Individual variability in location impacts orthographic selectivity in the “visual word form area”. J. Neurosci. 33, 11221–11226 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Saygin, Z. M. et al. Connectivity precedes function in the development of the visual word form area. Nat. Neurosci. 19, 1250–1255 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Hirshorn, E. A. et al. Decoding and disrupting left midfusiform gyrus activity during word reading. Proc. Natl Acad. Sci. USA 113, 8162–8167 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Tainturier, M. J. & Rapp, B. in Handbook of Cognitive Neuropsychology (ed. Rapp, B.) 263–289 (2015).

  243. Longcamp, M. et al. Functional specificity in the motor system: evidence from coupled fMRI and kinematic recordings during letter and digit writing. Hum. Brain Mapp. 35, 6077–6087 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Baumann, A. et al. Neural correlates of executed compared to imagined writing and drawing movements: a functional magnetic resonance imaging study. Front. Hum. Neurosci. 16, 829576 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  245. Nespoulous, J. L. et al. Agrammatism in sentence production without comprehension deficits: reduced availability of syntactic structures and/or of grammatical morphemes? A case study. Brain Lang. 33, 273–295 (1988).

    Article  CAS  PubMed  Google Scholar 

  246. Levy, D. F. et al. Apraxia of speech with phonological alexia and agraphia following resection of the left middle precentral gyrus: illustrative case. J. Neurosurg. Case Lessons 5, CASE22504 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Roux, F. E. et al. The graphemic/motor frontal area Exner’s area revisited. Ann. Neurol. 66, 537–545 (2009).

    Article  PubMed  Google Scholar 

  248. Roux, F. E., Draper, L., Köpke, B. & Démonet, J. F. Who actually read Exner? Returning to the source of the frontal ‘writing centre’ hypothesis. Cortex 46, 1204–1210 (2010).

    Article  PubMed  Google Scholar 

  249. Warren, R. M. Perceptual restoration of missing speech sounds. Science 167, 392–393 (1970).

    Article  CAS  PubMed  Google Scholar 

  250. Ganong, W. F. Phonetic categorization in auditory word perception. J. Exp. Psychol. Hum. Percept. Perform. 6, 110–125 (1980).

    Article  PubMed  Google Scholar 

  251. Samuel, A. G. Phonemic restoration: insights from a new methodology. J. Exp. Psychol. Gen. 110, 474–494 (1981).

    Article  CAS  PubMed  Google Scholar 

  252. Cogan, G. B. et al. Sensory-motor transformations for speech occur bilaterally. Nature 507, 94–98 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Mahowald, K. et al. Dissociating language and thought in large language models. Trends Cogn. Sci. https://doi.org/10.1016/j.tics.2024.01.011 (2024).

  254. Duncan, J. & Owen, A. M. Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci. 23, 475–483 (2000).

    Article  CAS  PubMed  Google Scholar 

  255. Cole, M. W. & Schneider, W. The cognitive control network: integrated cortical regions with dissociable functions. Neuroimage 37, 343–360 (2007).

    Article  PubMed  Google Scholar 

  256. Fedorenko, E., Duncan, J. & Kanwisher, N. Broad domain generality in focal regions of frontal and parietal cortex. Proc. Natl Acad. Sci. USA 110, 16616–16621 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Hugdahl, K., Raichle, M. E., Mitra, A. & Specht, K. On the existence of a generalized non-specific task-dependent network. Front. Hum. Neurosci. 9, 430 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  258. Shashidhara, S., Spronkers, F. S. & Erez, Y. Individual-subject functional localization increases univariate activation but not multivariate pattern discriminability in the “multiple-demand” frontoparietal network. J. Cogn. Neurosci. 32, 1348–1368 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  259. Assem, M., Glasser, M. F., Essen, D. C. & Duncan, J. A domain-general cognitive core defined in multimodally parcellated human cortex. Cereb. Cortex 30, 4361–4380 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  260. Assem, M., Blank, I. A., Mineroff, Z., Ademoğlu, A. & Fedorenko, E. Activity in the fronto-parietal multiple-demand network is robustly associated with individual differences in working memory and fluid intelligence. Cortex 131, 1–16 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  261. Duncan, J. Disorganisation of behaviour after frontal lobe damage. Cogn. Neuropsychol. 3, 271–290 (1986).

    Article  Google Scholar 

  262. Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001).

    Article  CAS  PubMed  Google Scholar 

  263. Woolgar, A. et al. Fluid intelligence loss linked to restricted regions of damage within frontal and parietal cortex. Proc. Natl Acad. Sci. USA 107, 14899–14902 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Gläscher, J. et al. Distributed neural system for general intelligence revealed by lesion mapping. Proc. Natl Acad. Sci. USA 107, 4705–4709 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  265. Mineroff, Z., Blank, I. A., Mahowald, K. & Fedorenko, E. A robust dissociation among the language, multiple demand, and default mode networks: evidence from inter-region correlations in effect size. Neuropsychologia 119, 501–511 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  266. Woolgar, A., Duncan, J., Manes, F. & Fedorenko, E. The multiple-demand system but not the language system supports fluid intelligence. Nat. Hum. Behav. 2, 200–204 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  267. MacGregor, L. J. et al. Causal contributions of the domain-general (multiple demand) and the language-selective brain networks to perceptual and semantic challenges in speech comprehension. Neurobiol. Lang. 3, 665–698 (2022).

    Article  Google Scholar 

  268. Wehbe, L. et al. Incremental language comprehension difficulty predicts activity in the language network but not the multiple demand network. Cereb. Cortex 31, 4006–4023 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  269. Wild, C. J. et al. Effortful listening: the processing of degraded speech depends critically on attention. J. Neurosci. 32, 14010–14021 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Sherafati, A. et al. Prefrontal cortex supports speech perception in listeners with cochlear implants. eLife 11, 75323 (2022).

    Article  Google Scholar 

  271. Brownsett, S. L. E. et al. Cognitive control and its impact on recovery from aphasic stroke. Brain 137, 242–254 (2014).

    Article  PubMed  Google Scholar 

  272. Geranmayeh, F., Wise, R. J. S., Mehta, A. & Leech, R. Overlapping networks engaged during spoken language production and its cognitive control. J. Neurosci. 34, 8728–8740 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Hartwigsen, G. & Saur, D. Neuroimaging of stroke recovery from aphasia — insights into plasticity of the human language network. Neuroimage 190, 14–31 (2019).

    Article  PubMed  Google Scholar 

  274. Turkeltaub, P. E. A taxonomy of brain–behavior relationships after stroke. J. Speech Lang. Hear. Res. 62, 3907–3922 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  275. Stefaniak, J. D., Halai, A. D. & Lambon Ralph, M. A. The neural and neurocomputational bases of recovery from post-stroke aphasia. Nat. Rev. Neurol. 16, 43–55 (2020).

    Article  PubMed  Google Scholar 

  276. Wilson, S. M. & Schneck, S. M. Neuroplasticity in post-stroke aphasia: a systematic review and meta-analysis of functional imaging studies of reorganization of language processing. Neurobiol. Lang. 2, 22–82 (2021).

    Article  Google Scholar 

  277. De Clercq, P., Gonsalves, A. R., Gerrits, R. & Vandermosten, M. Individualized functional localization of the language and multiple demand network in chronic post-stroke aphasia. Preprint at bioRxiv https://doi.org/10.1101/2024.01.12.575350 (2024).

  278. Billot, A. Neuroplasticity Mechanisms in Post-stroke Aphasia: Investigating the Differential Role of the Domain-general Multiple Demand and Language Networks. Ph.D. Thesis, Boston Univ. (2023).

  279. Gallagher, H. L. et al. Reading the mind in cartoons and stories: an fMRI study of ‘theory of mind’ in verbal and nonverbal tasks. Neuropsychologia 38, 11–21 (2000).

    Article  CAS  PubMed  Google Scholar 

  280. Saxe, R. & Powell, L. J. It’s the thought that counts: specific brain regions for one component of theory of mind. Psychol. Sci. 17, 692–699 (2006).

    Article  PubMed  Google Scholar 

  281. Jacoby, N., Bruneau, E., Koster-Hale, J. & Saxe, R. Localizing pain matrix and theory of mind networks with both verbal and non-verbal stimuli. Neuroimage 126, 39–48 (2016).

    Article  PubMed  Google Scholar 

  282. Vogeley, K. et al. Mind reading: neural mechanisms of theory of mind and self-perspective. Neuroimage 14, 170–181 (2001).

    Article  CAS  PubMed  Google Scholar 

  283. Ruby, P. & Decety, J. What you believe versus what you think they believe: a neuroimaging study of conceptual perspective‐taking. Eur. J. Neurosci. 17, 2475–2480 (2003).

    Article  PubMed  Google Scholar 

  284. Saxe, R., Schulz, L. E. & Jiang, Y. V. Reading minds versus following rules: dissociating theory of mind and executive control in the brain. Soc. Neurosci. 1, 284–298 (2006).

    Article  PubMed  Google Scholar 

  285. Koster-Hale, J. & Saxe, R. Theory of mind: a neural prediction problem. Neuron 79, 836–848 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Bruneau, E. G., Pluta, A. & Saxe, R. Distinct roles of the ‘shared pain’ and ‘theory of mind’ networks in processing others’ emotional suffering. Neuropsychologia 50, 219–231 (2012).

    Article  PubMed  Google Scholar 

  287. Willems, R. M., Benn, Y., Hagoort, P., Toni, I. & Varley, R. Communicating without a functioning language system: implications for the role of language in mentalizing. Neuropsychologia 49, 3130–3135 (2011).

    Article  PubMed  Google Scholar 

  288. Dronkers, N. F., Ludy, C. A. & Redfern, B. B. Pragmatics in the absence of verbal language: descriptions of a severe aphasic and a language-deprived adult. J. Neurol. 11, 179–190 (1998).

    Google Scholar 

  289. Spotorno, N., Koun, E., Prado, J., Henst, J. B. & Noveck, I. A. Neural evidence that utterance-processing entails mentalizing: the case of irony. Neuroimage 63, 25–39 (2012).

    Article  PubMed  Google Scholar 

  290. van Ackeren, M. J., Casasanto, D., Bekkering, H., Hagoort, P. & Rueschemeyer, S.-A. Pragmatics in action: indirect requests engage Theory of Mind areas and the cortical motor network. J. Cogn. Neurosci. 24, 2237–2247 (2012).

    Article  PubMed  Google Scholar 

  291. Jang, G. et al. Everyday conversation requires cognitive inference: neural bases of comprehending implicated meanings in conversations. Neuroimage 81, 61–72 (2013).

    Article  PubMed  Google Scholar 

  292. Feng, W. et al. Effects of contextual relevance on pragmatic inference during conversation: an fMRI study. Brain Lang. 171, 52–61 (2017).

    Article  PubMed  Google Scholar 

  293. Hagoort, P. & Levinson, S. C. in The Cognitive Neurosciences (eds Gazzaniga, M. S. & Mangun, G. R.) 667–674 (MIT Press, 2014).

  294. Hauptman, M., Blank, I. & Fedorenko, E. Non-literal language processing is jointly supported by the language and theory of mind networks: evidence from a novel meta-analytic fMRI approach. Cortex 162, 96–114 (2023).

    Article  PubMed  Google Scholar 

  295. Ferstl, E. C. & von Cramon, D. Y. What does the frontomedian cortex contribute to language processing: coherence or theory of mind? Neuroimage 17, 1599–1612 (2002).

    Article  PubMed  Google Scholar 

  296. Buckner, R. L., Andrews-Hanna, J. R. & Schacter, D. L. The brain’s default network: anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci. 1124, 1–38 (2008).

    Article  PubMed  Google Scholar 

  297. Spreng, R. N. & Grady, C. L. Patterns of brain activity supporting autobiographical memory, prospection, and theory of mind, and their relationship to the default mode network. J. Cogn. Neurosci. 22, 1112–1123 (2010).

    Article  PubMed  Google Scholar 

  298. Mars, R. B. et al. On the relationship between the ‘default mode network’ and the ‘social brain’. Front. Hum. Neurosci. 6, 189 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  299. Braga, R. M. & Buckner, R. L. Parallel interdigitated distributed networks within the individual estimated by intrinsic functional connectivity. Neuron 95, 457–471.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. DiNicola, L. M., Braga, R. M. & Buckner, R. L. Parallel distributed networks dissociate episodic and social functions within the individual. J. Neurophysiol. 123, 1144–1179 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  301. Gusnard, D. A., Akbudak, E., Shulman, G. L. & Raichle, M. E. Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc. Natl Acad. Sci. USA 98, 4259–4264 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Buckner, R. L. & Carroll, D. C. Self-projection and the brain. Trends Cogn. Sci. 11, 49–57 (2007).

    Article  PubMed  Google Scholar 

  303. Hassabis, D. & Maguire, E. A. Deconstructing episodic memory with construction. Trends Cogn. Sci. 11, 299–306 (2007).

    Article  PubMed  Google Scholar 

  304. Chang, C. H., Nastase, S. A. & Hasson, U. Information flow across the cortical timescale hierarchy during narrative construction. Proc. Natl Acad. Sci. USA 119, 2209307119 (2022).

    Article  Google Scholar 

  305. Zadbood, A., Nastase, S., Chen, J., Norman, K. A. & Hasson, U. Neural representations of naturalistic events are updated as our understanding of the past changes. eLife 11, e79045 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Baldassano, C., Hasson, U. & Norman, K. A. Representation of real-world event schemas during narrative perception. J. Neurosci. 38, 9689–9699 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Baldassano, C. et al. Discovering event structure in continuous narrative perception and memory. Neuron 95, 709–721 5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Parvizi, J. et al. Altered sense of self during seizures in the posteromedial cortex. Proc. Natl Acad. Sci. USA 118, 2100522118 (2021).

    Article  Google Scholar 

  309. Philippi, C. L. et al. Lesion network mapping demonstrates that mind-wandering is associated with the default mode network. J. Neurosci. Res. 99, 361–373 (2021).

    Article  CAS  PubMed  Google Scholar 

  310. Ferstl, E. C., Neumann, J., Bogler, C. & von Cramon, D. Y. The extended language network: a meta-analysis of neuroimaging studies on text comprehension. Hum. Brain Mapp. 29, 581–593 (2008).

    Article  PubMed  Google Scholar 

  311. Simony, E. et al. Dynamic reconfiguration of the default mode network during narrative comprehension. Nat. Commun. 7, 12141 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Lenartowicz, A., Kalar, D. J., Congdon, E. & Poldrack, R. A. Towards an ontology of cognitive control. Top. Cogn. Sci. 2, 678–692 (2010).

    Article  PubMed  Google Scholar 

  313. Poldrack, R. A. et al. The cognitive atlas: toward a knowledge foundation for cognitive neuroscience. Front. Neuroinform. 5, 17 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  314. Kanwisher, N. Functional specificity in the human brain: a window into the functional architecture of the mind. Proc. Natl Acad. Sci. USA 107, 11163–11170 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Humphries, C., Binder, J. R., Medler, D. A. & Liebenthal, E. Time course of semantic processes during sentence comprehension: an fMRI study. Neuroimage 36, 924–932 (2007).

    Article  PubMed  Google Scholar 

  316. Lambon Ralph, M. A., Jefferies, E., Patterson, K. & Rogers, T. T. The neural and computational bases of semantic cognition. Nat. Rev. Neurosci. 18, 42–55 (2017).

    Article  Google Scholar 

  317. Matheson, H. E. & Barsalou, L. W. Embodiment and grounding in cognitive neuroscience. Stevens’ Handb. Exp. Psychol. Cogn. Neurosci. 3, 1–27 (2018).

    Google Scholar 

  318. Tanenhaus, M. K., Spivey-Knowlton, M. J., Eberhard, K. M. & Sedivy, J. C. Integration of visual and linguistic information in spoken language comprehension. Science 268, 1632–1634 (1995).

    Article  CAS  PubMed  Google Scholar 

  319. Ferreira, F. The misinterpretation of noncanonical sentences. Cogn. Psychol. 47, 164–203 (2003).

    Article  PubMed  Google Scholar 

  320. Hagoort, P., Hald, L., Bastiaansen, M. & Petersson, K. M. Integration of word meaning and world knowledge in language comprehension. Science 304, 438–441 (2004).

    Article  CAS  PubMed  Google Scholar 

  321. Van Berkum, J. J., Brink, D., Tesink, C. M., Kos, M. & Hagoort, P. The neural integration of speaker and message. J. Cogn. Neurosci. 20, 580–591 (2008).

    Article  PubMed  Google Scholar 

  322. Gibson, E., Bergen, L. & Piantadosi, S. Rational integration of noisy evidence and prior semantic expectations in sentence interpretation. Proc. Natl Acad. Sci. USA 110, 8051–8056 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Zhang, Y., Frassinelli, D., Tuomainen, J., Skipper, J. I. & Vigliocco, G. More than words: word predictability, prosody, gesture and mouth movements in natural language comprehension. Proc. R. Soc. B Biol. Sci. 288, 20210500 (2021).

    Article  Google Scholar 

  324. Elman, J. L. On the meaning of words and dinosaur bones: lexical knowledge without a lexicon. Cogn. Sci. 33, 547–582 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  325. Hasson, U., Egidi, G., Marelli, M. & Willems, R. M. Grounding the neurobiology of language in first principles: the necessity of non-language-centric explanations for language comprehension. Cognition 180, 135–157 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  326. Bedny, M. & Caramazza, A. Perception, action, and word meanings in the human brain: the case from action verbs. Ann. N. Y. Acad. Sci. 1224, 81–95 (2011).

    Article  PubMed  Google Scholar 

  327. Pereira, F., Gershman, S., Ritter, S. & Botvinick, M. A comparative evaluation of off-the-shelf distributed semantic representations for modelling behavioural data. Cogn. Neuropsychol. 33, 175–190 (2016).

    Article  PubMed  Google Scholar 

  328. Grand, G., Blank, I. A., Pereira, F. & Fedorenko, E. Semantic projection recovers rich human knowledge of multiple object features from word embeddings. Nat. Hum. Behav. 6, 975–987 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  329. Paulk, A. C. et al. Large-scale neural recordings with single neuron resolution using Neuropixels probes in human cortex. Nat. Neurosci. 25, 252–263 (2022).

    Article  CAS  PubMed  Google Scholar 

  330. Yamins, D. L. & DiCarlo, J. J. Using goal-driven deep learning models to understand sensory cortex. Nat. Neurosci. 19, 356–365 (2016).

    Article  CAS  PubMed  Google Scholar 

  331. Sussillo, D., Churchland, M. M., Kaufman, M. T. & Shenoy, K. V. A neural network that finds a naturalistic solution for the production of muscle activity. Nat. Neurosci. 18, 1025–1033 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Tuckute, G., Feather, J., Boebinger, D. & McDermott, J. H. Many but not all deep neural network audio models capture brain responses and exhibit correspondence between model stages and brain regions. PLoS Biol. 21, e3002366 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Tuckute, G., Kanwisher, N. & Fedorenko, E. Language in brains, minds, and machines. Annu. Rev. Neurosci. (in the press).

  334. Wong, L. et al. From word models to world models: translating from natural language to the probabilistic language of thought. Preprint at arXiv https://doi.org/10.48550/arXiv.2306.12672 (2023).

  335. Stager, C. L. & Werker, J. F. Infants listen for more phonetic detail in speech perception than in word-learning tasks. Nature 388, 381–382 (1997).

    Article  CAS  PubMed  Google Scholar 

  336. Werker, J. F. & Tees, R. C. Influences on infant speech processing: toward a new synthesis. Annu. Rev. Psychol. 50, 509–535 (1999).

    Article  CAS  PubMed  Google Scholar 

  337. Oller, D. K., Wieman, L. A., Doyle, W. J. & Ross, C. Infant babbling and speech. J. Child. Lang. 3, 1–11 (1976).

    Article  Google Scholar 

  338. Oller, D. K. in Child Phonology 1: Production (eds Yeni-Komshian G., Kavanagh J. & Ferguson C. A.) 93–1123 (Academic, 1980).

  339. Wellman, H. M., Cross, D. & Watson, J. Meta‐analysis of theory‐of‐mind development: the truth about false belief. Child. Dev. 72, 655–684 (2001).

    Article  CAS  PubMed  Google Scholar 

  340. Best, J. R. & Miller, P. H. A developmental perspective on executive function. Child. Dev. 81, 1641–1660 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  341. Fedorenko, E. & Varley, R. Language and thought are not the same thing: evidence from neuroimaging and neurological patients. Ann. N. Y. Acad. Sci. 1369, 132–153 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  342. Pontillo, D., Salverda, A. P. & Tanenhaus, M. K. in Proc. 37th Annual Meeting of the Cognitive Science Society (eds. Noelle, D. C. et al.) (Cognitive Science Society, 2015).

  343. Frank, M. C., Everett, D. L., Fedorenko, E. & Gibson, E. Number as a cognitive technology: evidence from Pirahã language and cognition. Cognition 108, 819–824 (2008).

    Article  PubMed  Google Scholar 

  344. Lupyan, G., Rakison, D. H. & McClelland, J. L. Language is not just for talking: redundant labels facilitate learning of novel categories. Psychol. Sci. 18, 1077–1083 (2007).

    Article  PubMed  Google Scholar 

  345. Brojde, C. L., Porter, C. & Colunga, E. Words can slow down category learning. Psychon. Bull. Rev. 18, 798–804 (2011).

    Article  PubMed  Google Scholar 

  346. Lupyan, G. & Casasanto, D. Meaningless words promote meaningful categorization. Lang. Cogn. 7, 167–193 (2015).

    Article  Google Scholar 

  347. Lupyan, G. & Mirman, D. Linking language and categorization: evidence from aphasia. Cortex 49, 1187–1194 (2013).

    Article  PubMed  Google Scholar 

  348. Sapir, E. Language: An Introduction to the Study of Speech (Harcourt, Brace & World, 1921).

  349. Carruthers, P. The cognitive functions of language. Behav. Brain Sci. 25, 657–725 (2002).

    Article  PubMed  Google Scholar 

  350. Brett, M., Johnsrude, I. S. & Owen, A. M. The problem of functional localization in the human brain. Nat. Rev. Neurosci. 3, 243–249 (2002).

    Article  CAS  PubMed  Google Scholar 

  351. Kanwisher, N., McDermott, J. & Chun, M. M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  352. Tootell, R. B. et al. Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J. Neurosci. 15, 3215–3230 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  353. Frost, M. A. & Goebel, R. Measuring structural–functional correspondence: spatial variability of specialised brain regions after macro-anatomical alignment. Neuroimage 59, 1369–1381 (2012).

    Article  PubMed  Google Scholar 

  354. Mueller, S. et al. Individual variability in functional connectivity architecture of the human brain. Neuron 77, 586–595 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. Haxby, J. V., Guntupalli, J. S., Nastase, S. A. & Feilong, M. Hyperalignment: modeling shared information encoded in idiosyncratic cortical topographies. eLife 9, e56601 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  356. Salvo, J. J., Holubecki, A. M. & Braga, R. M. Correspondence between functional connectivity and task-related activity patterns within the individual. Curr. Opin. Behav. Sci. 40, 178–188 (2021).

    Article  Google Scholar 

  357. Tsao, D. Y., Freiwald, W. A., Tootell, R. B. & Livingstone, M. S. A cortical region consisting entirely of face-selective cells. Science 311, 670–674 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  358. Bruffaerts, R. et al. Functional identification of language-responsive channels in individual participants in MEG investigations. Preprint at bioRxiv https://doi.org/10.1101/2023.03.23.533424 (2023).

  359. Liu, J., Harris, A. & Kanwisher, N. Stages of processing in face perception: an MEG study. Nat. Neurosci. 5, 910–916 (2002).

    Article  CAS  PubMed  Google Scholar 

  360. Poeppel, D., Emmorey, K., Hickok, G. & Pylkkänen, L. Towards a new neurobiology of language. J. Neurosci. 32, 14125–14131 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  361. Biswal, B., Zerrin Yetkin, F., Haughton, V. M. & Hyde, J. S. Functional connectivity in the motor cortex of resting human brain using echo‐planar MRI. Magn. Reson. Med. 34, 537–541 (1995).

    Article  CAS  PubMed  Google Scholar 

  362. Poldrack, R. A. & Yarkoni, T. From brain maps to cognitive ontologies: informatics and the search for mental structure. Annu. Rev. Psychol. 67, 587–612 (2016).

    Article  PubMed  Google Scholar 

  363. Tannen, D., Hamilton, H. E. & Schiffrin, D. The Handbook of Discourse Analysis (Wiley, 2015).

  364. Pessoa, L. The Entangled Brain (MIT Press, 2022).

  365. Buzsáki, G. The Brain from Inside Out (Oxford Univ. Press, 2019).

  366. Buzsáki, G. The brain–cognitive behavior problem: a retrospective. eNeuro 7, 0069–20 2020 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank T. Gibson, W. Freiwald and N. Kanwisher for comments on the earlier drafts of the manuscript; A. Fung and C. Casto for help with figures and the Open Science Framework (OSF) page; A. Flinker, M. Long and J. Li for consultations on the anatomical locations of some functional areas; S. Swords, N. Jhingan, H. S. Kim and G. Tuckute for help with references; J. Gallée for help with creating the stimuli for the Broca’s area localizer (Fig. 4c); and S. Nastase for insightful and constructive comments. E.F. was supported by National Institutes of Health (NIH) awards R01-DC016607, R01-DC016950 and U01-NS121471, and by research funds from the McGovern Institute for Brain Research, the Brain and Cognitive Sciences Department, the Simons Center for the Social Brain and MIT’s Quest for Intelligence. A.A.I. was supported by funds from MIT’s Quest for Intelligence. T.I.R. was supported by a fellowship from the Poitras Center for Psychiatric Disorders Research at the McGovern Institute.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Evelina Fedorenko.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks Rodrigo Braga, who co-reviewed with Joseph Salvo; Samuel Nastase; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Aphasia

Impairments in understanding and/or producing language as a result of brain damage (such as stroke or neural degeneration).

Apraxia of speech

Impairments in producing sounds, syllables and words because of neurological problems with speech motor planning; speech of individuals with apraxia contains sound distortions, groping for sounds and errors in stress or rhythm, but they do not have difficulties making non-speech oral-motor movements.

Causally important

For a particular function, if interfering with a neural unit’s (such as a cell or a brain area) activity or structural integrity leads to observable impairment of that function.

Compositional semantics

The system of relationships between phrases and sentences and meanings; a key principle of compositional semantics in natural language is that the meaning of a multi-word sequence (for example, a phrase) is determined by the meanings of the composite words and the syntactic rules that were used to combine those words.

Constructions

Learned pairings between a linguistic form and meaning; importantly, constructions encompass not only single morphemes and words but also multi-word sequences, which can correspond to complex meanings.

Contrast

A pair of conditions that differ in a critical (stimulus-related or task-related) feature of interest; localizers use a particular contrast to localize a brain area or areas that support some perceptual, motor or cognitive function.

Discourse

The system of relationships among clauses and sentences in multi-sentence sequences, including narratives and conversations.

Double dissociations

Complementary cases of selective deficits in two perceptual, motor or cognitive functions (for example, if in one individual, language is impaired but general reasoning is preserved, but in another individual language is preserved but reasoning is impaired); or selective relationships between two brain areas and two perceptual, motor or cognitive functions where brain area A supports function F1 but not function F2, and brain area B supports function F2 but not F1 (for example, damage to the language areas leads to difficulties in understanding and producing language but leaves abilities supported by the multiple demand network, such as executive abilities and formal reasoning abilities, unimpaired; by contrast, damage to the multiple demand network areas leads to difficulties with executive control and reasoning but leaves linguistic functions unimpaired).

Dysarthria of speech

Impairments in producing sounds, syllables and words because of weakening or improper coordination of the muscles of the articulatory organs (caused by brain or nerve damage); speech of individuals with dysarthria sounds slurred or mumbling and they also have difficulties in making non-speech oral-motor movements.

Functional connectivity

Correlation in activity patterns between different brain areas, often measured during naturalistic cognition paradigms.

Functional localization

An analytic approach that aggregates brain data from multiple participants while taking into account inter-individual differences in the precise locations of functional areas. This approach uses a localizer to find areas of interest within individual participants’ brains and then measures the response in these areas to some condition(s) of interest; group-level statistical comparisons are performed on the measures extracted from the individually identified areas, which circumvents the need to average brains.

Group-averaging

An analytic approach that aggregates brain data from multiple participants by averaging individual brain images projected into a common coordinate space; because functional areas vary in their precise locations across individuals, this approach leads to blurring and can generate misleading results.

Homotopic areas

Each brain area exists in two copies — one in each hemisphere; an area in one hemisphere that is the corresponding area in the other hemisphere (for example, the areas homotopic to the language areas are areas in the right hemisphere that correspond to the left-hemisphere language areas).

Language processing pipeline

A set of perceptual, motor and cognitive processes that jointly enable language comprehension or language production: in comprehension, the pipeline encompasses perceptual processing of linguistic inputs, mapping linguistic forms to meanings and integrating these meanings with preceding linguistic context and non-linguistic knowledge sources; in production, the pipeline encompasses the transformation of intended meanings into linguistic form, and planning and generating the physical output.

Lexical semantics

The system of relationships between word forms and word meanings.

Linguistic regularities

Structure, or regular patterns, in linguistic sequences; regular patterns characterize all levels of language, from sounds to words, to sentences, to connected discourses.

Meanings

The meanings of words and phrases (for example, the word ‘dog’ has meaning to an English speaker, whereas the word ‘chien’ (‘dog’ in French) or a non-word ‘xog’ does not have meaning to an English speaker, under typical circumstances); or a collection of associative, abstract and generalizable knowledge associated with a given cue, either linguistic or non-linguistic (for example, the word ‘dog’, a picture of a dog and the sound of a dog’s barking are all associated with a similar meaning, although different cues or contexts may make some aspects of the meaning more or less salient).

Modality-independent

If a brain area responds to stimuli across different input or output modalities (for example, spoken language, written language or signed language).

Morphology

The system of relationships among ‘morphemes’, which are the smallest meaning-bearing units in a language; morphemes can be complete words, such as ‘cat’, but also word parts, such as ‘-ful’ and ‘anti-’.

Naturalistic cognition paradigms

Paradigms that do not rely on controlled, experimenter-crafted conditions and contrasts but, instead, present rich naturalistic stimuli (such as movies or narratives) or feature open-ended designs, such as a resting state (task-free, stimulus-free periods during the study).

Phonology

The system of relationships among speech sounds in a language; the rules that govern the possible combinations and orderings of sounds are called phonotactics.

Single dissociation

A selective deficit in a perceptual, motor or cognitive function (for example, aphasia is a selective deficit in understanding or producing language); or a selective relationship between some brain area and a perceptual, motor or cognitive function (for example, brain damage to the language areas leads to aphasia but leaves other cognitive processes unimpaired).

Surface properties of linguistic stimuli

Properties that are tied to the form of a linguistic stimulus; the form is determined by the input or output modality (for example, for speech they have to do with the speech sounds, and for written language they have to do with the visual shapes of letters).

Syntax

The system of constraints on how words can combine into phrases and sentences to create complex meanings.

Tasks

What participants are asked to do during an experiment (for example, passive reading or answering comprehension questions).

Theory of mind

The ability to understand and take into account another individual’s mental state.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorenko, E., Ivanova, A.A. & Regev, T.I. The language network as a natural kind within the broader landscape of the human brain. Nat. Rev. Neurosci. 25, 289–312 (2024). https://doi.org/10.1038/s41583-024-00802-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-024-00802-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing