Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Location, location, location: how the tissue microenvironment affects inflammation in RA

An Author Correction to this article was published on 12 March 2021

This article has been updated

Abstract

Current treatments for rheumatoid arthritis (RA) do not work well for a large proportion of patients, or at all in some individuals, and cannot cure or prevent this disease. One major obstacle to developing better drugs is a lack of complete understanding of how inflammatory joint disease arises and progresses. Emerging evidence indicates an important role for the tissue microenvironment in the pathogenesis of RA. Each tissue is made up of cells surrounded and supported by a unique extracellular matrix (ECM). These complex molecular networks define tissue architecture and provide environmental signals that programme site-specific cell behaviour. In the synovium, a main site of disease activity in RA, positional and disease stage-specific cellular diversity exist. Improved understanding of the architecture of the synovium from gross anatomy to the single-cell level, in parallel with evidence demonstrating how the synovial ECM is vital for synovial homeostasis and how dysregulated signals from the ECM promote chronic inflammation and tissue destruction in the RA joint, has opened up new ways of thinking about the pathogenesis of RA. These new ideas provide novel therapeutic approaches for patients with difficult-to-treat disease and could also be used in disease prevention.

Key points

  • All tissues are made up of cells surrounded by an extracellular matrix (ECM), an intricate 3D molecular network that is an important determinant of tissue architecture and cell behaviour.

  • The synovium is a complex anatomical tissue comprising many cell (sub)populations that are located in distinct sub-synovial niches, each of which are specialized to perform unique roles in synovial homeostasis.

  • In rheumatoid arthritis (RA), infiltrating immune cells join tissue-resident cells, leading to qualitative changes in cell phenotype that promote inflammation and tissue destruction, and suppress the resolution of inflammation.

  • The ECM has an important role in dictating the organization of synovial cell networks and in programming synovial cell specialization.

  • Changes in the synovial microenvironment start to occur early in the development of RA, and these aberrant extracellular cues shape pathogenic cell behaviour during the onset and progression of disease.

  • Analysing localized changes in the synovium can improve disease classification and patient stratification, and targeting the ECM holds promise for the development of new strategies to treat and prevent RA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The pannus as an architectural feature of the inflamed synovium.
Fig. 2: Distinct fibroblast populations in rheumatoid arthritis synovium inhabit distinct tissue niches.
Fig. 3: Tissue microarchitecture in the healthy and RA joint.
Fig. 4: Shaping joint-specific cellular phenotypes.

Similar content being viewed by others

Change history

References

  1. Human Cell Atlas https://www.humancellatlas.org (2020).

  2. Amit, I., Winter, D. R. & Jung, S. The role of the local environment and epigenetics in shaping macrophage identity and their effect on tissue homeostasis. Nat. Immunol. 17, 18–25 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Chang, H. Y. et al. Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc. Natl Acad. Sci. USA 99, 12877–12882 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Naba, A. et al. The extracellular matrix: tools and insights for the “omics” era. Matrix Biol. 49, 10–24 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Naba, A., Ding, H., Whittaker, C. A. & Hynes, R. O. Matrisome Project http://www.matrisomeproject.mit.edu (2020).

  6. Smith, M. D. The normal synovium. Open Rheumatol. J. 5, 100–106 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  7. McInnes, I. B. & Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365, 2205–2219 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Firestein, G. S. Evolving concepts of rheumatoid arthritis. Nature 423, 356–361 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Pitzalis, C., Kelly, S. & Humby, F. New learnings on the pathophysiology of RA from synovial biopsies. Curr. Opin. Rheumatol. 25, 334–344 (2013).

    Article  PubMed  Google Scholar 

  10. Nerviani, A. & Pitzalis, C. Role of chemokines in ectopic lymphoid structures formation in autoimmunity and cancer. J. Leukoc. Biol. 104, 333–341 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Dennis, G. Jr. et al. Synovial phenotypes in rheumatoid arthritis correlate with response to biologic therapeutics. Arthritis Res. Ther. 16, R90 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lewis, M. J. et al. Molecular portraits of early rheumatoid arthritis identify clinical and treatment response phenotypes. Cell Rep. 28, 2455–2470 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. O’Sullivan, F. X., Fassbender, H. G., Gay, S. & Koopman, W. J. Etiopathogenesis of the rheumatoid arthritis-like disease in MRL/l mice. I. The histomorphologic basis of joint destruction. Arthritis Rheum. 28, 529–536 (1985).

    Article  PubMed  Google Scholar 

  14. Geiler, T., Kriegsmann, J., Keyszer, G. M., Gay, R. E. & Gay, S. A new model for rheumatoid arthritis generated by engraftment of rheumatoid synovial tissue and normal human cartilage into SCID mice. Arthritis Rheum. 37, 1664–1671 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Muller-Ladner, U. et al. Synovial fibroblasts of patients with rheumatoid arthritis attach to and invade normal human cartilage when engrafted into SCID mice. Am. J. Pathol. 149, 1607–1615 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kurowska-Stolarska, M. et al. Inhibitor of DNA binding/differentiation 2 induced by hypoxia promotes synovial fibroblast-dependent osteoclastogenesis. Arthritis Rheum. 60, 3663–3675 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Jungel, A. et al. Effect of the oral application of a highly selective MMP-13 inhibitor in three different animal models of rheumatoid arthritis. Ann. Rheum. Dis. 69, 898–902 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Pap, T. et al. Differential expression pattern of membrane-type matrix metalloproteinases in rheumatoid arthritis. Arthritis Rheum. 43, 1226–1232 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Seibl, R. et al. Expression and regulation of Toll-like receptor 2 in rheumatoid arthritis synovium. Am. J. Pathol. 162, 1221–1227 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Firestein, G. S. et al. Apoptosis in rheumatoid arthritis: p53 overexpression in rheumatoid arthritis synovium. Am. J. Pathol. 149, 2143–2151 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Seemayer, C. A. et al. p53 in rheumatoid arthritis synovial fibroblasts at sites of invasion. Ann. Rheum. Dis. 62, 1139–1144 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Franz, J. K. et al. Expression of sentrin, a novel antiapoptotic molecule, at sites of synovial invasion in rheumatoid arthritis. Arthritis Rheum. 43, 599–607 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Pap, T. et al. Activation of synovial fibroblasts in rheumatoid arthritis: lack of expression of the tumour suppressor PTEN at sites of invasive growth and destruction. Arthritis Res. 2, 59–64 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Neidhart, M. et al. Retrotransposable L1 elements expressed in rheumatoid arthritis synovial tissue: association with genomic DNA hypomethylation and influence on gene expression. Arthritis Rheum. 43, 2634–2647 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Karouzakis, E., Gay, R. E., Gay, S. & Neidhart, M. Epigenetic control in rheumatoid arthritis synovial fibroblasts. Nat. Rev. Rheumatol. 5, 266–272 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Mendez-Huergo, S. P. et al. Clinical relevance of galectin-1 and galectin-3 in rheumatoid arthritis patients: differential regulation and correlation with disease activity. Front. Immunol. 9, 3057 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Ohshima, S. et al. Galectin 3 and its binding protein in rheumatoid arthritis. Arthritis Rheum. 48, 2788–2795 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Neidhart, M. et al. Galectin-3 is induced in rheumatoid arthritis synovial fibroblasts after adhesion to cartilage oligomeric matrix protein. Ann. Rheum. Dis. 64, 419–424 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Filer, A. et al. Galectin 3 induces a distinctive pattern of cytokine and chemokine production in rheumatoid synovial fibroblasts via selective signaling pathways. Arthritis Rheum. 60, 1604–1614 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Arad, U. et al. Galectin-3 is a sensor-regulator of Toll-like receptor pathways in synovial fibroblasts. Cytokine 73, 30–35 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Mizoguchi, F. et al. Functionally distinct disease-associated fibroblast subsets in rheumatoid arthritis. Nat. Commun. 9, 789 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Stephenson, W. et al. Single-cell RNA-seq of rheumatoid arthritis synovial tissue using low-cost microfluidic instrumentation. Nat. Commun. 9, 791 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Croft, A. P. et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature 570, 246–251 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Littman, D. R. & Rudensky, A. Y. Th17 and regulatory T cells in mediating and restraining inflammation. Cell 140, 845–858 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Rao, D. A. et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature 542, 110–114 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Culemann, S. et al. Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature 572, 670–675 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Alivernini, S. et al. Distinct synovial tissue macrophage subsets regulate inflammation and remission in rheumatoid arthritis. Nat. Med. 26, 1295–1306 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Kuo, D. et al. HBEGF+ macrophages in rheumatoid arthritis induce fibroblast invasiveness. Sci. Transl Med. 11, eaau8587 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wei, K. et al. Notch signalling drives synovial fibroblast identity and arthritis pathology. Nature 582, 259–264 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Filer, A. The fibroblast as a therapeutic target in rheumatoid arthritis. Curr. Opin. Pharmacol. 13, 413–419 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Sherlock, J. P., Filer, A. D., Isaacs, J. D. & Buckley, C. D. What can rheumatologists learn from translational cancer therapy? Arthritis Res. Ther. 15, 114 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Klein, K. et al. Evaluating the bromodomain protein BRD1 as a therapeutic target in rheumatoid arthritis. Sci. Rep. 8, 11125 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Neidhart, M., Karouzakis, E., Jungel, A., Gay, R. E. & Gay, S. Inhibition of spermidine/spermine N1-acetyltransferase activity: a new therapeutic concept in rheumatoid arthritis. Arthritis Rheumatol. 66, 1723–1733 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Lu, P., Weaver, V. M. & Werb, Z. The extracellular matrix: a dynamic niche in cancer progression. J. Cell Biol. 196, 395–406 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tamer, T. M. Hyaluronan and synovial joint: function, distribution and healing. Interdiscip. Toxicol. 6, 111–125 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Jay, G. D. & Waller, K. A. The biology of lubricin: near frictionless joint motion. Matrix Biol. 39, 17–24 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Gay, S., Gay, R. E. & Miller, E. F. The collagens of the joint. Arthritis Rheum. 23, 937–941 (1980).

    Article  CAS  PubMed  Google Scholar 

  49. Ouboussad, L., Burska, A. N., Melville, A. & Buch, M. H. Synovial tissue heterogeneity in rheumatoid arthritis and changes with biologic and targeted synthetic therapies to inform stratified therapy. Front. Med. 6, 45 (2019).

    Article  Google Scholar 

  50. Miller, A. E., Hu, P. & Barker, T. H. Feeling things out: bidirectional signaling of the cell–ECM interface, implications in the mechanobiology of cell spreading, migration, proliferation, and differentiation. Adv. Healthc. Mater. 9, e1901445 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Qu, F., Guilak, F. & Mauck, R. L. Cell migration: implications for repair and regeneration in joint disease. Nat. Rev. Rheumatol. 15, 167–179 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jain, N., Moeller, J. & Vogel, V. Mechanobiology of macrophages: how physical factors coregulate macrophage plasticity and phagocytosis. Annu. Rev. Biomed. Eng. 21, 267–297 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Piersma, B., Hayward, M. K. & Weaver, V. M. Fibrosis and cancer: a strained relationship. Biochim. Biophys. Acta Rev. Cancer 1873, 188356 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Northcott, J. M., Dean, I. S., Mouw, J. K. & Weaver, V. M. Feeling stress: the mechanics of cancer progression and aggression. Front. Cell Dev. Biol. 6, 17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Shelef, M. A., Bennin, D. A., Mosher, D. F. & Huttenlocher, A. Citrullination of fibronectin modulates synovial fibroblast behavior. Arthritis Res. Ther. 14, R240 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. van Dinther-Janssen, A. C., Pals, S. T., Scheper, R. J. & Meijer, C. J. Role of the CS1 adhesion motif of fibronectin in T cell adhesion to synovial membrane and peripheral lymph node endothelium. Ann. Rheum. Dis. 52, 672–676 (1993).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Simon, M. M., Kramer, M. D., Prester, M. & Gay, S. Mouse T-cell associated serine proteinase 1 degrades collagen type IV: a structural basis for the migration of lymphocytes through vascular basement membranes. Immunology 73, 117–119 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Mueller, S. C. & Chen, W. T. Cellular invasion into matrix beads: localization of beta 1 integrins and fibronectin to the invadopodia. J. Cell Sci. 99, 213–225 (1991).

    Article  CAS  PubMed  Google Scholar 

  59. Lubberts, E. & van den Berg, W. B. Cytokines in the pathogenesis of rheumatoid arthritis and collagen-induced arthritis. Adv. Exp. Med. Biol. 520, 194–202 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Middleton, J., Patterson, A. M., Gardner, L., Schmutz, C. & Ashton, B. A. Leukocyte extravasation: chemokine transport and presentation by the endothelium. Blood 100, 3853–3860 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Sadir, R., Imberty, A., Baleux, F. & Lortat-Jacob, H. Heparan sulfate/heparin oligosaccharides protect stromal cell-derived factor-1 (SDF-1)/CXCL12 against proteolysis induced by CD26/dipeptidyl peptidase IV. J. Biol. Chem. 279, 43854–43860 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Johnson, Z. et al. Interference with heparin binding and oligomerization creates a novel anti-inflammatory strategy targeting the chemokine system. J. Immunol. 173, 5776–5785 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Kehoe, O. et al. Syndecan-3 is selectively pro-inflammatory in the joint and contributes to antigen-induced arthritis in mice. Arthritis Res. Ther. 16, R148 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Patterson, A. M. et al. Induction of a CXCL8 binding site on endothelial syndecan-3 in rheumatoid synovium. Arthritis Rheum. 52, 2331–2342 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Martino, M. M. et al. Growth factors engineered for super-affinity to the extracellular matrix enhance tissue healing. Science 343, 885–888 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. LeBaron, R. G., Hook, A., Esko, J. D., Gay, S. & Hook, M. Binding of heparan sulfate to type V collagen. A mechanism of cell-substrate adhesion. J. Biol. Chem. 264, 7950–7956 (1989).

    Article  CAS  PubMed  Google Scholar 

  67. Forsten-Williams, K., Chu, C. L., Fannon, M., Buczek-Thomas, J. A. & Nugent, M. A. Control of growth factor networks by heparan sulfate proteoglycans. Ann. Biomed. Eng. 36, 2134–2148 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Mythreye, K. & Blobe, G. C. Proteoglycan signaling co-receptors: roles in cell adhesion, migration and invasion. Cell Signal. 21, 1548–1558 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pap, T. & Bertrand, J. Syndecans in cartilage breakdown and synovial inflammation. Nat. Rev. Rheumatol. 9, 43–55 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Shao, X. et al. FGF2 cooperates with IL-17 to promote autoimmune inflammation. Sci. Rep. 7, 7024 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Elfenbein, A. & Simons, M. Syndecan-4 signaling at a glance. J. Cell Sci. 126, 3799–3804 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Bazzoni, F. & Beutler, B. The tumor necrosis factor ligand and receptor families. N. Engl. J. Med. 334, 1717–1725 (1996).

    Article  CAS  PubMed  Google Scholar 

  73. Rico, M. C. et al. Thrombospondin-1 and transforming growth factor beta are pro-inflammatory molecules in rheumatoid arthritis. Transl Res. 152, 95–98 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Suzuki, T. et al. Upregulation of thrombospondin 1 expression in synovial tissues and plasma of rheumatoid arthritis: role of transforming growth factor-beta1 toward fibroblast-like synovial cells. J. Rheumatol. 42, 943–947 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Resovi, A., Pinessi, D., Chiorino, G. & Taraboletti, G. Current understanding of the thrombospondin-1 interactome. Matrix Biol. 37, 83–91 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Nefla, M., Holzinger, D., Berenbaum, F. & Jacques, C. The danger from within: alarmins in arthritis. Nat. Rev. Rheumatol. 12, 669–683 (2016).

    Article  CAS  PubMed  Google Scholar 

  77. Frevert, C. W., Felgenhauer, J., Wygrecka, M., Nastase, M. V. & Schaefer, L. Danger-associated molecular patterns derived from the extracellular matrix provide temporal control of innate immunity. J. Histochem. Cytochem. 66, 213–227 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Midwood, K. et al. Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease. Nat. Med. 15, 774–780 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Goh, F. G., Piccinini, A. M., Krausgruber, T., Udalova, I. A. & Midwood, K. S. Transcriptional regulation of the endogenous danger signal tenascin-C: a novel autocrine loop in inflammation. J. Immunol. 184, 2655–2662 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Marzeda, A. M. & Midwood, K. S. Internal affairs: tenascin-C as a clinically relevant, endogenous driver of innate immunity. J. Histochem. Cytochem. 66, 289–304 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zuliani-Alvarez, L. et al. Mapping tenascin-C interaction with Toll-like receptor 4 reveals a new subset of endogenous inflammatory triggers. Nat. Commun. 8, 1595 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Li, Y. et al. Identification of potential genetic causal variants for rheumatoid arthritis by whole-exome sequencing. Oncotarget 8, 111119–111129 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Xiong, Y. et al. Bioinformatics analysis and identification of genes and molecular pathways involved in synovial inflammation in rheumatoid arthritis. Med. Sci. Monit. 25, 2246–2256 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bonnans, C., Chou, J. & Werb, Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 15, 786–801 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Karouzakis, E., Neidhart, M., Gay, R. E. & Gay, S. Molecular and cellular basis of rheumatoid joint destruction. Immunol. Lett. 106, 8–13 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Garnero, P., Rousseau, J. C. & Delmas, P. D. Molecular basis and clinical use of biochemical markers of bone, cartilage, and synovium in joint diseases. Arthritis Rheum. 43, 953–968 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Karsdal, M. A. et al. Biochemical markers of ongoing joint damage in rheumatoid arthritis — current and future applications, limitations and opportunities. Arthritis Res. Ther. 13, 215 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Aschenberg, S. et al. Catabolic and anabolic periarticular bone changes in patients with rheumatoid arthritis: a computed tomography study on the role of age, disease duration and bone markers. Arthritis Res. Ther. 15, R62 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chapurlat, R. D. & Confavreux, C. B. Novel biological markers of bone: from bone metabolism to bone physiology. Rheumatology 55, 1714–1725 (2016).

    Article  PubMed  Google Scholar 

  90. Saxne, T. & Heinegard, D. Cartilage oligomeric matrix protein: a novel marker of cartilage turnover detectable in synovial fluid and blood. Br. J. Rheumatol. 31, 583–591 (1992).

    Article  CAS  PubMed  Google Scholar 

  91. Christensen, A. F. et al. Differential association of the N-propeptide of collagen IIA (PIIANP) and collagen II C-telopeptide (CTX-II) with synovitis and erosions in early and longstanding rheumatoid arthritis. Clin. Exp. Rheumatol. 27, 307–314 (2009).

    CAS  PubMed  Google Scholar 

  92. Bay-Jensen, A. C. et al. Enzyme-linked immunosorbent assay (ELISAs) for metalloproteinase derived type II collagen neoepitope, CIIM — increased serum CIIM in subjects with severe radiographic osteoarthritis. Clin. Biochem. 44, 423–429 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Barascuk, N. et al. A novel assay for extracellular matrix remodeling associated with liver fibrosis: an enzyme-linked immunosorbent assay (ELISA) for a MMP-9 proteolytically revealed neo-epitope of type III collagen. Clin. Biochem. 43, 899–904 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Bay-Jensen, A. C. et al. Circulating protein fragments of cartilage and connective tissue degradation are diagnostic and prognostic markers of rheumatoid arthritis and ankylosing spondylitis. PLoS ONE 8, e54504 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gudmann, N. S. et al. Increased remodelling of interstitial collagens and basement membrane is suppressed by treatment in patients with rheumatoid arthritis: serological evaluation of a one-year prospective study of 149 Japanese patients. Clin. Exp. Rheumatol. 36, 462–470 (2018).

    PubMed  Google Scholar 

  96. Leeming, D. et al. A novel marker for assessment of liver matrix remodeling: an enzyme-linked immunosorbent assay (ELISA) detecting a MMP generated type I collagen neo-epitope (C1M). Biomarkers 16, 616–628 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Ma, J. D. et al. Serum matrix metalloproteinase-3 as a noninvasive biomarker of histological synovitis for diagnosis of rheumatoid arthritis. Mediators Inflamm. 2014, 179284 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Sun, S. et al. The active form of MMP-3 is a marker of synovial inflammation and cartilage turnover in inflammatory joint diseases. BMC Musculoskelet. Disord. 15, 93 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Bay-Jensen, A. C. et al. Serological biomarkers of joint tissue turnover predict tocilizumab response at baseline. J. Clin. Rheumatol. 20, 332–335 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Bay-Jensen, A. C. et al. Effect of tocilizumab combined with methotrexate on circulating biomarkers of synovium, cartilage, and bone in the LITHE study. Semin. Arthritis Rheum. 43, 470–478 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Gudmann, N. S. et al. Type IV collagen metabolism is associated with disease activity, radiographic progression and response to tocilizumab in rheumatoid arthritis. Clin. Exp. Rheumatol. 36, 829–835 (2018).

    PubMed  Google Scholar 

  102. Juhl, P. et al. IL-6 receptor inhibition modulates type III collagen and C-reactive protein degradation in rheumatoid arthritis patients with an inadequate response to anti-tumour necrosis factor therapy: analysis of connective tissue turnover in the tocilizumab RADIATE study. Clin. Exp. Rheumatol. 36, 568–574 (2018).

    PubMed  Google Scholar 

  103. Kjelgaard-Petersen, C. F. et al. Translational biomarkers and ex vivo models of joint tissues as a tool for drug development in rheumatoid arthritis. Arthritis Rheumatol. 70, 1419–1428 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Majkowska, I., Shitomi, Y., Ito, N., Gray, N. S. & Itoh, Y. Discoidin domain receptor 2 mediates collagen-induced activation of membrane-type 1 matrix metalloproteinase in human fibroblasts. J. Biol. Chem. 292, 6633–6643 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Nagy, N. et al. Hyaluronan in immune dysregulation and autoimmune diseases. Matrix Biol. 78-79, 292–313 (2019).

    Article  CAS  PubMed  Google Scholar 

  106. Scheibner, K. A. et al. Hyaluronan fragments act as an endogenous danger signal by engaging TLR2. J. Immunol. 177, 1272–1281 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Hasegawa, M. et al. Thrombin-cleaved osteopontin in synovial fluid of subjects with rheumatoid arthritis. J. Rheumatol. 36, 240–245 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Kazanecki, C. C., Uzwiak, D. J. & Denhardt, D. T. Control of osteopontin signaling and function by post-translational phosphorylation and protein folding. J. Cell Biochem. 102, 912–924 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Weber, G. F. et al. Phosphorylation-dependent interaction of osteopontin with its receptors regulates macrophage migration and activation. J. Leukoc. Biol. 72, 752–761 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Luukkonen, J. et al. Increased amount of phosphorylated proinflammatory osteopontin in rheumatoid arthritis synovia is associated to decreased tartrate-resistant acid phosphatase 5B/5A ratio. PLoS ONE 12, e0182904 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Wegner, N. et al. Autoimmunity to specific citrullinated proteins gives the first clues to the etiology of rheumatoid arthritis. Immunol. Rev. 233, 34–54 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Foster, M. H. Basement membranes and autoimmune diseases. Matrix Biol. 57–58, 149–168 (2017).

    Article  PubMed  Google Scholar 

  113. Steen, J. et al. Recognition of amino acid motifs, rather than specific proteins, by human plasma cell-derived monoclonal antibodies to posttranslationally modified proteins in rheumatoid arthritis. Arthritis Rheumatol. 71, 196–209 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Haag, S. et al. Identification of new citrulline-specific autoantibodies, which bind to human arthritic cartilage, by mass spectrometric analysis of citrullinated type II collagen. Arthritis Rheumatol. 66, 1440–1449 (2014).

    Article  CAS  PubMed  Google Scholar 

  115. Burkhardt, H. et al. Epitope-specific recognition of type II collagen by rheumatoid arthritis antibodies is shared with recognition by antibodies that are arthritogenic in collagen-induced arthritis in the mouse. Arthritis Rheum. 46, 2339–2348 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Holmdahl, R., Jansson, L., Larsson, A. & Jonsson, R. Arthritis in DBA/1 mice induced with passively transferred type II collagen immune serum. Immunohistopathology and serum levels of anti-type II collagen auto-antibodies. Scand. J. Immunol. 31, 147–157 (1990).

    Article  CAS  PubMed  Google Scholar 

  117. Raats, J. M., Wijnen, E. M., Pruijn, G. J., van den Hoogen, F. H. & van Venrooij, W. J. Recombinant human monoclonal autoantibodies specific for citrulline-containing peptides from phage display libraries derived from patients with rheumatoid arthritis. J. Rheumatol. 30, 1696–1711 (2003).

    CAS  PubMed  Google Scholar 

  118. Boman, A. et al. Antibodies against citrullinated peptides are associated with clinical and radiological outcomes in patients with early rheumatoid arthritis: a prospective longitudinal inception cohort study. RMD Open 5, e000946 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Schwenzer, A. et al. Identification of an immunodominant peptide from citrullinated tenascin-C as a major target for autoantibodies in rheumatoid arthritis. Ann. Rheum. Dis. 75, 1876–1883 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Schwenzer, A. et al. Association of distinct fine specificities of anti-citrullinated peptide antibodies with elevated immune responses to Prevotella intermedia in a subgroup of patients with rheumatoid arthritis and periodontitis. Arthritis Rheumatol. 69, 2303–2313 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Rims, C. et al. Citrullinated aggrecan epitopes as targets of autoreactive CD4+ T cells in patients with rheumatoid arthritis. Arthritis Rheumatol. 71, 518–528 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Stefanelli, V. L. et al. Citrullination of fibronectin alters integrin clustering and focal adhesion stability promoting stromal cell invasion. Matrix Biol. 82, 86–104 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lundberg, K. et al. Citrullinated proteins have increased immunogenicity and arthritogenicity and their presence in arthritic joints correlates with disease severity. Arthritis Res. Ther. 7, R458–R467 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Vossenaar, E. R. et al. Citrullination of synovial proteins in murine models of rheumatoid arthritis. Arthritis Rheum. 48, 2489–2500 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Ho, P. P. et al. Autoimmunity against fibrinogen mediates inflammatory arthritis in mice. J. Immunol. 184, 379–390 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. Fan, L. et al. Citrullinated fibronectin inhibits apoptosis and promotes the secretion of pro-inflammatory cytokines in fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Res. Ther. 14, R266 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Sanchez-Pernaute, O. et al. Citrullination enhances the pro-inflammatory response to fibrin in rheumatoid arthritis synovial fibroblasts. Ann. Rheum. Dis. 72, 1400–1406 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. Sokolove, J., Zhao, X., Chandra, P. E. & Robinson, W. H. Immune complexes containing citrullinated fibrinogen costimulate macrophages via Toll-like receptor 4 and Fcgamma receptor. Arthritis Rheum. 63, 53–62 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Sipila, K. et al. Citrullination of collagen II affects integrin-mediated cell adhesion in a receptor-specific manner. FASEB J. 28, 3758–3768 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Chang, X. et al. Citrullination of fibronectin in rheumatoid arthritis synovial tissue. Rheumatology 44, 1374–1382 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Yan, X., Yin, L., Wang, Y., Zhao, Y. & Chang, X. The low binding affinity of ADAMTS4 for citrullinated fibronectin may contribute to the destruction of joint cartilage in rheumatoid arthritis. Clin. Exp. Rheumatol. 31, 201–206 (2013).

    PubMed  Google Scholar 

  132. Zoumi, A., Yeh, A. & Tromberg, B. J. Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc. Natl Acad. Sci. USA 99, 11014–11019 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Molleken, C. et al. MFAP4: a candidate biomarker for hepatic and pulmonary fibrosis? Sarcoidosis Vasc. Diffuse Lung Dis. 33, 41–50 (2016).

    PubMed  Google Scholar 

  134. Christensen, A. F. et al. Site-specific absence of microfibrillar-associated protein 4 (MFAP4) from the internal elastic membrane of arterioles in the rheumatoid arthritis synovial membrane: an immunohistochemical study in patients with advanced rheumatoid arthritis versus osteoarthritis. APMIS 127, 588–593 (2019).

    Article  CAS  PubMed  Google Scholar 

  135. Hasegawa, M. et al. Expression of large tenascin-C splice variants in synovial fluid of patients with rheumatoid arthritis. J. Orthop. Res. 25, 563–568 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. Page, T. H. et al. Raised circulating tenascin-C in rheumatoid arthritis. Arthritis Res. Ther. 14, R260 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Aungier, S. R. et al. Targeting early changes in the synovial microenvironment: a new class of immunomodulatory therapy? Ann. Rheum. Dis. 78, 186–191 (2019).

    Article  CAS  PubMed  Google Scholar 

  138. Asano, T. et al. α9β1 integrin acts as a critical intrinsic regulator of human rheumatoid arthritis. Rheumatology 53, 415–424 (2014).

    Article  CAS  PubMed  Google Scholar 

  139. Rupp, T. et al. Tenascin-C orchestrates glioblastoma angiogenesis by modulation of pro- and anti-angiogenic signaling. Cell Rep. 17, 2607–2619 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. Kumar, A. et al. Specification and diversification of pericytes and smooth muscle cells from mesenchymoangioblasts. Cell Rep. 19, 1902–1916 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Orr, C. et al. Synovial tissue research: a state-of-the-art review. Nat. Rev. Rheumatol. 13, 463–475 (2017).

    Article  PubMed  Google Scholar 

  142. Muzard, J. et al. Non-invasive molecular imaging of fibrosis using a collagen-targeted peptidomimetic of the platelet collagen receptor glycoprotein VI. PLoS ONE 4, e5585 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Han, Z. & Lu, Z. R. Targeting fibronectin for cancer imaging and therapy. J. Mater. Chem. B 5, 639–654 (2017).

    Article  CAS  PubMed  Google Scholar 

  144. Baues, M. et al. Fibrosis imaging: current concepts and future directions. Adv. Drug Deliv. Rev. 121, 9–26 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Desogere, P., Montesi, S. B. & Caravan, P. Molecular probes for imaging fibrosis and fibrogenesis. Chemistry 25, 1128–1141 (2019).

    Article  CAS  PubMed  Google Scholar 

  146. Beziere, N. et al. Imaging fibrosis in inflammatory diseases: targeting the exposed extracellular matrix. Theranostics 9, 2868–2881 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Schultz, C. Targeting the extracellular matrix for delivery of bioactive molecules to sites of arthritis. Br. J. Pharmacol. 176, 26–37 (2019).

    Article  CAS  PubMed  Google Scholar 

  148. Schmid, A. S. & Neri, D. Advances in antibody engineering for rheumatic diseases. Nat. Rev. Rheumatol. 15, 197–207 (2019).

    Article  PubMed  Google Scholar 

  149. To, W. S. & Midwood, K. S. Plasma and cellular fibronectin: distinct and independent functions during tissue repair. Fibrogenesis Tissue Repair 4, 21 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Bruijnen, S. T. G. et al. F8-IL10: A new potential antirheumatic drug evaluated by a PET-guided translational approach. Mol. Pharm. 16, 273–281 (2019).

    Article  CAS  PubMed  Google Scholar 

  151. Galeazzi, M. et al. A phase IB clinical trial with Dekavil (F8-IL10), an immunoregulatory ‘armed antibody’ for the treatment of rheumatoid arthritis, used in combination wiIh methotrexate. Isr. Med. Assoc. J. 16, 666 (2014).

    CAS  PubMed  Google Scholar 

  152. Brennan, F. M. Interleukin 10 and arthritis. Rheumatology 38, 293–297 (1999).

    Article  CAS  PubMed  Google Scholar 

  153. Schwager, K. et al. Preclinical characterization of DEKAVIL (F8-IL10), a novel clinical-stage immunocytokine which inhibits the progression of collagen-induced arthritis. Arthritis Res. Ther. 11, R142 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Aalbers, C. et al. Intra-articular etanercept treatment in inflammatory arthritis: a randomized double-blind placebo-controlled proof of mechanism clinical trial validating TNF as a potential therapeutic target for local treatment. Joint Bone Spine 82, 338–344 (2015).

    Article  CAS  PubMed  Google Scholar 

  155. Wallis, W. J., Simkin, P. A. & Nelp, W. B. Protein traffic in human synovial effusions. Arthritis Rheum. 30, 57–63 (1987).

    Article  CAS  PubMed  Google Scholar 

  156. Katsumata, K. et al. Conferring extracellular matrix affinity enhances local therapeutic efficacy of anti-TNF-alpha antibody in a murine model of rheumatoid arthritis. Arthritis Res. Ther. 21, 298 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Katsumata, K. et al. Targeting inflammatory sites through collagen affinity enhances the therapeutic efficacy of anti-inflammatory antibodies. Sci. Adv. 5, eaay1971 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Lee, C. J. et al. Development of an inflammatory tissue-selective chimeric TNF receptor. Cytokine 113, 340–346 (2019).

    Article  CAS  PubMed  Google Scholar 

  159. Itoh, Y. Metalloproteinases in rheumatoid arthritis: potential therapeutic targets to improve current therapies. Prog. Mol. Biol. Transl Sci. 148, 327–338 (2017).

    Article  CAS  PubMed  Google Scholar 

  160. Malemud, C. J. Matrix metalloproteinases and synovial joint pathology. Prog. Mol. Biol. Transl Sci. 148, 305–325 (2017).

    Article  CAS  PubMed  Google Scholar 

  161. Gossage, D. L. et al. Phase 1b study of the safety, pharmacokinetics, and disease-related outcomes of the matrix metalloproteinase-9 inhibitor andecaliximab in patients with rheumatoid arthritis. Clin. Ther. 40, 156–165 (2018).

    Article  CAS  PubMed  Google Scholar 

  162. Kaneko, K. et al. Selective inhibition of membrane type 1 matrix metalloproteinase abrogates progression of experimental inflammatory arthritis: Synergy with tumor necrosis factor blockade. Arthritis Rheumatol. 68, 521–531 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Falsone, A. et al. Designing CXCL8-based decoy proteins with strong anti-inflammatory activity in vivo. Biosci. Rep. 33, e00068 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  164. McNaughton, E. F. et al. Novel anti-inflammatory peptides based on chemokine-glycosaminoglycan interactions reduce leukocyte migration and disease severity in a model of rheumatoid arthritis. J. Immunol. 200, 3201–3217 (2018).

    Article  CAS  PubMed  Google Scholar 

  165. Eustace, A. D. et al. Soluble syndecan-3 binds chemokines, reduces leukocyte migration in vitro and ameliorates disease severity in models of rheumatoid arthritis. Arthritis Res. Ther. 21, 172 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Take, Y. et al. Specifically modified osteopontin in rheumatoid arthritis fibroblast-like synoviocytes supports interaction with B cells and enhances production of interleukin-6. Arthritis Rheum. 60, 3591–3601 (2009).

    Article  CAS  PubMed  Google Scholar 

  167. Mehta, B. B. et al. Blocking osteopontin-fibronectin interactions reduce extracellular fibronectin deployment and arthritic immunopathology. Int. Immunopharmacol. 55, 297–305 (2018).

    Article  CAS  PubMed  Google Scholar 

  168. Ammitzboll, C. G. et al. M-ficolin levels reflect disease activity and predict remission in early rheumatoid arthritis. Arthritis Rheum. 65, 3045–3050 (2013).

    Article  CAS  PubMed  Google Scholar 

  169. Raza, K. et al. Detection of antibodies to citrullinated tenascin-C in patients with early synovitis is associated with the development of rheumatoid arthritis. RMD Open 2, e000318 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Cutolo, M., Soldano, S. & Paolino, S. Potential roles for tenascin in (very) early diagnosis and treatment of rheumatoid arthritis. Ann. Rheum. Dis. 79, e42 (2020).

    Article  PubMed  Google Scholar 

  171. Filipe, E. C., Chitty, J. L. & Cox, T. R. Charting the unexplored extracellular matrix in cancer. Int. J. Exp. Pathol. 99, 58–76 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Taha, I. N. & Naba, A. Exploring the extracellular matrix in health and disease using proteomics. Essays Biochem. 63, 417–432 (2019).

    Article  CAS  PubMed  Google Scholar 

  173. van den Brink, S. C. et al. Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations. Nat. Methods 14, 935–936 (2017).

    Article  PubMed  Google Scholar 

  174. van Velthoven, C. T. J., de Morree, A., Egner, I. M., Brett, J. O. & Rando, T. A. Transcriptional profiling of quiescent muscle stem cells in vivo. Cell Rep. 21, 1994–2004 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Medaglia, C. et al. Spatial reconstruction of immune niches by combining photoactivatable reporters and scRNA-seq. Science 358, 1622–1626 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Vickovic, S. et al. High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 16, 987–990 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Rocha, B., Cillero-Pastor, B., Blanco, F. J. & Ruiz-Romero, C. MALDI mass spectrometry imaging in rheumatic diseases. Biochim. Biophys. Acta Proteins Proteom. 1865, 784–794 (2017).

    Article  CAS  PubMed  Google Scholar 

  178. Chakraborty, T. et al. Light-sheet microscopy of cleared tissues with isotropic, subcellular resolution. Nat. Methods 16, 1109–1113 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Lavin, Y. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159, 1312–1326 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Klein, K. et al. The epigenetic architecture at gene promoters determines cell type-specific LPS tolerance. J. Autoimmun. 83, 122–133 (2017).

    Article  CAS  PubMed  Google Scholar 

  181. Ospelt, C. et al. Overexpression of Toll-like receptors 3 and 4 in synovial tissue from patients with early rheumatoid arthritis: Toll-like receptor expression in early and longstanding arthritis. Arthritis Rheum. 58, 3684–3692 (2008).

    Article  CAS  PubMed  Google Scholar 

  182. Crowley, T. et al. Priming in response to pro-inflammatory cytokines is a feature of adult synovial but not dermal fibroblasts. Arthritis Res. Ther. 19, 35 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Frank-Bertoncelj, M. et al. Epigenetically-driven anatomical diversity of synovial fibroblasts guides joint-specific fibroblast functions. Nat. Commun. 8, 14852 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Rinn, J. L., Bondre, C., Gladstone, H. B., Brown, P. O. & Chang, H. Y. Anatomic demarcation by positional variation in fibroblast gene expression programs. PLoS Genet. 2, e119 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Higuchi, Y. et al. Gastrointestinal fibroblasts have specialized, diverse transcriptional phenotypes: a comprehensive gene expression analysis of human fibroblasts. PLoS ONE 10, e0129241 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Hsueh, M. F., Onnerfjord, P., Bolognesi, M. P., Easley, M. E. & Kraus, V. B. Analysis of “old” proteins unmasks dynamic gradient of cartilage turnover in human limbs. Sci. Adv. 5, eaax3203 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Quinn, T. M., Hauselmann, H. J., Shintani, N. & Hunziker, E. B. Cell and matrix morphology in articular cartilage from adult human knee and ankle joints suggests depth-associated adaptations to biomechanical and anatomical roles. Osteoarthritis Cartilage 21, 1904–1912 (2013).

    Article  CAS  PubMed  Google Scholar 

  188. Treppo, S. et al. Comparison of biomechanical and biochemical properties of cartilage from human knee and ankle pairs. J. Orthop. Res. 18, 739–748 (2000).

    Article  CAS  PubMed  Google Scholar 

  189. Ai, R. et al. Joint-specific DNA methylation and transcriptome signatures in rheumatoid arthritis identify distinct pathogenic processes. Nat. Commun. 7, 11849 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. den Hollander, W. et al. Knee and hip articular cartilage have distinct epigenomic landscapes: implications for future cartilage regeneration approaches. Ann. Rheum. Dis. 73, 2208–2212 (2014).

    Article  Google Scholar 

  191. Felsenthal, N. & Zelzer, E. Mechanical regulation of musculoskeletal system development. Development 144, 4271–4283 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Schroder, A. et al. Impact of mechanical load on the expression profile of synovial fibroblasts from patients with and without osteoarthritis. Int. J. Mol. Sci. 20, 585 (2019).

    Article  PubMed Central  Google Scholar 

  193. Shimomura, K. et al. Cyclic compressive loading on 3D tissue of human synovial fibroblasts upregulates prostaglandin E2 via COX-2 production without IL-1beta and TNF-alpha. Bone Joint Res. 3, 280–288 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Gentili, C. & Cancedda, R. Cartilage and bone extracellular matrix. Curr. Pharm. Des. 15, 1334–1348 (2009).

    Article  CAS  PubMed  Google Scholar 

  195. Riley, G. Tendinopathy — from basic science to treatment. Nat. Clin. Pract. Rheumatol. 4, 82–89 (2008).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The work of the C.D.B. is supported by the National Institute for Health Research through the Birmingham Biomedical Research Centre and Wellcome Trust Clinical Research Facility at University Hospitals Birmingham NHS Foundation Trust. Funding was also provided by the Versus Arthritis RACE Rheumatoid Arthritis Pathogenesis Centre of Excellence (grant 20298), a Versus Arthritis Programme grant to C.D.B. (grant 19791), a Versus Arthritis Senior Fellowship to K.S.M. (grant 20003) and from the Swiss National Science Foundation to C.O. (project 320030_176061).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Kim S. Midwood.

Ethics declarations

Competing interests

C.D.B. declares that he is a founder of MesTag Limited and has received funding from MesTag. C.O. declares that she has received consultancy fees from Gilead Sciences and funding from Novartis. K.S.M. declares that she is the founder and director of Nascient Limited and has received research funding from Nascient. S.G. declares no competing interests.

Additional information

Disclaimer

The views expressed in this article are those of the author(s) and not necessarily those of the NHS, the National Institute for Health Research, the authors’ funding bodies or the Department of Health.

Peer review information

Nature Reviews Rheumatology thanks L. Donlin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buckley, C.D., Ospelt, C., Gay, S. et al. Location, location, location: how the tissue microenvironment affects inflammation in RA. Nat Rev Rheumatol 17, 195–212 (2021). https://doi.org/10.1038/s41584-020-00570-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-020-00570-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing