Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Synovial inflammation in osteoarthritis progression

Abstract

Osteoarthritis (OA) is a progressive degenerative disease resulting in joint deterioration. Synovial inflammation is present in the OA joint and has been associated with radiographic and pain progression. Several OA risk factors, including ageing, obesity, trauma and mechanical loading, play a role in OA pathogenesis, likely by modifying synovial biology. In addition, other factors, such as mitochondrial dysfunction, damage-associated molecular patterns, cytokines, metabolites and crystals in the synovium, activate synovial cells and mediate synovial inflammation. An understanding of the activated pathways that are involved in OA-related synovial inflammation could form the basis for the stratification of patients and the development of novel therapeutics. This Review focuses on the biology of the OA synovium, how the cells residing in or recruited to the synovium interact with each other, how they become activated, how they contribute to OA progression and their interplay with other joint structures.

Key points

  • Imaging studies suggest that synovial inflammation may be present in both early osteoarthritis (OA) and advanced-stage OA and is involved in the development and progression of OA.

  • Synovial cells coordinate the production of molecules that initiate and maintain synovial inflammation and contribute to cartilage damage during OA progression.

  • Diverse stimuli, including bioactive lipids, prostaglandins, tricarboxylic acid cycle intermediates, cytokines and damage-associated molecular patterns, as well as clinical factors such as obesity, ageing, trauma and excessive mechanical loading, regulate the production of pro-inflammatory and anti-inflammatory mediators by synovial cells.

  • There is a need for functional imaging and cellular and molecular studies, together with a more robust histological interpretation at different stages of OA, to better stratify patients with OA and understand the role of synovitis in OA onset and progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synovial inflammation and fibrosis in osteoarthritis.
Fig. 2: Osteoarthritis risk factors and synovitis.
Fig. 3: Molecular mediators that contribute to synovial inflammation in osteoarthritis.
Fig. 4: Cellular crosstalk in synovitis and OA progression.

Similar content being viewed by others

References

  1. Hunter, D. J., March, L. & Chew, M., Lancet Commission on Osteoarthritis. Osteoarthritis in 2020 and beyond — Authors’ reply. Lancet 397, 1060 (2021).

    Article  PubMed  Google Scholar 

  2. Deshpande, B. R. et al. Number of persons with symptomatic knee osteoarthritis in the US: impact of race and ethnicity, age, sex, and obesity. Arthritis Care Res. 68, 1743–1750 (2016).

    Article  Google Scholar 

  3. Loeser, R. F., Collins, J. A. & Diekman, B. O. Ageing and the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 12, 412–420 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Felson, D. T. et al. Synovitis and the risk of knee osteoarthritis: the MOST Study. Osteoarthritis Cartilage 24, 458–464 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Collins, J. E. et al. Semiquantitative imaging biomarkers of knee osteoarthritis progression: data from the foundation for the national institutes of health osteoarthritis biomarkers consortium. Arthritis Rheumatol. 68, 2422–2431 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang, Y. et al. Knee effusion volume assessed by magnetic resonance imaging and progression of knee osteoarthritis: data from the Osteoarthritis Initiative. Rheumatology 58, 246–253 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Atukorala, I. et al. Synovitis in knee osteoarthritis: a precursor of disease? Ann. Rheum. Dis. 75, 390–395 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. MacFarlane, L. A. et al. Association of changes in effusion-synovitis with progression of cartilage damage over eighteen months in patients with osteoarthritis and meniscal tear. Arthritis Rheumatol. 71, 73–81 (2019).

    Article  PubMed  Google Scholar 

  9. Ayral, X., Pickering, E. H., Woodworth, T. G., Mackillop, N. & Dougados, M. Synovitis: a potential predictive factor of structural progression of medial tibiofemoral knee osteoarthritis–results of a 1 year longitudinal arthroscopic study in 422 patients. Osteoarthritis Cartilage 13, 361–367 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Roemer, F. W. et al. Can structural joint damage measured with MR imaging be used to predict knee replacement in the following year? Radiology 274, 810–820 (2015).

    Article  PubMed  Google Scholar 

  11. Roemer, F. W. et al. Presence of MRI-detected joint effusion and synovitis increases the risk of cartilage loss in knees without osteoarthritis at 30-month follow-up: the MOST study. Ann. Rheum. Dis. 70, 1804–1809 (2011).

    Article  PubMed  Google Scholar 

  12. Perry, T. A. et al. Association between bone marrow lesions & synovitis and symptoms in symptomatic knee osteoarthritis. Osteoarthritis Cartilage 28, 316–323 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Haugen, I. K. et al. Synovitis and radiographic progression in non-erosive and erosive hand osteoarthritis: is erosive hand osteoarthritis a separate inflammatory phenotype? Osteoarthritis Cartilage 24, 647–654 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Haugen, I. K. et al. MRI findings predict radiographic progression and development of erosions in hand osteoarthritis. Ann. Rheum. Dis. 75, 117–123 (2016).

    Article  PubMed  Google Scholar 

  15. Mancarella, L., Addimanda, O., Cavallari, C. & Meliconi, R. Synovial inflammation drives structural damage in hand osteoarthritis: a narrative literature review. Curr. Rheumatol. Rev. 13, 43–50 (2017).

    Article  PubMed  Google Scholar 

  16. Marshall, M., Watt, F. E., Vincent, T. L. & Dziedzic, K. Hand osteoarthritis: clinical phenotypes, molecular mechanisms and disease management. Nat. Rev. Rheumatol. 14, 641–656 (2018).

    Article  PubMed  Google Scholar 

  17. Driban, J. B. et al. Risk factors and the natural history of accelerated knee osteoarthritis: a narrative review. BMC Musculoskelet. Disord. 21, 332 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wyatt, L. A. et al. Molecular expression patterns in the synovium and their association with advanced symptomatic knee osteoarthritis. Osteoarthritis Cartilage 27, 667–675 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Sarmanova, A. et al. Association between ultrasound-detected synovitis and knee pain: a population-based case-control study with both cross-sectional and follow-up data. Arthritis Res. Ther. 19, 281 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hill, C. L. et al. Synovitis detected on magnetic resonance imaging and its relation to pain and cartilage loss in knee osteoarthritis. Ann. Rheum. Dis. 66, 1599–1603 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Riis, R. G. et al. The association between histological, macroscopic and magnetic resonance imaging assessed synovitis in end-stage knee osteoarthritis: a cross-sectional study. Osteoarthritis Cartilage 25, 272–280 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Abbasi, B., Pezeshki-Rad, M., Akhavan, R. & Sahebari, M. Association between clinical and sonographic synovitis in patients with painful knee osteoarthritis. Int. J. Rheum. Dis. 20, 561–566 (2017).

    Article  PubMed  Google Scholar 

  23. Baker, K. et al. Relation of synovitis to knee pain using contrast-enhanced MRIs. Ann. Rheum. Dis. 69, 1779–1783 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Ballegaard, C. et al. Knee pain and inflammation in the infrapatellar fat pad estimated by conventional and dynamic contrast-enhanced magnetic resonance imaging in obese patients with osteoarthritis: a cross-sectional study. Osteoarthritis Cartilage 22, 933–940 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Kanthawang, T. et al. Obese and overweight individuals have greater knee synovial inflammation and associated structural and cartilage compositional degeneration: data from the osteoarthritis initiative. Skeletal Radiol. 50, 217–229 (2021).

    Article  PubMed  Google Scholar 

  26. Guermazi, A. et al. Assessment of synovitis with contrast-enhanced MRI using a whole-joint semiquantitative scoring system in people with, or at high risk of, knee osteoarthritis: the MOST study. Ann. Rheum. Dis. 70, 805–811 (2011).

    Article  PubMed  Google Scholar 

  27. Riis, R. G. et al. Synovitis assessed on static and dynamic contrast-enhanced magnetic resonance imaging and its association with pain in knee osteoarthritis: a cross-sectional study. Eur. J. Radiol. 85, 1099–1108 (2016).

    Article  PubMed  Google Scholar 

  28. Bacon, K., LaValley, M. P., Jafarzadeh, S. R. & Felson, D. Does cartilage loss cause pain in osteoarthritis and if so, how much? Ann. Rheum. Dis. 79, 1105–1110 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Chevalier, X., Eymard, F. & Richette, P. Biologic agents in osteoarthritis: hopes and disappointments. Nat. Rev. Rheumatol. 9, 400–410 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Ansari, M. Y. et al. Genetic inactivation of ZCCHC6 suppresses interleukin-6 expression and reduces the severity of experimental osteoarthritis in mice. Arthritis Rheumatol. 71, 583–593 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Attur, M. et al. Interleukin 1 receptor antagonist (IL1RN) gene variants predict radiographic severity of knee osteoarthritis and risk of incident disease. Ann. Rheum. Dis. 79, 400–407 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Latourte, A. et al. Systemic inhibition of IL-6/Stat3 signalling protects against experimental osteoarthritis. Ann. Rheum. Dis. 76, 748–755 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Nasi, S., So, A., Combes, C., Daudon, M. & Busso, N. Interleukin-6 and chondrocyte mineralisation act in tandem to promote experimental osteoarthritis. Ann. Rheum. Dis. 75, 1372–1379 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Kadri, A. et al. Osteoprotegerin inhibits cartilage degradation through an effect on trabecular bone in murine experimental osteoarthritis. Arthritis Rheum. 58, 2379–2386 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Chevalier, X. et al. Adalimumab in patients with hand osteoarthritis refractory to analgesics and NSAIDs: a randomised, multicentre, double-blind, placebo-controlled trial. Ann. Rheum. Dis. 74, 1697–1705 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Kloppenburg, M. et al. Phase IIa, placebo-controlled, randomised study of lutikizumab, an anti-interleukin-1alpha and anti-interleukin-1beta dual variable domain immunoglobulin, in patients with erosive hand osteoarthritis. Ann. Rheum. Dis. 78, 413–420 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Persson, M. S. M., Sarmanova, A., Doherty, M. & Zhang, W. Conventional and biologic disease-modifying anti-rheumatic drugs for osteoarthritis: a meta-analysis of randomized controlled trials. Rheumatology 57, 1830–1837 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Richette, P. et al. Efficacy of tocilizumab in patients with hand osteoarthritis: double blind, randomised, placebo-controlled, multicentre trial. Ann. Rheum. Dis. https://doi.org/10.1136/annrheumdis-2020-218547 (2020).

    Article  PubMed  Google Scholar 

  39. Sellam, J. & Berenbaum, F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat. Rev. Rheumatol. 6, 625–635 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Chao, J. et al. Inflammatory characteristics on ultrasound predict poorer longterm response to intraarticular corticosteroid injections in knee osteoarthritis. J. Rheumatol. 37, 650–655 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. de Lange-Brokaar, B. J. et al. Degree of synovitis on MRI by comprehensive whole knee semi-quantitative scoring method correlates with histologic and macroscopic features of synovial tissue inflammation in knee osteoarthritis. Osteoarthritis Cartilage 22, 1606–1613 (2014).

    Article  PubMed  Google Scholar 

  42. Loeuille, D. et al. Macroscopic and microscopic features of synovial membrane inflammation in the osteoarthritic knee: correlating magnetic resonance imaging findings with disease severity. Arthritis Rheum. 52, 3492–3501 (2005).

    Article  PubMed  Google Scholar 

  43. af Klint, E. et al. Evaluation of arthroscopy and macroscopic scoring. Arthritis Res. Ther. 11, R81 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Krenn, V. et al. Grading of chronic synovitis — a histopathological grading system for molecular and diagnostic pathology. Pathol. Res. Pract. 198, 317–325 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Krenn, V. et al. Synovitis score: discrimination between chronic low-grade and high-grade synovitis. Histopathology 49, 358–364 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Slansky, E. et al. Quantitative determination of the diagnostic accuracy of the synovitis score and its components. Histopathology 57, 436–443 (2010).

    Article  PubMed  Google Scholar 

  47. Krenn, V. et al. 15 years of the histopathological synovitis score, further development and review: a diagnostic score for rheumatology and orthopaedics. Pathol. Res. Pract. 213, 874–881 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Oehler, S., Neureiter, D., Meyer-Scholten, C. & Aigner, T. Subtyping of osteoarthritic synoviopathy. Clin. Exp. Rheumatol. 20, 633–640 (2002).

    CAS  PubMed  Google Scholar 

  49. Mathiessen, A. & Conaghan, P. G. Synovitis in osteoarthritis: current understanding with therapeutic implications. Arthritis Res. Ther. 19, 18 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Mussawy, H. et al. The histopathological synovitis score is influenced by biopsy location in patients with knee osteoarthritis. Arch. Orthop. Trauma. Surg. https://doi.org/10.1007/s00402-021-03889-x (2021).

    Article  PubMed  Google Scholar 

  51. de Lange-Brokaar, B. J. et al. Association of pain in knee osteoarthritis with distinct patterns of synovitis. Arthritis Rheumatol. 67, 733–740 (2015).

    Article  PubMed  Google Scholar 

  52. Nanus, D. E. et al. Synovial tissue from sites of joint pain in knee osteoarthritis patients exhibits a differential phenotype with distinct fibroblast subsets. EBioMedicine https://doi.org/10.1016/j.ebiom.2021.103618 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wyatt, L. A. et al. Histopathological subgroups in knee osteoarthritis. Osteoarthritis Cartilage 25, 14–22 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Benito, M. J., Veale, D. J., FitzGerald, O., van den Berg, W. B. & Bresnihan, B. Synovial tissue inflammation in early and late osteoarthritis. Ann. Rheum. Dis. 64, 1263–1267 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Livshits, G. et al. Interleukin-6 is a significant predictor of radiographic knee osteoarthritis: the Chingford Study. Arthritis Rheum. 60, 2037–2045 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Stannus, O. et al. Circulating levels of IL-6 and TNF-alpha are associated with knee radiographic osteoarthritis and knee cartilage loss in older adults. Osteoarthritis Cartilage 18, 1441–1447 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Labinsky, H. et al. Multiparameter analysis identifies heterogeneity in knee osteoarthritis synovial responses. Arthritis Rheumatol. 72, 598–608 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chou, C. H. et al. Synovial cell cross-talk with cartilage plays a major role in the pathogenesis of osteoarthritis. Sci. Rep. 10, 10868 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Klein-Wieringa, I. R. et al. Inflammatory cells in patients with endstage knee osteoarthritis: a comparison between the synovium and the infrapatellar fat pad. J. Rheumatol. 43, 771–778 (2016).

    Article  PubMed  Google Scholar 

  61. Wood, M. J. et al. Macrophage proliferation distinguishes 2 subgroups of knee osteoarthritis patients. JCI Insight 4, e125325 (2019).

    Article  PubMed Central  Google Scholar 

  62. Watanabe, S., Alexander, M., Misharin, A. V. & Budinger, G. R. S. The role of macrophages in the resolution of inflammation. J. Clin. Invest. 129, 2619–2628 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Gomez-Aristizabal, A., Gandhi, R., Mahomed, N. N., Marshall, K. W. & Viswanathan, S. Synovial fluid monocyte/macrophage subsets and their correlation to patient-reported outcomes in osteoarthritic patients: a cohort study. Arthritis Res. Ther. 21, 26 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kraus, V. B. et al. Direct in vivo evidence of activated macrophages in human osteoarthritis. Osteoarthritis Cartilage 24, 1613–1621 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Raghu, H. et al. CCL2/CCR2, but not CCL5/CCR5, mediates monocyte recruitment, inflammation and cartilage destruction in osteoarthritis. Ann. Rheum. Dis. 76, 914–922 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Bondeson, J. et al. The role of synovial macrophages and macrophage-produced mediators in driving inflammatory and destructive responses in osteoarthritis. Arthritis Rheum. 62, 647–657 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Bondeson, J., Wainwright, S. D., Lauder, S., Amos, N. & Hughes, C. E. The role of synovial macrophages and macrophage-produced cytokines in driving aggrecanases, matrix metalloproteinases, and other destructive and inflammatory responses in osteoarthritis. Arthritis Res. Ther. 8, R187 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Wu, C. L. et al. Conditional macrophage depletion increases inflammation and does not inhibit the development of osteoarthritis in obese macrophage fas-induced apoptosis-transgenic mice. Arthritis Rheumatol. 69, 1772–1783 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Orecchioni, M., Ghosheh, Y., Pramod, A. B. & Ley, K. Macrophage polarization: different gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs. alternatively activated macrophages. Front. Immunol. 10, 1084 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Viola, A., Munari, F., Sanchez-Rodriguez, R., Scolaro, T. & Castegna, A. The metabolic signature of macrophage responses. Front. Immunol. 10, 1462 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Daghestani, H. N., Pieper, C. F. & Kraus, V. B. Soluble macrophage biomarkers indicate inflammatory phenotypes in patients with knee osteoarthritis. Arthritis Rheumatol. 67, 956–965 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Liu, B., Zhang, M., Zhao, J., Zheng, M. & Yang, H. Imbalance of M1/M2 macrophages is linked to severity level of knee osteoarthritis. Exp. Ther. Med. 16, 5009–5014 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Manferdini, C. et al. From osteoarthritic synovium to synovial-derived cells characterization: synovial macrophages are key effector cells. Arthritis Res. Ther. 18, 83 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Fahy, N. et al. Human osteoarthritic synovium impacts chondrogenic differentiation of mesenchymal stem cells via macrophage polarisation state. Osteoarthritis Cartilage 22, 1167–1175 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Saito, I., Koshino, T., Nakashima, K., Uesugi, M. & Saito, T. Increased cellular infiltrate in inflammatory synovia of osteoarthritic knees. Osteoarthritis Cartilage 10, 156–162 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Madsen, D. H. et al. M2-like macrophages are responsible for collagen degradation through a mannose receptor-mediated pathway. J. Cell Biol. 202, 951–966 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dai, M., Sui, B., Xue, Y., Liu, X. & Sun, J. Cartilage repair in degenerative osteoarthritis mediated by squid type II collagen via immunomodulating activation of M2 macrophages, inhibiting apoptosis and hypertrophy of chondrocytes. Biomaterials 180, 91–103 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Hoeksema, M. A. & Glass, C. K. Nature and nurture of tissue-specific macrophage phenotypes. Atherosclerosis 281, 159–167 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Young, L. et al. Effects of intraarticular glucocorticoids on macrophage infiltration and mediators of joint damage in osteoarthritis synovial membranes: findings in a double-blind, placebo-controlled study. Arthritis Rheum. 44, 343–350 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Siebelt, M. et al. Triamcinolone acetonide activates an anti-inflammatory and folate receptor-positive macrophage that prevents osteophytosis in vivo. Arthritis Res. Ther. 17, 352 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Ha, C. W. et al. A multicenter, single-blind, phase IIa clinical trial to evaluate the efficacy and safety of a cell-mediated gene therapy in degenerative knee arthritis patients. Hum. Gene Ther. Clin. Dev. 26, 125–130 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Cherian, J. J. et al. Preliminary results of a phase II randomized study to determine the efficacy and safety of genetically engineered allogeneic human chondrocytes expressing TGF-beta1 in patients with grade 3 chronic degenerative joint disease of the knee. Osteoarthritis Cartilage 23, 2109–2118 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Ting, R. et al. Fast 18F labeling of a near-infrared fluorophore enables positron emission tomography and optical imaging of sentinel lymph nodes. Bioconjug. Chem. 21, 1811–1819 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yang, X. et al. Detection of osteoarthritis inflammation by single-photon emission computed tomography based on an inflammation-targeting peptide cFLFLF. Mol. Imaging Biol. 23, 895–904 (2021).

    Article  CAS  PubMed  Google Scholar 

  85. Meester, E. J. et al. Imaging inflammation in atherosclerotic plaques, targeting SST2 with [111In]In-DOTA-JR11. J. Nucl. Cardiol. 28, 2506–2513 (2021).

    Article  PubMed  Google Scholar 

  86. Temple-Wong, M. M. et al. Hyaluronan concentration and size distribution in human knee synovial fluid: variations with age and cartilage degeneration. Arthritis Res. Ther. 18, 18 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Balazs, E. A. Viscosupplementation for treatment of osteoarthritis: from initial discovery to current status and results. Surg. Technol. Int. 12, 278–289 (2004).

    PubMed  Google Scholar 

  88. Ni, S. et al. The involvement of follistatin-like protein 1 in osteoarthritis by elevating NF-kappaB-mediated inflammatory cytokines and enhancing fibroblast like synoviocyte proliferation. Arthritis Res. Ther. 17, 91 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Kapoor, M., Martel-Pelletier, J., Lajeunesse, D., Pelletier, J. P. & Fahmi, H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat. Rev. Rheumatol. 7, 33–42 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Mizoguchi, F. et al. Functionally distinct disease-associated fibroblast subsets in rheumatoid arthritis. Nat. Commun. 9, 789 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Hsueh, M. F., Zhang, X., Wellman, S. S., Bolognesi, M. P. & Kraus, V. B. Synergistic roles of macrophages and neutrophils in osteoarthritis progression. Arthritis Rheumatol. 73, 89–99 (2021).

    Article  CAS  PubMed  Google Scholar 

  92. Gupta, K., Shukla, M., Cowland, J. B., Malemud, C. J. & Haqqi, T. M. Neutrophil gelatinase-associated lipocalin is expressed in osteoarthritis and forms a complex with matrix metalloproteinase 9. Arthritis Rheum. 56, 3326–3335 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. de Lange-Brokaar, B. J. et al. Characterization of synovial mast cells in knee osteoarthritis: association with clinical parameters. Osteoarthritis Cartilage 24, 664–671 (2016).

    Article  PubMed  Google Scholar 

  94. Wang, Q. et al. IgE-mediated mast cell activation promotes inflammation and cartilage destruction in osteoarthritis. eLife 8, e39905 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Sousa-Valente, J. et al. Role of TrkA signalling and mast cells in the initiation of osteoarthritis pain in the monoiodoacetate model. Osteoarthritis Cartilage 26, 84–94 (2018).

    Article  CAS  PubMed  Google Scholar 

  96. Enomoto, H. et al. Vascular endothelial growth factor isoforms and their receptors are expressed in human osteoarthritic cartilage. Am. J. Pathol. 162, 171–181 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kennedy, A. et al. Angiogenesis and blood vessel stability in inflammatory arthritis. Arthritis Rheum. 62, 711–721 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Kim, H. R., Lee, J. H., Kim, K. W., Kim, B. M. & Lee, S. H. The relationship between synovial fluid VEGF and serum leptin with ultrasonographic findings in knee osteoarthritis. Int. J. Rheum. Dis. 19, 233–240 (2016).

    Article  CAS  PubMed  Google Scholar 

  99. Nagao, M. et al. Vascular endothelial growth factor in cartilage development and osteoarthritis. Sci. Rep. 7, 13027 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Li, Y. S., Luo, W., Zhu, S. A. & Lei, G. H. T cells in osteoarthritis: alterations and beyond. Front. Immunol. 8, 356 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Rosshirt, N. et al. Proinflammatory T cell polarization is already present in patients with early knee osteoarthritis. Arthritis Res. Ther. 23, 37 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nees, T. A. et al. T helper cell infiltration in osteoarthritis-related knee pain and disability. J. Clin. Med. 9, 2423 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  103. Thomas, A. C., Hubbard-Turner, T., Wikstrom, E. A. & Palmieri-Smith, R. M. Epidemiology of posttraumatic osteoarthritis. J. Athl. Train. 52, 491–496 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Whittaker, J. L. et al. Association between MRI-defined osteoarthritis, pain, function and strength 3–10 years following knee joint injury in youth sport. Br. J. Sports Med. 52, 934–939 (2018).

    Article  PubMed  Google Scholar 

  105. Scanzello, C. R. et al. Synovial inflammation in patients undergoing arthroscopic meniscectomy: molecular characterization and relationship to symptoms. Arthritis Rheum. 63, 391–400 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Pessler, F. et al. The synovitis of “non-inflammatory” orthopaedic arthropathies: a quantitative histological and immunohistochemical analysis. Ann. Rheum. Dis. 67, 1184–1187 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Lieberthal, J., Sambamurthy, N. & Scanzello, C. R. Inflammation in joint injury and post-traumatic osteoarthritis. Osteoarthritis Cartilage 23, 1825–1834 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Davis, J. E. et al. A single recent injury is a potent risk factor for the development of accelerated knee osteoarthritis: data from the osteoarthritis initiative. Rheumatol. Int. 37, 1759–1764 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Driban, J. B. et al. Association of knee injuries with accelerated knee osteoarthritis progression: data from the Osteoarthritis Initiative. Arthritis Care Res. 66, 1673–1679 (2014).

    Article  Google Scholar 

  110. Gelber, A. C. et al. Joint injury in young adults and risk for subsequent knee and hip osteoarthritis. Ann. Intern. Med. 133, 321–328 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Sward, P., Frobell, R., Englund, M., Roos, H. & Struglics, A. Cartilage and bone markers and inflammatory cytokines are increased in synovial fluid in the acute phase of knee injury (hemarthrosis) — a cross-sectional analysis. Osteoarthritis Cartilage 20, 1302–1308 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Pham, T. M., Erichsen, J. L., Kowal, J. M., Overgaard, S. & Schmal, H. Elevation of pro-inflammatory cytokine levels following intra-articular fractures-a systematic review. Cells 10, 902 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Pham, T. M., Frich, L. H., Lambertsen, K. L., Overgaard, S. & Schmal, H. Elevation of inflammatory cytokines and proteins after intra-articular ankle fracture: a cross-sectional study of 47 ankle fracture patients. Mediators Inflamm. 2021, 8897440 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Jacobs, C. A. et al. Dysregulated inflammatory response related to cartilage degradation after ACL injury. Med. Sci. Sports Exerc. 52, 535–541 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Adams, S. B. et al. Inflammatory microenvironment persists after bone healing in intra-articular ankle fractures. Foot Ankle Int. 38, 479–484 (2017).

    Article  PubMed  Google Scholar 

  116. Roemer, F. W. et al. Molecular and structural biomarkers of inflammation at two years after acute anterior cruciate ligament injury do not predict structural knee osteoarthritis at five years. Arthritis Rheumatol. 71, 238–243 (2019).

    Article  CAS  PubMed  Google Scholar 

  117. Griffin, T. M. & Guilak, F. The role of mechanical loading in the onset and progression of osteoarthritis. Exerc. Sport. Sci. Rev. 33, 195–200 (2005).

    Article  PubMed  Google Scholar 

  118. Fang, T., Zhou, X., Jin, M., Nie, J. & Li, X. Molecular mechanisms of mechanical load-induced osteoarthritis. Int. Orthop. 45, 1125–1136 (2021).

    Article  PubMed  Google Scholar 

  119. Nazet, U. et al. Housekeeping gene validation for RT-qPCR studies on synovial fibroblasts derived from healthy and osteoarthritic patients with focus on mechanical loading. PLoS One 14, e0225790 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Fahy, N., Menzel, U., Alini, M. & Stoddart, M. J. Shear and dynamic compression modulates the inflammatory phenotype of human monocytes in vitro. Front. Immunol. 10, 383 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ruffino, J. S. et al. Moderate-intensity exercise alters markers of alternative activation in circulating monocytes in females: a putative role for PPARgamma. Eur. J. Appl. Physiol. 116, 1671–1682 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Helmark, I. C. et al. Exercise increases interleukin-10 levels both intraarticularly and peri-synovially in patients with knee osteoarthritis: a randomized controlled trial. Arthritis Res. Ther. 12, R126 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Boonstra, A. et al. Macrophages and myeloid dendritic cells, but not plasmacytoid dendritic cells, produce IL-10 in response to MyD88- and TRIF-dependent TLR signals, and TLR-independent signals. J. Immunol. 177, 7551–7558 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Yoshimura, N. et al. Accumulation of metabolic risk factors such as overweight, hypertension, dyslipidaemia, and impaired glucose tolerance raises the risk of occurrence and progression of knee osteoarthritis: a 3-year follow-up of the ROAD study. Osteoarthritis Cartilage 20, 1217–1226 (2012).

    Article  CAS  PubMed  Google Scholar 

  125. Batushansky, A. et al. Fundamentals of OA. An initiative of osteoarthritis and cartilage. Chapter 9: obesity and metabolic factors in OA. Osteoarthritis Cartilage https://doi.org/10.1016/j.joca.2021.06.013 (2021).

    Article  PubMed  Google Scholar 

  126. Prieto-Alhambra, D. et al. Incidence and risk factors for clinically diagnosed knee, hip and hand osteoarthritis: influences of age, gender and osteoarthritis affecting other joints. Ann. Rheum. Dis. 73, 1659–1664 (2014).

    Article  PubMed  Google Scholar 

  127. Losina, E. et al. Lifetime risk and age at diagnosis of symptomatic knee osteoarthritis in the US. Arthritis Care Res. 65, 703–711 (2013).

    Article  Google Scholar 

  128. Murphy, L. B. et al. One in four people may develop symptomatic hip osteoarthritis in his or her lifetime. Osteoarthritis Cartilage 18, 1372–1379 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Berenbaum, F., Wallace, I. J., Lieberman, D. E. & Felson, D. T. Modern-day environmental factors in the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 14, 674–681 (2018).

    Article  PubMed  Google Scholar 

  130. Harasymowicz, N. S. et al. Regional differences between perisynovial and infrapatellar adipose tissue depots and their response to Class II and Class III obesity in patients with osteoarthritis. Arthritis Rheumatol. 69, 1396–1406 (2017).

    Article  CAS  PubMed  Google Scholar 

  131. Duan, L. et al. Infrapatellar fat pads participate in the development of knee osteoarthritis in obese patients via the activation of the NFkappaB signaling pathway. Int. J. Mol. Med. 46, 2260–2270 (2020).

    Article  CAS  PubMed  Google Scholar 

  132. Takata, K. et al. Increase in tryptase and its role in the synovial membrane of overweight and obese patients with osteoarthritis of the knee. Diabetes Metab. Syndr. Obes. 13, 1491–1497 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sun, A. R. et al. Obesity-associated metabolic syndrome spontaneously induces infiltration of pro-inflammatory macrophage in synovium and promotes osteoarthritis. PLoS One 12, e0183693 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Larranaga-Vera, A. et al. Increased synovial lipodystrophy induced by high fat diet aggravates synovitis in experimental osteoarthritis. Arthritis Res. Ther. 19, 264 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Yusuf, E. et al. Association between weight or body mass index and hand osteoarthritis: a systematic review. Ann. Rheum. Dis. 69, 761–765 (2010).

    Article  PubMed  Google Scholar 

  136. Reyes, C. et al. Association between overweight and obesity and risk of clinically diagnosed knee, hip, and hand osteoarthritis: a population-based cohort study. Arthritis Rheumatol. 68, 1869–1875 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Yang, W. H. et al. Leptin induces IL-6 expression through OBRl receptor signaling pathway in human synovial fibroblasts. PLoS One 8, e75551 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Jafarzadeh, S. R. et al. Mediating role of bone marrow lesions, synovitis, pain sensitization, and depressive symptoms on knee pain improvement following substantial weight loss. Arthritis Rheumatol. 72, 420–427 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Gudbergsen, H. et al. Changes in bone marrow lesions in response to weight-loss in obese knee osteoarthritis patients: a prospective cohort study. BMC Musculoskelet. Disord. 14, 106 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Henriksen, M. et al. Structural changes in the knee during weight loss maintenance after a significant weight loss in obese patients with osteoarthritis: a report of secondary outcome analyses from a randomized controlled trial. Osteoarthritis Cartilage 22, 639–646 (2014).

    Article  CAS  PubMed  Google Scholar 

  141. Daugaard, C. L. et al. The impact of a significant weight loss on inflammation assessed on DCE-MRI and static MRI in knee osteoarthritis: a prospective cohort study. Osteoarthritis Cartilage 28, 766–773 (2020).

    Article  CAS  PubMed  Google Scholar 

  142. Piva, S. R. et al. Links between osteoarthritis and diabetes: implications for management from a physical activity perspective. Clin. Geriatr. Med. 31, 67–87 (2015).

    Article  PubMed  Google Scholar 

  143. Schett, G. et al. Diabetes is an independent predictor for severe osteoarthritis: results from a longitudinal cohort study. Diabetes Care 36, 403–409 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Louati, K., Vidal, C., Berenbaum, F. & Sellam, J. Association between diabetes mellitus and osteoarthritis: systematic literature review and meta-analysis. RMD Open 1, e000077 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Niu, J., Clancy, M., Aliabadi, P., Vasan, R. & Felson, D. T. Metabolic syndrome, its components, and knee osteoarthritis: the Framingham Osteoarthritis Study. Arthritis Rheumatol. 69, 1194–1203 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Monira Hussain, S. et al. Incidence of total knee and hip replacement for osteoarthritis in relation to the metabolic syndrome and its components: a prospective cohort study. Semin. Arthritis Rheum. 43, 429–436 (2014).

    Article  PubMed  Google Scholar 

  147. Kuusalo, L. et al. Metabolic osteoarthritis — relation of diabetes and cardiovascular disease with knee osteoarthritis. Osteoarthritis Cartilage 29, 230–234 (2021).

    Article  CAS  PubMed  Google Scholar 

  148. Rogers-Soeder, T. S. et al. Association of diabetes mellitus and biomarkers of abnormal glucose metabolism with incident radiographic knee osteoarthritis. Arthritis Care Res. 72, 98–106 (2020).

    Article  CAS  Google Scholar 

  149. Hamada, D. et al. Suppressive effects of insulin on tumor necrosis factor-dependent early osteoarthritic changes associated with obesity and type 2 diabetes mellitus. Arthritis Rheumatol. 68, 1392–1402 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Griffin, T. M. & Huffman, K. M. Editorial: insulin resistance: releasing the brakes on synovial inflammation and osteoarthritis? Arthritis Rheumatol. 68, 1330–1333 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Tsai, C. H. et al. High glucose induces vascular endothelial growth factor production in human synovial fibroblasts through reactive oxygen species generation. Biochim. Biophys. Acta 1830, 2649–2658 (2013).

    Article  CAS  PubMed  Google Scholar 

  152. Steenvoorden, M. M. et al. Activation of receptor for advanced glycation end products in osteoarthritis leads to increased stimulation of chondrocytes and synoviocytes. Arthritis Rheum. 54, 253–263 (2006).

    Article  CAS  PubMed  Google Scholar 

  153. Veronese, N. et al. The relationship between the dietary inflammatory index and prevalence of radiographic symptomatic osteoarthritis: data from the Osteoarthritis Initiative. Eur. J. Nutr. 58, 253–260 (2019).

    Article  PubMed  Google Scholar 

  154. Wang, X. et al. Knee effusion-synovitis volume measurement and effects of vitamin D supplementation in patients with knee osteoarthritis. Osteoarthritis Cartilage 25, 1304–1312 (2017).

    Article  CAS  PubMed  Google Scholar 

  155. Perry, T. A. et al. Effect of Vitamin D supplementation on synovial tissue volume and subchondral bone marrow lesion volume in symptomatic knee osteoarthritis. BMC Musculoskelet. Disord. 20, 76 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Wang, Z. et al. Effectiveness of curcuma longa extract for the treatment of symptoms and effusion-synovitis of knee osteoarthritis: a randomized trial. Ann. Intern. Med. 173, 861–869 (2020).

    Article  PubMed  Google Scholar 

  157. Veronese, N. et al. Mediterranean diet and knee osteoarthritis outcomes: a longitudinal cohort study. Clin. Nutr. 38, 2735–2739 (2019).

    Article  PubMed  Google Scholar 

  158. Xu, C. et al. Dietary patterns and progression of knee osteoarthritis: data from the osteoarthritis initiative. Am. J. Clin. Nutr. 111, 667–676 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Ulici, V. et al. Osteoarthritis induced by destabilization of the medial meniscus is reduced in germ-free mice. Osteoarthritis Cartilage 26, 1098–1109 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Dunn, C. M. et al. Identification of cartilage microbial DNA signatures and associations with knee and hip osteoarthritis. Arthritis Rheumatol. 72, 1111–1122 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Zhao, Y. et al. Detection and characterization of bacterial nucleic acids in culture-negative synovial tissue and fluid samples from rheumatoid arthritis or osteoarthritis patients. Sci. Rep. 8, 14305 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Schott, E. M. et al. Targeting the gut microbiome to treat the osteoarthritis of obesity. JCI Insight 3, e95997 (2018).

    Article  PubMed Central  Google Scholar 

  163. Huang, Z. Y., Stabler, T., Pei, F. X. & Kraus, V. B. Both systemic and local lipopolysaccharide (LPS) burden are associated with knee OA severity and inflammation. Osteoarthritis Cartilage 24, 1769–1775 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Mohammad, S. & Thiemermann, C. Role of metabolic endotoxemia in systemic inflammation and potential interventions. Front. Immunol. 11, 594150 (2020).

    Article  CAS  PubMed  Google Scholar 

  165. Fuke, N., Nagata, N., Suganuma, H. & Ota, T. Regulation of gut microbiota and metabolic endotoxemia with dietary factors. Nutrients 11, 2277 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  166. Boer, C. G. et al. Intestinal microbiome composition and its relation to joint pain and inflammation. Nat. Commun. 10, 4881 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Mao, X., Fu, P., Wang, L. & Xiang, C. Mitochondria: potential targets for osteoarthritis. Front. Med. 7, 581402 (2020).

    Article  Google Scholar 

  168. Geurts, J. et al. Prematurely aging mitochondrial DNA mutator mice display subchondral osteopenia and chondrocyte hypertrophy without further osteoarthritis features. Sci. Rep. 10, 1296 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Torroni, A. et al. Classification of European mtDNAs from an analysis of three European populations. Genetics 144, 1835–1850 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Da Sylva, T. R., Connor, A., Mburu, Y., Keystone, E. & Wu, G. E. Somatic mutations in the mitochondria of rheumatoid arthritis synoviocytes. Arthritis Res. Ther. 7, R844–R851 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Van den Bossche, J. et al. mitochondrial dysfunction prevents repolarization of inflammatory macrophages. Cell Rep. 17, 684–696 (2016).

    Article  PubMed  CAS  Google Scholar 

  172. Jeon, O. H. et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat. Med. 23, 775–781 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Yohn, C. O. B., et al. Senescent synoviocytes in knee osteoarthritis correlate with disease biomarkers, synovitis, and knee pain [abstract]. Arthritis Rheumatol. https://acrabstracts.org/abstract/senescent-synoviocytes-in-knee-osteoarthritis-correlate-with-disease-biomarkers-synovitis-and-knee-pain/ (2019).

  174. Anderson, J. R. et al. 1H NMR metabolomics identifies underlying inflammatory pathology in osteoarthritis and rheumatoid arthritis synovial joints. J. Proteome Res. 17, 3780–3790 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Farrell, A. J., Blake, D. R., Palmer, R. M. & Moncada, S. Increased concentrations of nitrite in synovial fluid and serum samples suggest increased nitric oxide synthesis in rheumatic diseases. Ann. Rheum. Dis. 51, 1219–1222 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Melchiorri, C. et al. Enhanced and coordinated in vivo expression of inflammatory cytokines and nitric oxide synthase by chondrocytes from patients with osteoarthritis. Arthritis Rheum. 41, 2165–2174 (1998).

    Article  CAS  PubMed  Google Scholar 

  177. Abramson, S. B. Nitric oxide in inflammation and pain associated with osteoarthritis. Arthritis Res. Ther. 10, S2 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Pelletier, J. P. et al. Selective inhibition of inducible nitric oxide synthase in experimental osteoarthritis is associated with reduction in tissue levels of catabolic factors. J. Rheumatol. 26, 2002–2014 (1999).

    CAS  PubMed  Google Scholar 

  179. Hellio le Graverand, M. P. et al. A 2-year randomised, double-blind, placebo-controlled, multicentre study of oral selective iNOS inhibitor, cindunistat (SD-6010), in patients with symptomatic osteoarthritis of the knee. Ann. Rheum. Dis. 72, 187–195 (2013).

    Article  PubMed  CAS  Google Scholar 

  180. Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha. Nature 496, 238–242 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Keiran, N. et al. SUCNR1 controls an anti-inflammatory program in macrophages to regulate the metabolic response to obesity. Nat. Immunol. 20, 581–592 (2019).

    Article  CAS  PubMed  Google Scholar 

  182. Li, Y. et al. Succinate induces synovial angiogenesis in rheumatoid arthritis through metabolic remodeling and HIF-1alpha/VEGF axis. Free Radic. Biol. Med. 126, 1–14 (2018).

    Article  PubMed  CAS  Google Scholar 

  183. Wojdasiewicz, P., Poniatowski, L. A. & Szukiewicz, D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm. 2014, 561459 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Futani, H. et al. Relation between interleukin-18 and PGE2 in synovial fluid of osteoarthritis: a potential therapeutic target of cartilage degradation. J. Immunother. 25, S61–S64 (2002).

    Article  CAS  PubMed  Google Scholar 

  185. Attur, M. et al. Prostaglandin E2 exerts catabolic effects in osteoarthritis cartilage: evidence for signaling via the EP4 receptor. J. Immunol. 181, 5082–5088 (2008).

    Article  CAS  PubMed  Google Scholar 

  186. Valdes, A. M. et al. Omega-6 oxylipins generated by soluble epoxide hydrolase are associated with knee osteoarthritis. J. Lipid Res. 59, 1763–1770 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Lambert, C. et al. The damage-associated molecular patterns (DAMPs) as potential targets to treat osteoarthritis: perspectives from a review of the literature. Front. Med. 7, 607186 (2020).

    Article  Google Scholar 

  188. Millerand, M., Berenbaum, F. & Jacques, C. Danger signals and inflammaging in osteoarthritis. Clin. Exp. Rheumatol. 37, 48–56 (2019).

    PubMed  Google Scholar 

  189. Heinola, T. et al. High mobility group box-1 (HMGB-1) in osteoarthritic cartilage. Clin. Exp. Rheumatol. 28, 511–518 (2010).

    CAS  PubMed  Google Scholar 

  190. Li, Z. C. et al. Correlation of synovial fluid HMGB-1 levels with radiographic severity of knee osteoarthritis. Clin. Invest. Med. 34, E298 (2011).

    Article  CAS  PubMed  Google Scholar 

  191. Ke, X. et al. Synovial fluid HMGB-1 levels are associated with osteoarthritis severity. Clin. Lab. 61, 809–818 (2015).

    Article  CAS  PubMed  Google Scholar 

  192. Aulin, C., Lassacher, T., Palmblad, K. & Erlandsson Harris, H. Early stage blockade of the alarmin HMGB1 reduces cartilage destruction in experimental OA. Osteoarthritis Cartilage 28, 698–707 (2020).

    Article  CAS  PubMed  Google Scholar 

  193. Lambrecht, S., Juchtmans, N. & Elewaut, D. Heat-shock proteins in stromal joint tissues: innocent bystanders or disease-initiating proteins? Rheumatology 53, 223–232 (2014).

    Article  CAS  PubMed  Google Scholar 

  194. Takahashi, K. et al. Localization of heat shock protein in osteoarthritic cartilage. Scand. J. Rheumatol. 26, 368–375 (1997).

    Article  CAS  PubMed  Google Scholar 

  195. Ngarmukos, S., Scaramuzza, S., Theerawattanapong, N., Tanavalee, A. & Honsawek, S. Circulating and synovial fluid heat shock protein 70 are correlated with severity in knee osteoarthritis. Cartilage 11, 323–328 (2020).

    Article  CAS  PubMed  Google Scholar 

  196. Son, Y. O., Kim, H. E., Choi, W. S., Chun, C. H. & Chun, J. S. RNA-binding protein ZFP36L1 regulates osteoarthritis by modulating members of the heat shock protein 70 family. Nat. Commun. 10, 77 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Lambert, C. et al. Gene expression pattern of cells from inflamed and normal areas of osteoarthritis synovial membrane. Arthritis Rheumatol. 66, 960–968 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Schelbergen, R. F. et al. Alarmins S100A8/S100A9 aggravate osteophyte formation in experimental osteoarthritis and predict osteophyte progression in early human symptomatic osteoarthritis. Ann. Rheum. Dis. 75, 218–225 (2016).

    Article  CAS  PubMed  Google Scholar 

  199. Ruan, G. et al. Associations between serum S100A8/S100A9 and knee symptoms, joint structures and cartilage enzymes in patients with knee osteoarthritis. Osteoarthritis Cartilage 27, 99–105 (2019).

    Article  CAS  PubMed  Google Scholar 

  200. Addimanda, O. et al. Elevated serum levels of alarmin S100A8/A9 in patients with hand osteoarthritis. Clin. Exp. Rheumatol. 37, 885 (2019).

    PubMed  Google Scholar 

  201. Daheshia, M. & Yao, J. Q. The interleukin 1beta pathway in the pathogenesis of osteoarthritis. J. Rheumatol. 35, 2306–2312 (2008).

    Article  CAS  PubMed  Google Scholar 

  202. Inoue, H. et al. High levels of serum IL-18 promote cartilage loss through suppression of aggrecan synthesis. Bone 42, 1102–1110 (2008).

    Article  CAS  PubMed  Google Scholar 

  203. McAllister, M. J., Chemaly, M., Eakin, A. J., Gibson, D. S. & McGilligan, V. E. NLRP3 as a potentially novel biomarker for the management of osteoarthritis. Osteoarthritis Cartilage 26, 612–619 (2018).

    Article  CAS  PubMed  Google Scholar 

  204. Schroder, K., Zhou, R. & Tschopp, J. The NLRP3 inflammasome: a sensor for metabolic danger? Science 327, 296–300 (2010).

    Article  CAS  PubMed  Google Scholar 

  205. Zhong, Z. et al. NF-kappaB restricts inflammasome activation via elimination of damaged mitochondria. Cell 164, 896–910 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Sanchez-Lopez, E. et al. Choline uptake and metabolism modulate macrophage IL-1beta and IL-18 production. Cell Metab. 29, 1350–1362.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Zhong, Z. et al. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature 560, 198–203 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Jin, C. et al. NLRP3 inflammasome plays a critical role in the pathogenesis of hydroxyapatite-associated arthropathy. Proc. Natl Acad. Sci. USA 108, 14867–14872 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    Article  CAS  PubMed  Google Scholar 

  210. Denoble, A. E. et al. Uric acid is a danger signal of increasing risk for osteoarthritis through inflammasome activation. Proc. Natl Acad. Sci. USA 108, 2088–2093 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Elsaid, K. A. et al. The impact of early intra-articular administration of interleukin-1 receptor antagonist on lubricin metabolism and cartilage degeneration in an anterior cruciate ligament transection model. Osteoarthritis Cartilage 23, 114–121 (2015).

    Article  CAS  PubMed  Google Scholar 

  212. Schieker, M. et al. Effects of interleukin-1beta inhibition on incident hip and knee replacement: exploratory analyses from a randomized, double-blind, placebo-controlled trial. Ann. Intern. Med. 173, 509–515 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Lane, N. & Felson, D. A promising treatment for osteoarthritis? Ann. Intern. Med. 173, 580–581 (2020).

    Article  PubMed  Google Scholar 

  214. Chevalier, X. et al. Intraarticular injection of anakinra in osteoarthritis of the knee: a multicenter, randomized, double-blind, placebo-controlled study. Arthritis Rheum. 61, 344–352 (2009).

    Article  CAS  PubMed  Google Scholar 

  215. Fu, Z. et al. Interleukin-18-induced inflammatory responses in synoviocytes and chondrocytes from osteoarthritic patients. Int. J. Mol. Med. 30, 805–810 (2012).

    Article  CAS  PubMed  Google Scholar 

  216. Shi, J., Gao, W. & Shao, F. Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem. Sci. 42, 245–254 (2017).

    Article  CAS  PubMed  Google Scholar 

  217. Wang, Q. et al. Identification of a central role for complement in osteoarthritis. Nat. Med. 17, 1674–1679 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Assirelli, E. et al. Complement expression and activation in osteoarthritis joint compartments. Front. Immunol. 11, 535010 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Li, Z., Huang, Z. & Bai, L. Cell interplay in osteoarthritis. Front. Cell Dev. Biol. 9, 720477 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Dreier, R., Wallace, S., Fuchs, S., Bruckner, P. & Grassel, S. Paracrine interactions of chondrocytes and macrophages in cartilage degradation: articular chondrocytes provide factors that activate macrophage-derived pro-gelatinase B (pro-MMP-9). J. Cell Sci. 114, 3813–3822 (2001).

    Article  CAS  PubMed  Google Scholar 

  221. Hamasaki, M. et al. Transcriptional profiling of murine macrophages stimulated with cartilage fragments revealed a strategy for treatment of progressive osteoarthritis. Sci. Rep. 10, 7558 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Silverstein, A. M. et al. Toward understanding the role of cartilage particulates in synovial inflammation. Osteoarthritis Cartilage 25, 1353–1361 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Roemer, F. W. et al. What comes first? Multitissue involvement leading to radiographic osteoarthritis: magnetic resonance imaging-based trajectory analysis over four years in the osteoarthritis initiative. Arthritis Rheumatol. 67, 2085–2096 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Hugle, T. & Geurts, J. What drives osteoarthritis?-synovial versus subchondral bone pathology. Rheumatology 56, 1461–1471 (2017).

    CAS  PubMed  Google Scholar 

  225. Hu, W., Chen, Y., Dou, C. & Dong, S. Microenvironment in subchondral bone: predominant regulator for the treatment of osteoarthritis. Ann. Rheum. Dis. 80, 413–422 (2020).

    Article  CAS  Google Scholar 

  226. Yang, C. C., Lin, C. Y., Wang, H. S. & Lyu, S. R. Matrix metalloproteases and tissue inhibitors of metalloproteinases in medial plica and pannus-like tissue contribute to knee osteoarthritis progression. PLoS One 8, e79662 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Furuzawa-Carballeda, J., Macip-Rodriguez, P. M. & Cabral, A. R. Osteoarthritis and rheumatoid arthritis pannus have similar qualitative metabolic characteristics and pro-inflammatory cytokine response. Clin. Exp. Rheumatol. 26, 554–560 (2008).

    CAS  PubMed  Google Scholar 

  228. Yusup, A. et al. Bone marrow lesions, subchondral bone cysts and subchondral bone attrition are associated with histological synovitis in patients with end-stage knee osteoarthritis: a cross-sectional study. Osteoarthritis Cartilage 23, 1858–1864 (2015).

    Article  CAS  PubMed  Google Scholar 

  229. Aso, K. et al. Associations of symptomatic knee osteoarthritis with histopathologic features in subchondral bone. Arthritis Rheumatol. 71, 916–924 (2019).

    Article  CAS  PubMed  Google Scholar 

  230. Arepati, A. I. et al. Osteophyte formation is associated with synovitis in osteoarthritis — the Bunkyo Health Study. Osteoarthritis Cartilage 28, S86–S527 (2020).

    Article  Google Scholar 

  231. Blom, A. B. et al. Synovial lining macrophages mediate osteophyte formation during experimental osteoarthritis. Osteoarthritis Cartilage 12, 627–635 (2004).

    Article  PubMed  Google Scholar 

  232. van Lent, P. L. et al. Crucial role of synovial lining macrophages in the promotion of transforming growth factor beta-mediated osteophyte formation. Arthritis Rheum. 50, 103–111 (2004).

    Article  PubMed  CAS  Google Scholar 

  233. Blaney Davidson, E. N. et al. Resemblance of osteophytes in experimental osteoarthritis to transforming growth factor beta-induced osteophytes: limited role of bone morphogenetic protein in early osteoarthritic osteophyte formation. Arthritis Rheum. 56, 4065–4073 (2007).

    Article  CAS  PubMed  Google Scholar 

  234. Remst, D. F., Blaney Davidson, E. N. & van der Kraan, P. M. Unravelling osteoarthritis-related synovial fibrosis: a step closer to solving joint stiffness. Rheumatology 54, 1954–1963 (2015).

    Article  CAS  PubMed  Google Scholar 

  235. van Helvoort, E. M., Eijkelkamp, N., Lafeber, F. & Mastbergen, S. C. Expression of granulocyte macrophage-colony stimulating factor and its receptor in the synovium of osteoarthritis patients is negatively correlated with pain. Rheumatology 59, 3452–3457 (2020).

    Article  PubMed  CAS  Google Scholar 

  236. Wise, B. L., Seidel, M. F. & Lane, N. E. The evolution of nerve growth factor inhibition in clinical medicine. Nat. Rev. Rheumatol. 17, 34–46 (2021).

    Article  PubMed  Google Scholar 

  237. Stoppiello, L. A. et al. Structural associations of symptomatic knee osteoarthritis. Arthritis Rheumatol. 66, 3018–3027 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Cohen, S. B. et al. A randomized, double-blind study of AMG 108 (a fully human monoclonal antibody to IL-1R1) in patients with osteoarthritis of the knee. Arthritis Res. Ther. 13, R125 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Vincent, T. L. Peripheral pain mechanisms in osteoarthritis. Pain 161, S138–S146 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Bratus-Neuenschwander, A. et al. Pain-associated transcriptome changes in synovium of knee osteoarthritis patients. Genes (Basel) 9, 338 (2018).

    Article  CAS  Google Scholar 

  241. Attard, V. et al. Quantification of intra-articular fibrosis in patients with stiff knee arthroplasties using metal-reduction MRI. Bone Jt. J. 102-B, 1331–1340 (2020).

    Article  Google Scholar 

  242. Kalson, N. S. et al. International consensus on the definition and classification of fibrosis of the knee joint. Bone Jt. J. 98-B, 1479–1488 (2016).

    Article  CAS  Google Scholar 

  243. Toms, J. et al. Targeting fibroblast activation protein: radiosynthesis and preclinical evaluation of an 18F-labeled FAP inhibitor. J. Nucl. Med. 61, 1806–1813 (2020).

    Article  CAS  PubMed  Google Scholar 

  244. Kerna, I. et al. The ADAM12 is upregulated in synovitis and postinflammatory fibrosis of the synovial membrane in patients with early radiographic osteoarthritis. Jt. Bone Spine 81, 51–56 (2014).

    Article  CAS  Google Scholar 

  245. Remst, D. F. et al. Gene expression analysis of murine and human osteoarthritis synovium reveals elevation of transforming growth factor beta-responsive genes in osteoarthritis-related fibrosis. Arthritis Rheumatol. 66, 647–656 (2014).

    Article  CAS  PubMed  Google Scholar 

  246. Rim, Y. A. & Ju, J. H. The role of fibrosis in osteoarthritis progression. Life (Basel) 11, 3 (2020).

    Google Scholar 

  247. Bastiaansen-Jenniskens, Y. M. et al. Stimulation of fibrotic processes by the infrapatellar fat pad in cultured synoviocytes from patients with osteoarthritis: a possible role for prostaglandin f2alpha. Arthritis Rheum. 65, 2070–2080 (2013).

    Article  CAS  PubMed  Google Scholar 

  248. Eymard, F. et al. Knee and hip intra-articular adipose tissues (IAATs) compared with autologous subcutaneous adipose tissue: a specific phenotype for a central player in osteoarthritis. Ann. Rheum. Dis. 76, 1142–1148 (2017).

    Article  CAS  PubMed  Google Scholar 

  249. Davis, J. E. et al. Effusion-synovitis and infrapatellar fat pad signal intensity alteration differentiate accelerated knee osteoarthritis. Rheumatology 58, 418–426 (2019).

    Article  PubMed  Google Scholar 

  250. Inomata, K. et al. Time course analyses of structural changes in the infrapatellar fat pad and synovial membrane during inflammation-induced persistent pain development in rat knee joint. BMC Musculoskelet. Disord. 20, 8 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Barboza, E. et al. Profibrotic infrapatellar fat pad remodeling without M1 macrophage polarization precedes knee osteoarthritis in mice with diet-induced obesity. Arthritis Rheumatol. 69, 1221–1232 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. de Jong, A. J. et al. Lack of high BMI-related features in adipocytes and inflammatory cells in the infrapatellar fat pad (IFP). Arthritis Res. Ther. 19, 186 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  253. Warmink, K. et al. High-fat feeding primes the mouse knee joint to develop osteoarthritis and pathologic infrapatellar fat pad changes after surgically induced injury. Osteoarthritis Cartilage 28, 593–602 (2020).

    Article  CAS  PubMed  Google Scholar 

  254. Takano, S. et al. Transforming growth factor-beta stimulates nerve growth factor production in osteoarthritic synovium. BMC Musculoskelet. Disord. 20, 204 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  255. Blaney Davidson, E. N. et al. TGF-beta is a potent inducer of nerve growth factor in articular cartilage via the ALK5-Smad2/3 pathway. Potential role in OA related pain? Osteoarthritis Cartilage 3, 478–486 (2015).

    Article  Google Scholar 

  256. Grässel, S. & Muschter, D. Recent advances in the treatment of osteoarthritis. F1000Res. 9, F1000 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  257. Vincent, T. L. Of mice and men: converging on a common molecular understanding of osteoarthritis. Lancet Rheumatol. 2, e633–e645 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  258. Wang, X., Hunter, D. J., Jin, X. & Ding, C. The importance of synovial inflammation in osteoarthritis: current evidence from imaging assessments and clinical trials. Osteoarthritis Cartilage 26, 165–174 (2018).

    Article  CAS  PubMed  Google Scholar 

  259. Roemer, F. W. et al. Anatomical distribution of synovitis in knee osteoarthritis and its association with joint effusion assessed on non-enhanced and contrast-enhanced MRI. Osteoarthritis Cartilage 18, 1269–1274 (2010).

    Article  CAS  PubMed  Google Scholar 

  260. Shakoor, D. et al. Are contrast-enhanced and non-contrast MRI findings reflecting synovial inflammation in knee osteoarthritis: a meta-analysis of observational studies. Osteoarthritis Cartilage 28, 126–136 (2020).

    Article  CAS  PubMed  Google Scholar 

  261. Takase, K. et al. Simultaneous evaluation of long-lasting knee synovitis in patients undergoing arthroplasty by power Doppler ultrasonography and contrast-enhanced MRI in comparison with histopathology. Clin. Exp. Rheumatol. 30, 85–92 (2012).

    CAS  PubMed  Google Scholar 

  262. Walther, M. et al. Correlation of power Doppler sonography with vascularity of the synovial tissue of the knee joint in patients with osteoarthritis and rheumatoid arthritis. Arthritis Rheum. 44, 331–338 (2001).

    Article  CAS  PubMed  Google Scholar 

  263. Tarhan, S. & Unlu, Z. Magnetic resonance imaging and ultrasonographic evaluation of the patients with knee osteoarthritis: a comparative study. Clin. Rheumatol. 22, 181–188 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors’ work was supported by the US National Institutes of Health (AR073324 to M.G., 5T32AR064194-07 to R.C., NIH Diversity Supplement to A.T., AG070647 and AR078917 to N.E.L., and K01AR077111 and Resource-based Center for the study of the joint microenvironment in rheumatology UCSD (NIH P30AR073761) to E.S.-L.).

Author information

Authors and Affiliations

Authors

Contributions

E.S.-L., R.C., N.E.L. and M.G. researched data for the article and contributed substantially to discussion of the content. All authors wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Monica Guma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks M. Wood and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanchez-Lopez, E., Coras, R., Torres, A. et al. Synovial inflammation in osteoarthritis progression. Nat Rev Rheumatol 18, 258–275 (2022). https://doi.org/10.1038/s41584-022-00749-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-022-00749-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing