Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Spinocerebellar ataxias: prospects and challenges for therapy development

An Author Correction to this article was published on 08 November 2018

This article has been updated

Abstract

The spinocerebellar ataxias (SCAs) comprise more than 40 autosomal dominant neurodegenerative disorders that present principally with progressive ataxia. Within the past few years, studies of pathogenic mechanisms in the SCAs have led to the development of promising therapeutic strategies, especially for SCAs caused by polyglutamine-coding CAG repeats. Nucleotide-based gene-silencing approaches that target the first steps in the pathogenic cascade are one promising approach not only for polyglutamine SCAs but also for the many other SCAs caused by toxic mutant proteins or RNA. For these and other emerging therapeutic strategies, well-coordinated preparation is needed for fruitful clinical trials. To accomplish this goal, investigators from the United States and Europe are now collaborating to share data from their respective SCA cohorts. Increased knowledge of the natural history of SCAs, including of the premanifest and early symptomatic stages of disease, will improve the prospects for success in clinical trials of disease-modifying drugs. In addition, investigators are seeking validated clinical outcome measures that demonstrate responsiveness to changes in SCA populations. Findings suggest that MRI and magnetic resonance spectroscopy biomarkers will provide objective biological readouts of disease activity and progression, but more work is needed to establish disease-specific biomarkers that track target engagement in therapeutic trials. Together, these efforts suggest that the development of successful therapies for one or more SCAs is not far away.

Key points

  • Spinocerebellar ataxias (SCAs) are a group of dominantly inherited degenerative disorders that principally involve the cerebellum and its connections.

  • Insights into the pathogenic mechanisms of many SCAs have suggested promising routes to symptomatic and disease-modifying therapy.

  • Clinical research consortia for SCAs have started international collaborations to share and analyse natural history data.

  • The Scale for Assessment and Rating of Ataxia is the best validated clinical outcome assessment measure, but additional measures should be developed with improved responsiveness to changes that are directly relevant to patients’ lives.

  • MRI and magnetic resonance spectroscopy have emerged as potentially powerful biomarkers for disease activities and progression, but target engagement biomarkers, especially molecular biomarkers in biofluids, are yet to be developed.

  • Collective efforts in SCA clinical research within the past few years have improved the prospects for eventual successful therapeutic development for the SCAs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hereditary degenerative ataxias caused by expanded microsatellite repeats.
Fig. 2: Diagnostic algorithm for progressive ataxias.
Fig. 3: Therapeutic strategies for the SCAs.
Fig. 4: Sample size estimation for evaluation of drug efficacy in SCA1.
Fig. 5: Transatlantic SCA consortia.
Fig. 6: Biomarkers for SCAs.

Similar content being viewed by others

Change history

  • 08 November 2018

    In Table 3 of this article as originally published, a sentence within the column “Comments” in the row “SCA6” contains an error. The text incorrectly reads “Needs rigorous preclinical studies in SCA3 animal models”. This sentence has been corrected to “Needs rigorous preclinical studies in SCA6 animal models” in the PDF and HTML versions of the article.

References

  1. Bird, T. D. in GeneReviews (eds Adam, M. P. et al.) (University of Washington, Seattle, 1998, last updated 2016).

  2. Paulson, H. L., Shakkottai, V. G., Clark, H. B. & Orr, H. T. Polyglutamine spinocerebellar ataxias - from genes to potential treatments. Nat. Rev. Neurosci. 18, 613–626 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Klockgether, T. The clinical diagnosis of autosomal dominant spinocerebellar ataxias. Cerebellum 7, 101–105 (2008).

    CAS  PubMed  Google Scholar 

  4. Manto, M. U. The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum 4, 2–6 (2005).

    CAS  PubMed  Google Scholar 

  5. Giordano, I. et al. Clinical and genetic characteristics of sporadic adult-onset degenerative ataxia. Neurology 89, 1043–1049 (2017).

    PubMed  Google Scholar 

  6. van de Warrenburg, B. P. et al. EFNS/ENS consensus on the diagnosis and management of chronic ataxias in adulthood. Eur. J. Neurol. 21, 552–562 (2014).

    PubMed  Google Scholar 

  7. Menon, R. P. et al. The role of interruptions in polyQ in the pathology of SCA1. PLoS Genet. 9, e1003648 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Charles, P. et al. Are interrupted SCA2 CAG repeat expansions responsible for parkinsonism? Neurology 69, 1970–1975 (2007).

    CAS  PubMed  Google Scholar 

  9. Landrian, I. et al. Inheritance patterns of ATCCT repeat interruptions in spinocerebellar ataxia type 10 (SCA10) expansions. PLoS ONE 12, e0175958 (2017).

    PubMed  PubMed Central  Google Scholar 

  10. McFarland, K. N. et al. SMRT sequencing of long tandem nucleotide repeats in SCA10 reveals unique insight of repeat expansion structure. PLoS ONE 10, e0135906 (2015).

    PubMed  PubMed Central  Google Scholar 

  11. Opal, P. & Ashizawa, T. in GeneReviews (eds Adam, M. P. et al.) (University of Washington, Seattle, 1997, last updated 2017).

  12. Socal, M. P. et al. Intrafamilial variability of Parkinson phenotype in SCAs: novel cases due to SCA2 and SCA3 expansions. Parkinsonism Relat. Disord. 15, 374–378 (2009).

    CAS  PubMed  Google Scholar 

  13. Modoni, A. et al. Prevalence of spinocerebellar ataxia type 2 mutation among Italian Parkinsonian patients. Mov. Disord. 22, 324–327 (2007).

    PubMed  Google Scholar 

  14. Schule, B. et al. Parkinson’s disease associated with pure ATXN10 repeat expansion. NPJ Parkinsons Dis. 3, 27 (2017).

    PubMed  PubMed Central  Google Scholar 

  15. Choubtum, L. et al. Analysis of SCA8, SCA10, SCA12, SCA17 and SCA19 in patients with unknown spinocerebellar ataxia: a Thai multicentre study. BMC Neurol. 15, 166 (2015).

    PubMed  PubMed Central  Google Scholar 

  16. Wu, Y. R. et al. Genetic testing in spinocerebellar ataxia in Taiwan: expansions of trinucleotide repeats in SCA8 and SCA17 are associated with typical Parkinson’s disease. Clin. Genet. 65, 209–214 (2004).

    CAS  PubMed  Google Scholar 

  17. Ross, O. A. et al. Ataxin-2 repeat-length variation and neurodegeneration. Hum. Mol. Genet. 20, 3207–3212 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Elden, A. C. et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466, 1069–1075 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yu, Z. et al. PolyQ repeat expansions in ATXN2 associated with ALS are CAA interrupted repeats. PLoS ONE 6, e17951 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. McFarland, K. N. et al. Repeat interruptions in spinocerebellar ataxia type 10 expansions are strongly associated with epileptic seizures. Neurogenetics 15, 59–64 (2014).

    PubMed  Google Scholar 

  21. Nibbeling, E. A. R. et al. Exome sequencing and network analysis identifies shared mechanisms underlying spinocerebellar ataxia. Brain 140, 2860–2878 (2017).

    PubMed  Google Scholar 

  22. Clarke, J. et al. Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol. 4, 265–270 (2009).

    CAS  PubMed  Google Scholar 

  23. Roberts, R. J., Carneiro, M. O. & Schatz, M. C. The advantages of SMRT sequencing. Genome Biol. 14, 405 (2013).

    PubMed  PubMed Central  Google Scholar 

  24. Ilg, W. et al. Intensive coordinative training improves motor performance in degenerative cerebellar disease. Neurology 73, 1823–1830 (2009).

    CAS  PubMed  Google Scholar 

  25. Ilg, W. et al. Consensus paper: management of degenerative cerebellar disorders. Cerebellum 13, 248–268 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Miyai, I. et al. Cerebellar ataxia rehabilitation trial in degenerative cerebellar diseases. Neurorehabil. Neural Repair 26, 515–522 (2012).

    PubMed  Google Scholar 

  27. Silva, R. C. et al. Occupational therapy in spinocerebellar ataxia type 3: an open-label trial. Braz. J. Med. Biol. Res. 43, 537–542 (2010).

    CAS  PubMed  Google Scholar 

  28. Ilg, W. et al. Video game-based coordinative training improves ataxia in children with degenerative ataxia. Neurology 79, 2056–2060 (2012).

    PubMed  Google Scholar 

  29. Fonteyn, E. M. et al. Gait adaptability training improves obstacle avoidance and dynamic stability in patients with cerebellar degeneration. Gait Posture 40, 247–251 (2014).

    PubMed  Google Scholar 

  30. Chang, Y. J. et al. Cycling regimen induces spinal circuitry plasticity and improves leg muscle coordination in individuals with spinocerebellar ataxia. Arch. Phys. Med. Rehabil. 96, 1006–1013 (2015).

    PubMed  Google Scholar 

  31. Fonteyn, E. M. et al. The effectiveness of allied health care in patients with ataxia: a systematic review. J. Neurol. 261, 251–258 (2014).

    PubMed  Google Scholar 

  32. Ihara, Y., Takata, H., Tanabe, Y., Nobukuni, K. & Hayabara, T. Influence of repetitive transcranial magnetic stimulation on disease severity and oxidative stress markers in the cerebrospinal fluid of patients with spinocerebellar degeneration. Neurol. Res. 27, 310–313 (2005).

    PubMed  Google Scholar 

  33. Shiga, Y. et al. Transcranial magnetic stimulation alleviates truncal ataxia in spinocerebellar degeneration. J. Neurol. Neurosurg. Psychiatry 72, 124–126 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zu, T. et al. Recovery from polyglutamine-induced neurodegeneration in conditional SCA1 transgenic mice. J. Neurosci. 24, 8853–8861 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Furrer, S. A. et al. Reduction of mutant ataxin-7 expression restores motor function and prevents cerebellar synaptic reorganization in a conditional mouse model of SCA7. Hum. Mol. Genet. 22, 890–903 (2013).

    CAS  PubMed  Google Scholar 

  36. Yamamoto, A., Lucas, J. J. & Hen, R. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington’s disease. Cell 101, 57–66 (2000).

    CAS  PubMed  Google Scholar 

  37. Katsuno, M. et al. Reversible disruption of dynactin 1-mediated retrograde axonal transport in polyglutamine-induced motor neuron degeneration. J. Neurosci. 26, 12106–12117 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sanchez, I., Balague, E. & Matilla-Duenas, A. Ataxin-1 regulates the cerebellar bioenergetics proteome through the GSK3beta-mTOR pathway which is altered in Spinocerebellar ataxia type 1 (SCA1). Hum. Mol. Genet. 25, 4021–4040 (2016).

    CAS  PubMed  Google Scholar 

  39. Lim, J. et al. A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell 125, 801–814 (2006).

    CAS  PubMed  Google Scholar 

  40. Crespo-Barreto, J., Fryer, J. D., Shaw, C. A., Orr, H. T. & Zoghbi, H. Y. Partial loss of ataxin-1 function contributes to transcriptional dysregulation in spinocerebellar ataxia type 1 pathogenesis. PLoS Genet. 6, e1001021 (2010).

    PubMed  PubMed Central  Google Scholar 

  41. Matilla-Duenas, A., Goold, R. & Giunti, P. Clinical, genetic, molecular, and pathophysiological insights into spinocerebellar ataxia type 1. Cerebellum 7, 106–114 (2008).

    CAS  PubMed  Google Scholar 

  42. Busch, A. et al. Mutant huntingtin promotes the fibrillogenesis of wild-type huntingtin: a potential mechanism for loss of huntingtin function in Huntington’s disease. J. Biol. Chem. 278, 41452–41461 (2003).

    CAS  PubMed  Google Scholar 

  43. Cattaneo, E. et al. Loss of normal huntingtin function: new developments in Huntington’s disease research. Trends Neurosci. 24, 182–188 (2001).

    CAS  PubMed  Google Scholar 

  44. Evers, M. M., Toonen, L. J. & van Roon-Mom, W. M. Ataxin-3 protein and RNA toxicity in spinocerebellar ataxia type 3: current insights and emerging therapeutic strategies. Mol. Neurobiol. 49, 1513–1531 (2014).

    CAS  PubMed  Google Scholar 

  45. Tsoi, H. & Chan, H. Y. Expression of expanded CAG transcripts triggers nucleolar stress in Huntington’s disease. Cerebellum 12, 310–312 (2013).

    CAS  PubMed  Google Scholar 

  46. Samaraweera, S. E. et al. Modeling and analysis of repeat RNA toxicity in Drosophila. Methods Mol. Biol. 1017, 173–192 (2013).

    CAS  PubMed  Google Scholar 

  47. Shieh, S. Y. & Bonini, N. M. Genes and pathways affected by CAG-repeat RNA-based toxicity in Drosophila. Hum. Mol. Genet. 20, 4810–4821 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Li, L. B., Yu, Z., Teng, X. & Bonini, N. M. RNA toxicity is a component of ataxin-3 degeneration in Drosophila. Nature 453, 1107–1111 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Moseley, M. L. et al. Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8. Nat. Genet. 38, 758–769 (2006).

    CAS  PubMed  Google Scholar 

  50. Ikeda, Y., Daughters, R. S. & Ranum, L. P. Bidirectional expression of the SCA8 expansion mutation: one mutation, two genes. Cerebellum 7, 150–158 (2008).

    CAS  PubMed  Google Scholar 

  51. Li, P. P. et al. ATXN2-AS, a gene antisense to ATXN2, is associated with spinocerebellar ataxia type 2 and amyotrophic lateral sclerosis. Ann. Neurol. 80, 600–615 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Sopher, B. L. et al. CTCF regulates ataxin-7 expression through promotion of a convergently transcribed, antisense noncoding RNA. Neuron 70, 1071–1084 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Zu, T. et al. Non-ATG-initiated translation directed by microsatellite expansions. Proc. Natl Acad. Sci. USA 108, 260–265 (2011).

    CAS  PubMed  Google Scholar 

  54. Ishiguro, T. et al. Regulatory role of RNA chaperone TDP-43 for RNA misfolding and repeat-associated translation in sCA31. Neuron 94, 108–124 e7 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Sellier, C. et al. Translation of expanded CGG repeats into FMRpolyG is pathogenic and may contribute to fragile X tremor ataxia syndrome. Neuron 93, 331–347 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Krans, A., Kearse, M. G. & Todd, P. K. Repeat-associated non-AUG translation from antisense CCG repeats in fragile X tremor/ataxia syndrome. Ann. Neurol. 80, 871–881 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Scoles, D. R. et al. Repeat associated non-AUG translation (RAN translation) dependent on sequence downstream of the ATXN2 CAG repeat. PLoS ONE 10, e0128769 (2015).

    PubMed  PubMed Central  Google Scholar 

  58. Ashizawa, T. & Wells, R. D. Genetic Instabilities and Neurological Disorders (Elsevier, Burlington, 2006).

    Google Scholar 

  59. Stella, S., Alcon, P. & Montoya, G. Class 2 CRISPR-Cas RNA-guided endonucleases: Swiss Army knives of genome editing. Nat. Struct. Mol. Biol. 24, 882–892 (2017).

    CAS  PubMed  Google Scholar 

  60. Murugan, K., Babu, K., Sundaresan, R., Rajan, R. & Sashital, D. G. The revolution continues: newly discovered systems expand the CRISPR-Cas toolkit. Mol. Cell 68, 15–25 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Monteys, A. M., Ebanks, S. A., Keiser, M. S. & Davidson, B. L. CRISPR/Cas9 editing of the mutant Huntingtin allele in vitro and in vivo. Mol. Ther. 25, 12–23 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Cornu, T. I., Mussolino, C. & Cathomen, T. Refining strategies to translate genome editing to the clinic. Nat. Med. 23, 415–423 (2017).

    CAS  PubMed  Google Scholar 

  63. Maxwell, K. L. The anti-CRISPR story: a battle for survival. Mol. Cell 68, 8–14 (2017).

    CAS  PubMed  Google Scholar 

  64. Fiszer, A. & Krzyzosiak, W. J. Oligonucleotide-based strategies to combat polyglutamine diseases. Nucleic Acids Res. 42, 6787–6810 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Keiser, M. S., Kordasiewicz, H. B. & McBride, J. L. Gene suppression strategies for dominantly inherited neurodegenerative diseases: lessons from Huntington’s disease and spinocerebellar ataxia. Hum. Mol. Genet. 25, R53–R64 (2016).

    CAS  PubMed  Google Scholar 

  66. Miyazaki, Y., Du, X., Muramatsu, S. & Gomez, C. M. An miRNA-mediated therapy for SCA6 blocks IRES-driven translation of the CACNA1A second cistron. Sci. Transl Med. 8, 347ra94 (2016).

    PubMed  PubMed Central  Google Scholar 

  67. Tabrizi, S. et al. Effects of IONIS-HTTRx in patients with early Huntington’s disease, results of the first HTT-lowering drug trial. Neurology 90 (Suppl. 15), CT.002 (2018).

    Google Scholar 

  68. Zoghbi, H. Y. & Orr, H. T. Pathogenic mechanisms of a polyglutamine-mediated neurodegenerative disease, spinocerebellar ataxia type 1. J. Biol. Chem. 284, 7425–7429 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Park, J. et al. RAS-MAPK-MSK1 pathway modulates ataxin 1 protein levels and toxicity in SCA1. Nature 498, 325–331 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Teixeira-Castro, A. et al. Serotonergic signalling suppresses ataxin 3 aggregation and neurotoxicity in animal models of Machado-Joseph disease. Brain 138, 3221–3237 (2015).

    PubMed  PubMed Central  Google Scholar 

  71. Costa, M. D. et al. Unbiased screen identifies aripiprazole as a modulator of abundance of the polyglutamine disease protein, ataxin-3. Brain 139, 2891–2908 (2016).

    PubMed  PubMed Central  Google Scholar 

  72. Reis, S. D., Pinho, B. R. & Oliveira, J. M. A. Modulation of molecular chaperones in Huntington’s disease and other polyglutamine disorders. Mol. Neurobiol. 54, 5829–5854 (2017).

    CAS  PubMed  Google Scholar 

  73. Ding, Y. et al. BIIB021, a synthetic Hsp90 inhibitor, induces mutant ataxin-1 degradation through the activation of heat shock factor 1. Neuroscience 327, 20–31 (2016).

    CAS  PubMed  Google Scholar 

  74. Cushman-Nick, M., Bonini, N. M. & Shorter, J. Hsp104 suppresses polyglutamine-induced degeneration post onset in a drosophila MJD/SCA3 model. PLoS Genet. 9, e1003781 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Nagai, Y., Fujikake, N., Popiel, H. A. & Wada, K. Induction of molecular chaperones as a therapeutic strategy for the polyglutamine diseases. Curr. Pharm. Biotechnol. 11, 188–197 (2011).

    Google Scholar 

  76. Tsou, W. L. et al. DnaJ-1 and karyopherin a3 suppress degeneration in a new Drosophila model of spinocerebellar ataxia Type 6. Hum. Mol. Genet. 24, 4385–4396 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Williams, A. J., Knutson, T. M., Colomer Gould, V. F. & Paulson, H. L. In vivo suppression of polyglutamine neurotoxicity by C-terminus of Hsp70-interacting protein (CHIP) supports an aggregation model of pathogenesis. Neurobiol. Dis. 33, 342–353 (2009).

    CAS  PubMed  Google Scholar 

  78. Alves, S. et al. The autophagy/lysosome pathway is impaired in SCA7 patients and SCA7 knock-in mice. Acta Neuropathol. 128, 705–722 (2014).

    CAS  PubMed  Google Scholar 

  79. Ashkenazi, A. et al. Polyglutamine tracts regulate beclin 1-dependent autophagy. Nature 545, 108–111 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Onofre, I. et al. Fibroblasts of Machado Joseph disease patients reveal autophagy impairment. Sci. Rep. 6, 28220 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Baron, O. et al. Stall in canonical autophagy-lysosome pathways prompts nucleophagy-based nuclear breakdown in neurodegeneration. Curr. Biol. 27, 3626–3642 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Coutelier, M. et al. A panel study on patients with dominant cerebellar ataxia highlights the frequency of channelopathies. Brain 140, 1579–1594 (2017).

    PubMed  Google Scholar 

  83. Jen, J. C., Ashizawa, T., Griggs, R. C. & Waters, M. F. Rare neurological channelopathies — networks to study patients, pathogenesis and treatment. Nat. Rev. Neurol. 12, 195–203 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Bever, C. T. Jr et al. The effects of 4-aminopyridine in multiple sclerosis patients: results of a randomized, placebo-controlled, double-blind, concentration-controlled, crossover trial. Neurology 44, 1054–1059 (1994).

    PubMed  Google Scholar 

  85. Goodman, A. D. et al. Sustained-release oral fampridine in multiple sclerosis: a randomised, double-blind, controlled trial. Lancet 373, 732–738 (2009).

    CAS  PubMed  Google Scholar 

  86. Hourez, R. et al. Aminopyridines correct early dysfunction and delay neurodegeneration in a mouse model of spinocerebellar ataxia type 1. J. Neurosci. 31, 11795–11807 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Jayabal, S., Chang, H. H., Cullen, K. E. & Watt, A. J. 4-Aminopyridine reverses ataxia and cerebellar firing deficiency in a mouse model of spinocerebellar ataxia type 6. Sci. Rep. 6, 29489 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Sobue, I. et al. Controlled trial of thyrotropin releasing hormone tartrate in ataxia of spinocerebellar degenerations. J. Neurol. Sci. 61, 235–248 (1983).

    CAS  PubMed  Google Scholar 

  89. Kanazawa, I. et al. Clinical evaluation of taltirelin hydrate (TA-0910) in patients with spinocerebellar degeneration: a multi-center double-blind comparative study with placebo. J. Clin. Ther. Med. 13, 4169–4224 (1997).

    Google Scholar 

  90. Ranganathan, R. NINDS translational programs: priming the pump of neurotherapeutics discovery and development. Neuron 84, 515–520 (2014).

    CAS  PubMed  Google Scholar 

  91. Bushart, D. D. & Shakkottai, V. G. Ion channel dysfunction in cerebellar ataxia. Neurosci. Lett. https://doi.org/10.1016/j.neulet.2018.02.005 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kasumu, A. W. et al. Selective positive modulator of calcium-activated potassium channels exerts beneficial effects in a mouse model of spinocerebellar ataxia type 2. Chem. Biol. 19, 1340–1353 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Gao, Z. et al. Cerebellar ataxia by enhanced Ca(V)2.1 currents is alleviated by Ca2+-dependent K+-channel activators in Cacna1a(S218L) mutant mice. J. Neurosci. 32, 15533–15546 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Grasselli, G. et al. Activity-dependent plasticity of spike pauses in cerebellar Purkinje cells. Cell Rep. 14, 2546–2553 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Hosy, E., Piochon, C., Teuling, E., Rinaldo, L. & Hansel, C. SK2 channel expression and function in cerebellar Purkinje cells. J. Physiol. 589, 3433–3440 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Shakkottai, V. G. et al. Enhanced neuronal excitability in the absence of neurodegeneration induces cerebellar ataxia. J. Clin. Invest. 113, 582–590 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Ohtsuki, G., Piochon, C., Adelman, J. P. & Hansel, C. SK2 channel modulation contributes to compartment-specific dendritic plasticity in cerebellar Purkinje cells. Neuron 75, 108–120 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Dell’Orco, J. M., Pulst, S. M. & Shakkottai, V. G. Potassium channel dysfunction underlies Purkinje neuron spiking abnormalities in spinocerebellar ataxia type 2. Hum. Mol. Genet. 26, 3935–3945 (2017).

    PubMed  PubMed Central  Google Scholar 

  99. Bushart, D. D. et al. Targeting potassium channels to treat cerebellar ataxia. Ann. Clin. Transl Neurol. 5, 297–314 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Egorova, P. A., Zakharova, O. A., Vlasova, O. L. & Bezprozvanny, I. B. In vivo analysis of cerebellar Purkinje cell activity in SCA2 transgenic mouse model. J. Neurophysiol. 115, 2840–2851 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Ristori, G. et al. Riluzole in cerebellar ataxia: a randomized, double-blind, placebo-controlled pilot trial. Neurology 74, 839–845 (2010).

    CAS  PubMed  Google Scholar 

  102. Romano, S. et al. Riluzole in patients with hereditary cerebellar ataxia: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 14, 985–991 (2015).

    CAS  PubMed  Google Scholar 

  103. Leone, M., Bottacchi, E., D’Alessandro, G. & Kustermann, S. Hereditary ataxias and paraplegias in Valle d’Aosta, Italy: a study of prevalence and disability. Acta Neurol. Scand. 91, 183–187 (1995).

    CAS  PubMed  Google Scholar 

  104. Silva, M. C., Coutinho, P., Pinheiro, C. D., Neves, J. M. & Serrano, P. Hereditary ataxias and spastic paraplegias: methodological aspects of a prevalence study in Portugal. J. Clin. Epidemiol. 50, 1377–1384 (1997).

    CAS  PubMed  Google Scholar 

  105. van de Warrenburg, B. P. et al. Spinocerebellar ataxias in the Netherlands: prevalence and age at onset variance analysis. Neurology 58, 702–708 (2002).

    PubMed  Google Scholar 

  106. Ruano, L., Melo, C., Silva, M. C. & Coutinho, P. The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology 42, 174–183 (2014).

    PubMed  Google Scholar 

  107. NIH. Rare diseases clinical research network. nih.gov https://report.nih.gov/nihfactsheets/ViewFactSheet.aspx?csid=126 (2018).

  108. Schmitz-Hübsch, T. et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology 66, 1717–1720 (2006).

    PubMed  Google Scholar 

  109. Ashizawa, T. et al. Clinical characteristics of patients with spinocerebellar ataxias 1, 2, 3 and 6 in the US; a prospective observational study. Orphanet J. Rare Dis. 8, 177 (2013).

    PubMed  PubMed Central  Google Scholar 

  110. Jacobi, H. et al. Long-term disease progression in spinocerebellar ataxia types 1, 2, 3, and 6: a longitudinal cohort study. Lancet Neurol. 14, 1101–1108 (2015).

    PubMed  Google Scholar 

  111. Jacobi, H. et al. Biological and clinical characteristics of individuals at risk for spinocerebellar ataxia types 1, 2, 3, and 6 in the longitudinal RISCA study: analysis of baseline data. Lancet Neurol. 12, 650–658 (2013).

    PubMed  Google Scholar 

  112. Jacobi, H. et al. Spinocerebellar ataxia types 1, 2, 3 and 6: the clinical spectrum of ataxia and morphometric brainstem and cerebellar findings. Cerebellum 11, 155–166 (2012).

    PubMed  Google Scholar 

  113. Saute, J. A. et al. Planning future clinical trials in Machado Joseph disease: lessons from a phase 2 trial. J. Neurol. Sci. 358, 72–76 (2015).

    PubMed  Google Scholar 

  114. Maas, R. P., van Gaalen, J., Klockgether, T. & van de Warrenburg, B. P. The preclinical stage of spinocerebellar ataxias. Neurology 85, 96–103 (2015).

    PubMed  Google Scholar 

  115. Rubinsztein, D. C. & Orr, H. T. Diminishing return for mechanistic therapeutics with neurodegenerative disease duration?: there may be a point in the course of a neurodegenerative condition where therapeutics targeting disease-causing mechanisms are futile. Bioessays 38, 977–980 (2016).

    PubMed  PubMed Central  Google Scholar 

  116. Trouillas, P. et al. International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. J. Neurol. Sci. 145, 205–211 (1997).

    CAS  PubMed  Google Scholar 

  117. Schmahmann, J. D., Macmore, J. & Vangel, M. Cerebellar stroke without motor deficit: clinical evidence for motor and non-motor domains within the human cerebellum. Neuroscience 162, 852–861 (2009).

    CAS  PubMed  Google Scholar 

  118. Schmahmann, J. D., Gardner, R., MacMore, J. & Vangel, M. G. Development of a brief ataxia rating scale (BARS) based on a modified form of the ICARS. Mov. Disord. 24, 1820–1828 (2009).

    PubMed  PubMed Central  Google Scholar 

  119. Kieling, C. et al. A neurological examination score for the assessment of spinocerebellar ataxia 3 (SCA3). Eur. J. Neurol. 15, 371–376 (2008).

    CAS  PubMed  Google Scholar 

  120. Saute, J. A. et al. Ataxia rating scales—psychometric profiles, natural history and their application in clinical trials. Cerebellum 11, 488–504 (2012).

    PubMed  Google Scholar 

  121. Monte, T. L. et al. NESSCA validation and responsiveness of several rating scales in spinocerebellar ataxia type 2. Cerebellum 16, 852–858 (2017).

    PubMed  Google Scholar 

  122. du Montcel, S. T. et al. Composite cerebellar functional severity score: validation of a quantitative score of cerebellar impairment. Brain 131, 1352–1361 (2008).

    PubMed  Google Scholar 

  123. Schmitz-Hubsch, T. et al. SCA Functional Index: a useful compound performance measure for spinocerebellar ataxia. Neurology 71, 486–492 (2008).

    CAS  PubMed  Google Scholar 

  124. Chini, G. et al. Local stability of the trunk in patients with degenerative cerebellar ataxia during walking. Cerebellum 16, 26–33 (2017).

    PubMed  Google Scholar 

  125. Schmitz-Hübsch, T. et al. Responsiveness of different rating instruments in spinocerebellar ataxia patients. Neurology 74, 678–684 (2010).

    PubMed  Google Scholar 

  126. Chan, E. et al. Quantitative assessment of the evolution of cerebellar signs in spinocerebellar ataxias. Mov. Disord. 26, 534–538 (2011).

    PubMed  Google Scholar 

  127. Hickey, A. et al. Validity of a wearable accelerometer to quantify gait in spinocerebellar ataxia type 6. Physiol. Meas. 37, N105–N117 (2016).

    PubMed  Google Scholar 

  128. Subramony, S. H. et al. Objective home-based gait assessment in spinocerebellar ataxia. J. Neurol. Sci. 313, 95–98 (2012).

    CAS  PubMed  Google Scholar 

  129. Tezenas du Montcel, S. et al. Modulation of the age at onset in spinocerebellar ataxia by CAG tracts in various genes. Brain 137, 2444–2455 (2014).

    PubMed  PubMed Central  Google Scholar 

  130. Chen, Z. et al. (CAG)n loci as genetic modifiers of age-at-onset in patients with Machado-Joseph disease from mainland China. Brain 139, e41 (2016).

    PubMed  Google Scholar 

  131. Long, Z. et al. Two novel SNPs in ATXN3 3′UTR may decrease age at onset of SCA3/MJD in Chinese patients. PLoS ONE 10, e0117488 (2015).

    PubMed  PubMed Central  Google Scholar 

  132. Peng, H. et al. APOE epsilon2 allele may decrease the age at onset in patients with spinocerebellar ataxia type 3 or Machado-Joseph disease from the Chinese Han population. Neurobiol. Aging 35, 2179e15–2179e18 (2014).

    Google Scholar 

  133. Wang, C. et al. Analysis of the GGGGCC repeat expansions of the C9orf72 gene in SCA3/MJD patients from China. PLoS ONE 10, e0130336 (2015).

    PubMed  PubMed Central  Google Scholar 

  134. Raposo, M. et al. Promoter variation and expression levels of inflammatory genes IL1A, IL1B, IL6 and TNF in blood of spinocerebellar ataxia type 3 (SCA3) patients. Neuromol. Med. 19, 41–45 (2017).

    CAS  Google Scholar 

  135. Tezenas du Montcel, S. et al. Factors influencing disease progression in autosomal dominant cerebellar ataxia and spastic paraplegia. Arch. Neurol. 69, 500–508 (2012).

    PubMed  Google Scholar 

  136. Zhou, Q. et al. The role of apolipoprotein E as a risk factor for an earlier age at onset for Machado-Joseph disease is doubtful. PLoS ONE 9, e111356 (2014).

    PubMed  PubMed Central  Google Scholar 

  137. de Castilhos, R. M. et al. Spinocerebellar ataxias in Brazil—frequencies and modulating effects of related genes. Cerebellum 13, 17–28 (2014).

    CAS  PubMed  Google Scholar 

  138. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 69, 89–95 (2001).

    Google Scholar 

  139. Mueller, S. G., Schuff, N. & Weiner, M. W. Evaluation of treatment effects in Alzheimer’s and other neurodegenerative diseases by MRI and MRS. NMR Biomed. 19, 655–668 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Reetz, K. et al. Genotype-specific patterns of atrophy progression are more sensitive than clinical decline in SCA1, SCA3 and SCA6. Brain 136, 905–91711 (2013).

    PubMed  Google Scholar 

  141. Currie, S. et al. Magnetic resonance imaging biomarkers in patients with progressive ataxia: current status and future direction. Cerebellum 12, 245–266 (2013).

    PubMed  Google Scholar 

  142. Kang, N. et al. Sensory and motor cortex function contributes to symptom severity in spinocerebellar ataxia type 6. Brain Struct. Funct. 222, 1039–1052 (2017).

    PubMed  Google Scholar 

  143. Duarte, J. V. et al. Parametric fMRI of paced motor responses uncovers novel whole-brain imaging biomarkers in spinocerebellar ataxia type 3. Hum. Brain Mapp. 37, 3656–3668 (2016).

    PubMed  PubMed Central  Google Scholar 

  144. Klockgether, T. et al. Autosomal dominant cerebellar ataxia type I. MRI-based volumetry of posterior fossa structures and basal ganglia in spinocerebellar ataxia types 1, 2 and 3. Brain 121, 1687–1693 (1998).

    PubMed  Google Scholar 

  145. Schulz, J. B. et al. Visualization, quantification and correlation of brain atrophy with clinical symptoms in spinocerebellar ataxia types 1, 3 and 6. Neuroimage 49, 158–168 (2010).

    PubMed  Google Scholar 

  146. Della Nave, R. et al. Brain white matter damage in SCA1 and SCA2. An in vivo study using voxel-based morphometry, histogram analysis of mean diffusivity and tract-based spatial statistics. Neuroimage 43, 10–19 (2008).

    PubMed  Google Scholar 

  147. Mandelli, M. L. et al. Diffusion tensor imaging of spinocerebellar ataxias types 1 and 2. Am. J. Neuroradiol. 28, 1996–2000 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Prakash, N. et al. Patterns of fractional anisotropy changes in white matter of cerebellar peduncles distinguish spinocerebellar ataxia-1 from multiple system atrophy and other ataxia syndromes. Neuroimage 47 (Suppl. 2), T72–T81 (2009).

    PubMed  Google Scholar 

  149. Guimaraes, R. P. et al. A multimodal evaluation of microstructural white matter damage in spinocerebellar ataxia type 3. Mov. Disord. 28, 1125–1132 (2013).

    PubMed  Google Scholar 

  150. Solodkin, A., Peri, E., Chen, E. E., Ben-Jacob, E. & Gomez, C. M. Loss of intrinsic organization of cerebellar networks in spinocerebellar ataxia type 1: correlates with disease severity and duration. Cerebellum 10, 218–232 (2011).

    PubMed  PubMed Central  Google Scholar 

  151. Falcon, M. I., Gomez, C. M., Chen, E. E., Shereen, A. & Solodkin, A. Early cerebellar network shifting in spinocerebellar ataxia type 6. Cereb. Cortex 26, 3205–3218 (2016).

    CAS  PubMed  Google Scholar 

  152. Mascalchi, M. et al. Progression of microstructural damage in spinocerebellar ataxia type 2: a longitudinal DTI study. Am. J. Neuroradiol 36, 1096–1101 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Dayan, M. et al. Impact of cerebellar atrophy on cortical gray matter and cerebellar peduncles as assessed by voxel-based morphometry and high angular resolution diffusion imaging. Funct. Neurol. 31, 239–248 (2016).

    PubMed  Google Scholar 

  154. Rozenfeld, M. N. et al. An investigation of diffusion imaging techniques in the evaluation of spinocerebellar ataxia and multisystem atrophy. J. Clin. Neurosci. 22, 166–172 (2015).

    PubMed  Google Scholar 

  155. Öz, G. et al. Clinical proton MR spectroscopy in central nervous system disorders. Radiology 270, 658–679 (2014).

    PubMed  Google Scholar 

  156. Viau, M. & Boulanger, Y. Characterization of ataxias with magnetic resonance imaging and spectroscopy. Parkinsonism Relat. Disord. 10, 335–351 (2004).

    PubMed  Google Scholar 

  157. Öz, G. in Handbook of the Cerebellum and Cerebellar Disorders (eds Manto, M., Gruol, D. L., Schmahman, J. D., Koibuchi, N. & Rossi, F.) (Springer, Dordrecht, 2013).

    Google Scholar 

  158. Joers, J. M. et al. Neurochemical abnormalities in premanifest and early spinocerebellar ataxias. Ann. Neurol. 83, 816–829 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Öz, G. et al. Neurochemical alterations in spinocerebellar ataxia type 1 and their correlations with clinical status. Mov. Disord. 25, 1253–1261 (2010).

    PubMed  PubMed Central  Google Scholar 

  160. Öz, G. et al. Distinct neurochemical profiles of spinocerebellar ataxias 1, 2, 6, and cerebellar multiple system atrophy. Cerebellum 10, 208–217 (2011).

    PubMed  PubMed Central  Google Scholar 

  161. Adanyeguh, I. M. et al. In vivo neurometabolic profiling in patients with spinocerebellar ataxia types 1, 2, 3, and 7. Mov. Disord. 30, 662–670 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Deelchand, D. K. et al. High field MRS is more sensitive to progression of neurodegeneration than clinical decline in spinocerebellar ataxia type 1 (SCA1). Proc. Int. Soc. Magn. Reson. Med. 22, 64 (2014).

    Google Scholar 

  163. Öz, G. et al. Noninvasive detection of presymptomatic and progressive neurodegeneration in a mouse model of spinocerebellar ataxia type 1. J. Neurosci. 30, 3831–3838 (2010).

    PubMed  PubMed Central  Google Scholar 

  164. Öz, G. et al. In vivo monitoring of recovery from neurodegeneration in conditional transgenic SCA1 mice. Exp. Neurol. 232, 290–298 (2011).

    PubMed  PubMed Central  Google Scholar 

  165. Öz, G. et al. Assessing recovery from neurodegeneration in spinocerebellar ataxia 1: Comparison of in vivo magnetic resonance spectroscopy with motor testing, gene expression and histology. Neurobiol. Dis. 74, 158–166 (2015).

    PubMed  Google Scholar 

  166. Emir, U. E., Brent Clark, H., Vollmers, M. L., Eberly, L. E. & Öz, G. Non-invasive detection of neurochemical changes prior to overt pathology in a mouse model of spinocerebellar ataxia type 1. J. Neurochem. 127, 660–668 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Terpstra, M. et al. Test-retest reproducibility of neurochemical profiles with short-echo, single-voxel MR spectroscopy at 3T and 7T. Magn. Reson. Med. 76, 1083–1091 (2016).

    PubMed  Google Scholar 

  168. Deelchand, D. K. et al. Two-site reproducibility of cerebellar and brainstem neurochemical profiles with short-echo, single-voxel MRS at 3T. Magn. Reson. Med. 73, 1718–1725 (2015).

    PubMed  Google Scholar 

  169. van de Bank, B. L. et al. Multi-center reproducibility of neurochemical profiles in the human brain at 7 T. NMR Biomed. 28, 306–316 (2015).

    PubMed  PubMed Central  Google Scholar 

  170. Mascalchi, M. et al. Proton magnetic resonance spectroscopy in an Italian family with spinocerebellar ataxia type 1. Ann. Neurol. 43, 244–252 (1998).

    CAS  PubMed  Google Scholar 

  171. Ragno, M. et al. Multimodal electrophysiologic follow-up study in 3 mutated but presymptomatic members of a spinocerebellar ataxia type 1 (SCA1) family. Neurol. Sci. 26, 67–71 (2005).

    CAS  PubMed  Google Scholar 

  172. Yoo, Y. J. & Oh, J. Identification of early neurodegenerative change in presymptomatic spinocerebellar ataxia type 1: a diffusion tensor imaging study. Parkinsonism Relat. Disord. 36, 109–110 (2017).

    PubMed  Google Scholar 

  173. D’Abreu, A. et al. Neocortical atrophy in Machado-Joseph disease: a longitudinal neuroimaging study. J. Neuroimag. 22, 285–291 (2012).

    Google Scholar 

  174. Brouillette, A. M., Öz, G. & Gomez, C. M. Cerebrospinal fluid biomarkers in spinocerebellar ataxia: a pilot study. Dis. Markers 2015, 413098 (2015).

    PubMed  PubMed Central  Google Scholar 

  175. de Assis, A. M. et al. Peripheral oxidative stress biomarkers in spinocerebellar ataxia type 3/Machado-Joseph disease. Front. Neurol. 8, 485 (2017).

    PubMed  PubMed Central  Google Scholar 

  176. da Silva Carvalho, G. et al. Cytokines in Machado Joseph disease/spinocerebellar ataxia 3. Cerebellum 15, 518–525 (2016).

    PubMed  Google Scholar 

  177. Almaguer-Gotay, D. et al. Role of glutathione S-transferases in the spinocerebellar ataxia type 2 clinical phenotype. J. Neurol. Sci. 341, 41–45 (2014).

    CAS  PubMed  Google Scholar 

  178. Swarup, V., Srivastava, A. K., Padma, M. V. & Rajeswari, M. R. Quantification of circulating plasma DNA in Friedreich’s ataxia and spinocerebellar ataxia types 2 and 12. DNA Cell Biol. 30, 389–394 (2011).

    CAS  PubMed  Google Scholar 

  179. Cuello-Almarales, D. A. et al. Buccal cell micronucleus frequency is significantly elevated in patients with spinocerebellar ataxia type 2. Arch. Med. Res. 48, 297–302 (2017).

    PubMed  Google Scholar 

  180. Pula, J. H. et al. Retinal nerve fibre layer and macular thinning in spinocerebellar ataxia and cerebellar multisystem atrophy. Neuroophthalmology 35, 108–114 (2011).

    PubMed  PubMed Central  Google Scholar 

  181. Alvarez, G. et al. Optical coherence tomography findings in spinocerebellar ataxia-3. Eye 27, 1376–1381 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Panouilleres, M. T. N. et al. Sensorimotor adaptation as a behavioural biomarker of early spinocerebellar ataxia type 6. Sci. Rep. 7, 2366 (2017).

    PubMed  PubMed Central  Google Scholar 

  183. Seifried, C. et al. Saccade velocity as a surrogate disease marker in spinocerebellar ataxia type 2. Ann. NY Acad. Sci. 1039, 524–527 (2005).

    CAS  PubMed  Google Scholar 

  184. Wu, C. et al. Oculomotor deficits in spinocerebellar ataxia type 3: potential biomarkers of preclinical detection and disease progression. CNS Neurosci. Ther. 23, 321–328 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Rodriguez-Labrada, R. et al. Saccadic latency is prolonged in spinocerebellar ataxia type 2 and correlates with the frontal-executive dysfunctions. J. Neurol. Sci. 306, 103–107 (2011).

    PubMed  Google Scholar 

  186. Rodriguez-Labrada, R. et al. Executive deficit in spinocerebellar ataxia type 2 is related to expanded CAG repeats: evidence from antisaccadic eye movements. Brain Cogn. 91, 28–34 (2014).

    PubMed  Google Scholar 

  187. Rodriguez-Labrada, R. et al. Spinocerebellar ataxia type 2: measures of saccade changes improve power for clinical trials. Mov. Disord. 31, 570–578 (2016).

    CAS  PubMed  Google Scholar 

  188. Colen, C. B., Ketko, A., George, E. & Van Stavern, G. P. Periodic alternating nystagmus and periodic alternating skew deviation in spinocerebellar ataxia type 6. J. Neuroophthalmol. 28, 287–288 (2008).

    PubMed  Google Scholar 

  189. Rodriguez-Labrada, R. et al. Subtle rapid eye movement sleep abnormalities in presymptomatic spinocerebellar ataxia type 2 gene carriers. Mov. Disord. 26, 347–350 (2011).

    PubMed  Google Scholar 

  190. Velazquez-Perez, L. et al. Sleep disorders in spinocerebellar ataxia type 2 patients. Neurodegener. Dis. 8, 447–454 (2011).

    PubMed  Google Scholar 

  191. Dang, D. & Cunnington, D. Excessive daytime somnolence in spinocerebellar ataxia type 1. J. Neurol. Sci. 290, 146–147 (2010).

    PubMed  Google Scholar 

  192. Velazquez-Perez, L. et al. Progression markers of Spinocerebellar ataxia 2. A twenty years neurophysiological follow up study. J. Neurol. Sci. 290, 22–26 (2010).

    CAS  PubMed  Google Scholar 

  193. Velazquez-Perez, L. et al. Motor decline in clinically presymptomatic spinocerebellar ataxia type 2 gene carriers. PLoS ONE 4, e5398 (2009).

    PubMed  PubMed Central  Google Scholar 

  194. Ilg, W. et al. Individual changes in preclinical spinocerebellar ataxia identified via increased motor complexity. Mov Disord. 31, 1891–1900 (2016).

    PubMed  Google Scholar 

  195. Dominguez, C. Imaging mutant huntingtin aggregates: development of potential PET ligands. Oral Presentation, 253rd ACS National Meeting & Exposition, San Francisco, CA, United States, 2–6 April 2017, MEDI-320 (2017).

  196. Xia, H. et al. RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat. Med. 10, 816–820 (2004).

    CAS  PubMed  Google Scholar 

  197. Keiser, M. S., Boudreau, R. L. & Davidson, B. L. Broad therapeutic benefit after RNAi expression vector delivery to deep cerebellar nuclei: implications for spinocerebellar ataxia type 1 therapy. Mol. Ther. 22, 588–595 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Keiser, M. S., Monteys, A. M., Corbau, R., Gonzalez-Alegre, P. & Davidson, B. L. RNAi prevents and reverses phenotypes induced by mutant human ataxin-1. Ann. Neurol. 80, 754–765 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. National Institute of Neurological Disorders and Stroke. CREATE-Bio program overview. NINDS https://www.ninds.nih.gov/Current-Research/Research-Funded-NINDS/Translational-Research/CREATE-BIO (2014).

  200. National Institute of Neurological Disorders and Stroke. CREATE-Bio examples: milestones. NINDS https://www.ninds.nih.gov/Funding/Apply-Funding/Application-Support-Library/CREATE-Bio-Examples-Milestones (2014).

  201. Liu, J. et al. Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 2. J. Neurosci. 29, 9148–9162 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Chen, X. et al. Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 3. J. Neurosci. 28, 12713–12724 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Alves, S. et al. Allele-specific RNA silencing of mutant ataxin-3 mediates neuroprotection in a rat model of Machado-Joseph disease. PLoS ONE 3, e3341 (2008).

    PubMed  PubMed Central  Google Scholar 

  204. Alves, S. et al. Silencing ataxin-3 mitigates degeneration in a rat model of Machado-Joseph disease: no role for wild-type ataxin-3? Hum. Mol. Genet. 19, 2380–2394 (2010).

    CAS  PubMed  Google Scholar 

  205. Nóbrega, C. et al. RNA interference mitigates motor and neuropathological deficits in a cerebellar mouse model of Machado-Joseph disease. PLoS ONE 9, e100086 (2014).

    PubMed  PubMed Central  Google Scholar 

  206. Rodriguez-Lebron, E. et al. Silencing mutant ATXN3 expression resolves molecular phenotypes in SCA3 transgenic mice. Mol. Ther. 21, 1909–1918 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Costa Mdo, C. et al. Toward RNAi therapy for the polyglutamine disease Machado-Joseph disease. Mol. Ther. 21, 1898–1908 (2013).

    PubMed  Google Scholar 

  208. Scoles, D. R. et al. Antisense oligonucleotide therapy for spinocerebellar ataxia type 2. Nature 544, 362–366 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Moore, L. R. et al. Evaluation of antisense oligonucleotides targeting ATXN3 in SCA3 mouse models. Mol. Ther. Nucleic Acids 7, 200–210 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Toonen, L. J. A., Rigo, F., van Attikum, H. & van Roon-Mom, W. M. C. Antisense oligonucleotide-mediated removal of the polyglutamine repeat in spinocerebellar ataxia type 3 mice. Mol. Ther. Nucleic Acids 8, 232–242 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Ramachandran, P. S. et al. RNA interference-based therapy for spinocerebellar ataxia type 7 retinal degeneration. PLOS One 9, e95362 (2014).

    PubMed  PubMed Central  Google Scholar 

  212. Ramachandran, P. S., Boudreau, R. L., Schaefer, K. A., La Spada, A. R. & Davidson, B. L. Nonallele specific silencing of ataxin-7 improves disease phenotypes in a mouse model of SCA7. Mol. Ther. 22, 1635–1642 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Strupp, M. et al. A randomized trial of 4-aminopyridine in EA2 and related familial episodic ataxias. Neurology 77, 269–275 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Giordano, I. et al. Experience in a short-term trial with 4-aminopyridine in cerebellar ataxia. J. Neurol. 260, 2175–2176 (2013).

    CAS  PubMed  Google Scholar 

  215. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01811706 (2015)

  216. Power, E. M., Morales, A. & Empson, R. M. Prolonged type 1 metabotropic glutamate receptor dependent synaptic signaling contributes to spino-cerebellar ataxia type 1. J. Neurosci. 36, 4910–4916 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Notartomaso, S. et al. Pharmacological enhancement of mGlu1 metabotropic glutamate receptors causes a prolonged symptomatic benefit in a mouse model of spinocerebellar ataxia type 1. Mol. Brain 6, 48 (2013).

    PubMed  PubMed Central  Google Scholar 

  218. Watson, L. M. et al. Dominant mutations in GRM1 cause spinocerebellar ataxia type 44. Am. J. Hum. Genet. 101, 451–458 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the US NIH (U01 NS104326-01) to T.A. (contact principal investigator), G.Ö. (multiple principal investigator) and H.L.P. (multiple principal investigator). T.A. is funded by the NIH (R01 NS083564), the National Ataxia Foundation and the Harriet and Joe B. Foster Endowment Fund on spinocerebellar ataxia (SCA) research and is collaborating with Pacific Biosciences on single-molecule real-time sequencing of the expanded SCA10 tandem repeat. G.Ö. receives grant funding from the NIH (R01 NS080816), the National Ataxia Foundation and Takeda Pharmaceuticals on SCA research. The Center for Magnetic Resonance Research is supported by the US National Institute of Biomedical Imaging and Bioengineering grant P41 EB015894 and the US Institutional Center Cores for Advanced Neuroimaging award P30 NS076408. H.L.P.’s work on SCAs is funded by the NIH (R01 NS038712), the National Ataxia Foundation, the Alfred Taubman Medical Research Institute, the University of Michigan Center for the Discovery of New Medicines, Cydan and the SCA Network of Sweden. He collaborates with Ionis Pharmaceuticals on antisense oligonucleotide therapy development for SCA3. The authors thank C. Potvin for helping with manuscript preparation and L. Eberly for assistance with sample size calculations.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussion of content, wrote the article and reviewed and/or edited the article before submission.

Corresponding author

Correspondence to Tetsuo Ashizawa.

Ethics declarations

Competing interests

T.A. has received honoraria and travel support from Pacific Biosciences. G.Ö. has received funding from Takeda Pharmaceuticals for a spinocerebellar ataxia (SCA) preclinical trial. H.L.P. recently completed a research contract with Ionis Pharmaceuticals for ASO treatments of SCA3.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashizawa, T., Öz, G. & Paulson, H.L. Spinocerebellar ataxias: prospects and challenges for therapy development. Nat Rev Neurol 14, 590–605 (2018). https://doi.org/10.1038/s41582-018-0051-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-018-0051-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing