Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multiple system atrophy: at the crossroads of cellular, molecular and genetic mechanisms

Abstract

Multiple system atrophy (MSA) is a rare oligodendroglial α-synucleinopathy characterized by neurodegeneration in striatonigral and olivopontocerebellar regions and autonomic brain centres. It causes complex cumulative motor and non-motor disability with fast progression and effective therapy is currently lacking. The difficulties in the diagnosis and treatment of MSA are largely related to the incomplete understanding of the pathogenesis of the disease. The MSA pathogenic landscape is complex, and converging findings from genetic and neuropathological studies as well as studies in experimental models of MSA have indicated the involvement of genetic and epigenetic changes; α-synuclein misfolding, aggregation and spreading; and α-synuclein strain specificity. These studies also indicate the involvement of myelin and iron dyshomeostasis, neuroinflammation, mitochondrial dysfunction and other cell-specific aspects that are relevant to the fast progression of MSA. In this Review, we discuss these findings and emphasize the implications of the complexity of the multifactorial pathogenic cascade for future translational research and its impact on biomarker discovery and treatment target definitions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental models of multiple system atrophy-like α-synucleinopathy.
Fig. 2: Multifactorial dysfunction of oligodendroglia in multiple system atrophy — putative pathogenic cascades.
Fig. 3: Current understanding of the primary oligodendrogliopathy underlying the neurodegenerative process in multiple system atrophy.
Fig. 4: Putative initiators of multiple system atrophy.

Similar content being viewed by others

References

  1. Fanciulli, A. & Wenning, G. K. Multiple-system atrophy. N. Engl. J. Med. 372, 249–263 (2015).

    Article  PubMed  Google Scholar 

  2. Wenning, G. K. et al. The movement disorder society criteria for the diagnosis of multiple system atrophy. Mov. Disord. 37, 1131–1148 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  3. O’Sullivan, S. S. et al. Clinical outcomes of progressive supranuclear palsy and multiple system atrophy. Brain 131, 1362–1372 (2008).

    Article  PubMed  Google Scholar 

  4. Poewe, W. et al. Multiple system atrophy. Nat. Rev. Dis. Prim. 8, 56 (2022). This article provides a contemporary clinical understanding of MSA.

    Article  PubMed  Google Scholar 

  5. Goedert, M. & Spillantini, M. G. Lewy body diseases and multiple system atrophy as alpha-synucleinopathies. Mol. Psychiatry 3, 462–465 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Högl, B. et al. Rapid eye movement sleep behaviour disorder: past, present, and future. J. Sleep. Res. 31, e13612 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Goldstein, D. S., Isonaka, R., Lamotte, G. & Kaufmann, H. Different phenoconversion pathways in pure autonomic failure with versus without Lewy bodies. Clin. Auton. Res. 31, 677–684 (2021).

    Article  PubMed  Google Scholar 

  8. Asi, Y. T. et al. Alpha-synuclein mRNA expression in oligodendrocytes in MSA. Glia 62, 964–970 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Watts, J. C. et al. Transmission of multiple system atrophy prions to transgenic mice. Proc. Natl Acad. Sci. USA 110, 19555–19560 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Peelaerts, W. et al. α-Synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature 522, 340–344 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Djelloul, M. et al. Alpha-synuclein expression in the oligodendrocyte lineage: an in vitro and in vivo study using rodent and human models. Stem Cell Rep. 5, 174–184 (2015).

    Article  CAS  Google Scholar 

  12. Kaji, S. et al. BCAS1-positive immature oligodendrocytes are affected by the α-synuclein-induced pathology of multiple system atrophy. Acta Neuropathol. Commun. 8, 120 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ahmed, Z., Asi, Y. T., Lees, A. J., Revesz, T. & Holton, J. L. Identification and quantification of oligodendrocyte precursor cells in multiple system atrophy, progressive supranuclear palsy and Parkinson’s disease. Brain Pathol. 23, 263–273 (2013).

    Article  PubMed  Google Scholar 

  14. Peng, C. et al. Cellular milieu imparts distinct pathological alpha-synuclein strains in alpha-synucleinopathies. Nature 557, 558–563 (2018). This study shows that α-synuclein strains of MSA are generated by the specific intracellular milieu of oligodendrocytes, but the different strains of α-synuclein show no cell-type preference in seeding of α-synuclein pathology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mavroeidi, P. et al. Endogenous oligodendroglial alpha-synuclein and TPPP/p25α orchestrate alpha-synuclein pathology in experimental multiple system atrophy models. Acta Neuropathol. 138, 415–441 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Herrera-Vaquero, M. et al. Signs of early cellular dysfunction in multiple system atrophy. Neuropathol. Appl. Neurobiol. 47, 268–282 (2021). This study shows that early predisposition and mitochondrial deficits dictate the cellular susceptibility to oxidative stress in MSA.

    Article  CAS  PubMed  Google Scholar 

  17. Monzio Compagnoni, G. et al. Mitochondrial dysregulation and impaired autophagy in iPSC-derived dopaminergic neurons of multiple system atrophy. Stem Cell Rep. 11, 1185–1198 (2018).

    Article  CAS  Google Scholar 

  18. Nakamoto, F. K. et al. The pathogenesis linked to coenzyme Q10 insufficiency in iPSC-derived neurons from patients with multiple-system atrophy. Sci. Rep. 8, 14215 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Valera, E. et al. MicroRNA-101 modulates autophagy and oligodendroglial alpha-synuclein accumulation in multiple system atrophy. Front. Mol. Neurosci. 10, 329 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Song, Y. J. et al. p25α relocalizes in oligodendroglia from myelin to cytoplasmic inclusions in multiple system atrophy. Am. J. Pathol. 171, 1291–1303 (2007). This study shows that cellular dislocation of p25α/TPPP occurs early in MSA and contributes to abnormalities in myelin and subsequent α-synuclein aggregation in oligodendrocytes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ota, K. et al. Relocation of p25α/tubulin polymerization promoting protein from the nucleus to the perinuclear cytoplasm in the oligodendroglia of sporadic and COQ2 mutant multiple system atrophy. Acta Neuropathol. Commun. 2, 136 (2014).

    PubMed  PubMed Central  Google Scholar 

  22. Mavroeidi, P. et al. Autophagy mediates the clearance of oligodendroglial SNCA/alpha-synuclein and TPPP/p25A in multiple system atrophy models. Autophagy 18, 2104–2133 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Don, A. S. et al. Altered lipid levels provide evidence for myelin dysfunction in multiple system atrophy. Acta Neuropathol. Commun. 2, 150 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bleasel, J. M., Wong, J. H., Halliday, G. M. & Kim, W. S. Lipid dysfunction and pathogenesis of multiple system atrophy. Acta Neuropathol. Commun. 2, 15 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wenning, G. K., Stefanova, N., Jellinger, K. A., Poewe, W. & Schlossmacher, M. G. Multiple system atrophy: a primary oligodendrogliopathy. Ann. Neurol. 64, 239–246 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Nakamura, K. et al. Filamentous aggregations of phosphorylated alpha-synuclein in Schwann cells (Schwann cell cytoplasmic inclusions) in multiple system atrophy. Acta Neuropathol. Commun. 3, 29 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Donadio, V. et al. Phosphorylated α-synuclein in skin Schwann cells: a new biomarker for multiple system atrophy. Brain https://doi.org/10.1093/brain/awac124 (2022). This study provides an indication of α-synuclein pathology in Schwann cells that expands the specific vulnerability of myelinating cells in MSA and suggests a novel biomarker to differentiate MSA and Lewy body disorders.

    Article  Google Scholar 

  28. Schweighauser, M. et al. Structures of α-synuclein filaments from multiple system atrophy. Nature https://doi.org/10.1038/s41586-020-2317-6 (2020). In this study, cryo-electron microscopy is used to define the specific structure of MSA α-synuclein filaments.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wenning, G. K. & Jellinger, K. A. The role of alpha-synuclein in the pathogenesis of multiple system atrophy. Acta Neuropathol. 109, 129–140 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Wenning, G. K., Quinn, N., Magalhăes, M., Mathias, C. & Daniel, S. E. ‘Minimal change’ multiple system atrophy. Mov. Disord. 9, 161–166 (1994). This study reveals how cases ofminimal changeMSA indicate that GCI pathology precedes the neuronal loss and causes neuronal dysfunction linked to atypical parkinsonism.

    Article  CAS  PubMed  Google Scholar 

  31. Wakabayashi, K. et al. An autopsy case of early (‘minimal change’) olivopontocerebellar atrophy (multiple system atrophy-cerebellar). Acta Neuropathol. 110, 185–190 (2005).

    Article  PubMed  Google Scholar 

  32. Ling, H. et al. Minimal change multiple system atrophy: an aggressive variant? Mov. Disord. 30, 960–967 (2015).

    Article  PubMed  Google Scholar 

  33. Kon, T., Mori, F., Tanji, K., Miki, Y. & Wakabayashi, K. An autopsy case of preclinical multiple system atrophy (MSA-C). Neuropathology 33, 667–672 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Koga, S. & Dickson, D. W. ‘Minimal change’ multiple system atrophy with limbic-predominant α-synuclein pathology. Acta Neuropathol. 137, 167–169 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Fujishiro, H. et al. Glial cytoplasmic inclusions in neurologically normal elderly: prodromal multiple system atrophy? Acta Neuropathol. 116, 269–275 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Stefanova, N. A mouse model of multiple system atrophy: bench to bedside. Neurotherapeutics https://doi.org/10.1007/s13311-022-01287-8 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cykowski, M. D. et al. Expanding the spectrum of neuronal pathology in multiple system atrophy. Brain 138, 2293–2309 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hass, E. W. et al. Robust α-synuclein pathology in select brainstem neuronal populations is a potential instigator of multiple system atrophy. Acta Neuropathol. Commun. 9, 80 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Araki, K. et al. The secondary structural difference between Lewy body and glial cytoplasmic inclusion in autopsy brain with synchrotron FTIR micro-spectroscopy. Sci. Rep. 10, 19423 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yamasaki, T. R. et al. Parkinson’s disease and multiple system atrophy have distinct α-synuclein seed characteristics. J. Biol. Chem. 294, 1045–1058 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Shahnawaz, M. et al. Discriminating α-synuclein strains in Parkinson’s disease and multiple system atrophy. Nature 578, 273–277 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bargar, C. et al. Discrimination of MSA-P and MSA-C by RT-QuIC analysis of olfactory mucosa: the first assessment of assay reproducibility between two specialized laboratories. Mol. Neurodegener. 16, 82 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Martinez-Valbuena, I. et al. Alpha-synuclein seeding shows a wide heterogeneity in multiple system atrophy. Transl Neurodegener. 11, 7 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Melki, R. Role of different alpha-synuclein strains in synucleinopathies, similarities with other neurodegenerative diseases. J. Parkinsons Dis. 5, 217–227 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Teil, M. et al. Brain injections of glial cytoplasmic inclusions induce a multiple system atrophy-like pathology. Brain https://doi.org/10.1093/brain/awab374 (2022).

    Article  PubMed  Google Scholar 

  46. Torre-Muruzabal, T. et al. Host oligodendrogliopathy and ɑ-synuclein strains dictate disease severity in multiple system atrophy. Brain https://doi.org/10.1093/brain/awac061 (2022).

    Article  Google Scholar 

  47. Van der Perren, A. et al. The structural differences between patient-derived α-synuclein strains dictate characteristics of Parkinson’s disease, multiple system atrophy and dementia with Lewy bodies. Acta Neuropathol. https://doi.org/10.1007/s00401-020-02157-3 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Luk, K. C. et al. Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338, 949–953 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rey, N. L. et al. Spread of aggregates after olfactory bulb injection of α-synuclein fibrils is associated with early neuronal loss and is reduced long term. Acta Neuropathol. 135, 65–83 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Uemura, N. et al. Slow progressive accumulation of oligodendroglial alpha-synuclein (α-Syn) pathology in synthetic α-Syn fibril-induced mouse models of synucleinopathy. J. Neuropathol. Exp. Neurol. 78, 877–890 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kaindlstorfer, C. et al. The relevance of iron in the pathogenesis of multiple system atrophy: a viewpoint. J. Alzheimers Dis. 61, 1253–1273 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Reyes, J. F. et al. Binding of α-synuclein oligomers to Cx32 facilitates protein uptake and transfer in neurons and oligodendrocytes. Acta Neuropathol. 138, 23–47 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dutta, S. et al. α-Synuclein in blood exosomes immunoprecipitated using neuronal and oligodendroglial markers distinguishes Parkinson’s disease from multiple system atrophy. Acta Neuropathol. 142, 495–511 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Scheiblich, H. et al. Microglia jointly degrade fibrillar alpha-synuclein cargo by distribution through tunneling nanotubes. Cell 184, 5089–5106 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Heras-Garvin, A. et al. Anle138b modulates α-synuclein oligomerization and prevents motor decline and neurodegeneration in a mouse model of multiple system atrophy. Mov. Disord. 34, 255–263 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Lemos, M. et al. Targeting α-synuclein by PD03 AFFITOPE® and Anle138b rescues neurodegenerative pathology in a model of multiple system atrophy: clinical relevance. Transl Neurodegener. 9, 38 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Heras-Garvin, A. et al. ATH434 reduces α-synuclein-related neurodegeneration in a murine model of multiple system atrophy. Mov. Disord. https://doi.org/10.1002/mds.28714 (2021).

    Article  PubMed  Google Scholar 

  58. Mandler, M. et al. Active immunization against alpha-synuclein ameliorates the degenerative pathology and prevents demyelination in a model of multiple system atrophy. Mol. Neurodegener. 10, 10 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Pagano, G. et al. Trial of prasinezumab in early-stage Parkinson’s disease. N. Engl. J. Med. 387, 421–432 (2022).

    Article  CAS  PubMed  Google Scholar 

  60. Lang, A. E. et al. Trial of cinpanemab in early Parkinson’s disease. N. Engl. J. Med. 387, 408–420 (2022).

    Article  CAS  PubMed  Google Scholar 

  61. Ishizawa, K. et al. Microglial activation parallels system degeneration in multiple system atrophy. J. Neuropathol. Exp. Neurol. 63, 43–52 (2004).

    Article  PubMed  Google Scholar 

  62. Ahmed, Z. et al. The neuropathology, pathophysiology and genetics of multiple system atrophy. Neuropathol. Appl. Neurobiol. 38, 4–24 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Fellner, L., Jellinger, K. A., Wenning, G. K. & Stefanova, N. Glial dysfunction in the pathogenesis of α-synucleinopathies: emerging concepts. Acta Neuropathol. 121, 675–693 (2011). This study shows that glial cells have a prominent role in the pathogenesis of α-synucleinopathies including neuroinflammatory signalling and disease-specific misfolding in MSA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Salvesen, L. et al. Changes in total cell numbers of the basal ganglia in patients with multiple system atrophy — a stereological study. Neurobiol. Dis. 74, 104–113 (2015).

    Article  PubMed  Google Scholar 

  65. Salvesen, L. et al. Neocortical neuronal loss in patients with multiple system atrophy: a stereological study. Cereb. Cortex 27, 400–410 (2017).

    PubMed  Google Scholar 

  66. Fellner, L. et al. Toll-like receptor 4 is required for alpha-synuclein dependent activation of microglia and astroglia. Glia 61, 349–360 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Díaz, E. F. et al. Connexin 43 hemichannels and pannexin-1 channels contribute to the α-synuclein-induced dysfunction and death of astrocytes. Glia 67, 1598–1619 (2019).

    PubMed  Google Scholar 

  68. Song, Y. J. et al. Degeneration in different parkinsonian syndromes relates to astrocyte type and astrocyte protein expression. J. Neuropathol. Exp. Neurol. 68, 1073–1083 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Nykjaer, C. H., Brudek, T., Salvesen, L. & Pakkenberg, B. Changes in the cell population in brain white matter in multiple system atrophy. Mov. Disord. 32, 1074–1082 (2017).

    Article  CAS  PubMed  Google Scholar 

  70. Refolo, V. et al. Progressive striatonigral degeneration in a transgenic mouse model of multiple system atrophy: translational implications for interventional therapies. Acta Neuropathol. Commun. 6, 2 (2018). This study shows that oligodendroglial α-synuclein aggregation causes progressive nigral and striatal degeneration in a mouse model of MSA.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Stefanova, N. et al. Microglial activation mediates neurodegeneration related to oligodendroglial alpha-synucleinopathy: implications for multiple system atrophy. Mov. Disord. 22, 2196–2203 (2007).

    Article  PubMed  Google Scholar 

  72. Gerhard, A. et al. [11C](R)-PK11195 PET imaging of microglial activation in multiple system atrophy. Neurology 61, 686–689 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Kubler, D. et al. Widespread microglial activation in multiple system atrophy. Mov. Disord. 34, 564–568 (2019).

    PubMed  PubMed Central  Google Scholar 

  74. Jucaite, A. et al. Glia imaging differentiates multiple system atrophy from Parkinson’s disease: a positron emission tomography study with [(11)C]PBR28 and machine learning analysis. Mov. Disord. 37, 119–129 (2022). This study shows that signal distribution in [(11)C]PBR28 PET imaging discloses stronger glial activation in MSA compared with PD.

    Article  CAS  PubMed  Google Scholar 

  75. Stefanova, N. Microglia in Parkinson’s disease. J. Parkinsons Dis. https://doi.org/10.3233/jpd-223237 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Dansokho, C. & Heneka, M. T. Neuroinflammatory responses in Alzheimer’s disease. J. Neural Transm. 125, 771–779 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Pike, A. F. et al. Synuclein evokes NLRP3 inflammasome-mediated IL-1β secretion from primary human microglia. Glia 69, 1413–1428 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Trudler, D. et al. Soluble α-synuclein-antibody complexes activate the NLRP3 inflammasome in hiPSC-derived microglia. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2025847118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Stefanova, N., Georgievska, B., Eriksson, H., Poewe, W. & Wenning, G. K. Myeloperoxidase inhibition ameliorates multiple system atrophy-like degeneration in a transgenic mouse model. Neurotox. Res. 21, 393–404 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Guo, M. et al. Microglial exosomes facilitate α-synuclein transmission in Parkinson’s disease. Brain 143, 1476–1497 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Stefanova, N. et al. Toll-like receptor 4 promotes alpha-synuclein clearance and survival of nigral dopaminergic neurons. Am. J. Pathol. 179, 954–963 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shadrin, A. A. et al. Shared genetics of multiple system atrophy and inflammatory bowel disease. Mov. Disord. 36, 449–459 (2021). This study shows that overlapping genetic backgrounds between MSA and inflammatory bowel disease implicate immune stress and gut dysfunction in the aetiology of MSA.

    Article  CAS  PubMed  Google Scholar 

  83. Williams, G. P. et al. T cell infiltration in both human multiple system atrophy and a novel mouse model of the disease. Acta Neuropathol. 139, 855–874 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kaufmann, M. et al. Identification of early neurodegenerative pathways in progressive multiple sclerosis. Nat. Neurosci. 25, 944–955 (2022).

    Article  CAS  PubMed  Google Scholar 

  85. Ubhi, K. et al. Neurodegeneration in a transgenic mouse model of multiple system atrophy is associated with altered expression of oligodendroglial-derived neurotrophic factors. J. Neurosci. 30, 6236–6246 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Levin, J. et al. Generation of ferric iron links oxidative stress to α-synuclein oligomer formation. J. Parkinsons Dis. 1, 205–216 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Dexter, D. T., Jenner, P., Schapira, A. H. & Marsden, C. D. Alterations in levels of iron, ferritin, and other trace metals in neurodegenerative diseases affecting the basal ganglia. The Royal Kings and Queens Parkinson’s Disease Research Group. Ann. Neurol. 32, S94–S100 (1992).

    Article  CAS  PubMed  Google Scholar 

  88. Tanji, K. et al. Alteration of autophagosomal proteins in the brain of multiple system atrophy. Neurobiol. Dis. 49, 190–198 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Sailer, A. et al. A genome-wide association study in multiple system atrophy. Neurology 87, 1591–1598 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Federoff, M. et al. Genome-wide estimate of the heritability of multiple system atrophy. Parkinsonism Relat. Disord. 22, 35–41 (2016).

    Article  CAS  PubMed  Google Scholar 

  91. Funayama, M., Nishioka, K., Li, Y. & Hattori, N. Molecular genetics of Parkinson’s disease: contributions and global trends. J. Hum. Genet. https://doi.org/10.1038/s10038-022-01058-5 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Ozawa, T. et al. No mutation in the entire coding region of the alpha-synuclein gene in pathologically confirmed cases of multiple system atrophy. Neurosci. Lett. 270, 110–112 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Mokretar, K. et al. Somatic copy number gains of α-synuclein (SNCA) in Parkinson’s disease and multiple system atrophy brains. Brain 141, 2419–2431 (2018). In this study, somatic α-synuclein copy-number gains in substantia nigra in MSA and PD are found, which suggest that mosaicism may be a risk factor in sporadic α-synucleinopathies.

    Article  PubMed  Google Scholar 

  94. Perez-Rodriguez, D. et al. Investigation of somatic CNVs in brains of synucleinopathy cases using targeted SNCA analysis and single cell sequencing. Acta Neuropathol. Commun. 7, 219 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yang, Y. et al. New SNCA mutation and structures of α-synuclein filaments from juvenile-onset synucleinopathy. Preprint at bioRxiv https://doi.org/10.1101/2022.11.23.517690 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Srulijes, K. et al. No association of GBA mutations and multiple system atrophy. Eur. J. Neurol. 20, e61–e62 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Segarane, B. et al. Glucocerebrosidase mutations in 108 neuropathologically confirmed cases of multiple system atrophy. Neurology 72, 1185–1186 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wernick, A. I. et al. GBA variation and susceptibility to multiple system atrophy. Parkinsonism Relat. Disord. 77, 64–69 (2020).

    Article  PubMed  Google Scholar 

  99. Brettschneider, J. et al. Converging patterns of α-synuclein pathology in multiple system atrophy. J. Neuropathol. Exp. Neurol. 77, 1005–1016 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hernandez, D. et al. The dardarin G 2019 S mutation is a common cause of Parkinson’s disease but not other neurodegenerative diseases. Neurosci. Lett. 389, 137–139 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Ozelius, L. J. et al. G2019S mutation in the leucine-rich repeat kinase 2 gene is not associated with multiple system atrophy. Mov. Disord. 22, 546–549 (2007).

    Article  PubMed  Google Scholar 

  102. Riboldi, G. M. et al. Early-onset pathologically proven multiple system atrophy with LRRK2 G2019S mutation. Mov. Disord. 34, 1080–1082 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Ando, S. et al. A patient clinically diagnosed as multiple system atrophy harboring LRRK2 p.G2019S. Clin. Parkinsonism Relat. Disord. 1, 100–101 (2019).

    Article  Google Scholar 

  104. Heckman, M. G. et al. LRRK2 exonic variants and risk of multiple system atrophy. Neurology 83, 2256–2261 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Soma, H. et al. Associations between multiple system atrophy and polymorphisms of SLC1A4, SQSTM1, and EIF4EBP1 genes. Mov. Disord. 23, 1161–1167 (2008).

    Article  PubMed  Google Scholar 

  106. Combarros, O., Infante, J., Llorca, J. & Berciano, J. Interleukin-1A (-889) genetic polymorphism increases the risk of multiple system atrophy. Mov. Disord. 18, 1385–1386 (2003).

    Article  PubMed  Google Scholar 

  107. Infante, J., Llorca, J., Berciano, J. & Combarros, O. Interleukin-8, intercellular adhesion molecule-1 and tumour necrosis factor-alpha gene polymorphisms and the risk for multiple system atrophy. J. Neurol. Sci. 228, 11–13 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Nishimura, M. et al. Contribution of the interleukin-1β gene polymorphism in multiple system atrophy. Mov. Disord. 17, 808–811 (2002).

    Article  PubMed  Google Scholar 

  109. Nishimura, M., Kuno, S., Kaji, R. & Kawakami, H. Influence of a tumor necrosis factor gene polymorphism in Japanese patients with multiple system atrophy. Neurosci. Lett. 374, 218–221 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Collaboration., T. M.-S. A. R. Mutations in COQ2 in familial and sporadic multiple-system atrophy. N. Engl. J. Med. 369, 233–244 (2013). This study shows that COQ2 mutations are linked to MSA in the Japanese population.

    Article  Google Scholar 

  111. Hopfner, F. et al. Common variants near ZIC1 and ZIC4 in autopsy-confirmed multiple system atrophy. Mov. Disord. 37, 2110–2121 (2022).

    Article  CAS  PubMed  Google Scholar 

  112. Gilman, S. et al. The North American Multiple System Atrophy Study Group. J. Neural Transm. 112, 1687–1694 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Wenning, G. K. et al. The natural history of multiple system atrophy: a prospective European cohort study. Lancet Neurol. 12, 264–274 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Low, P. A. et al. Natural history of multiple system atrophy in the USA: a prospective cohort study. Lancet Neurol. 14, 710–719 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Matsushima, M. et al. Multiple system atrophy in Hokkaido, Japan: a prospective registry study of natural history and symptom assessment scales followed for 5 years. BMJ Open 11, e045100 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Watanabe, H. et al. Progression and prognosis in multiple system atrophy: an analysis of 230 Japanese patients. Brain 125, 1070–1083 (2002).

    Article  PubMed  Google Scholar 

  117. Ozawa, T. et al. The phenotype spectrum of Japanese multiple system atrophy. J. Neurol. Neurosurg. Psychiatry 81, 1253–1255 (2010).

    Article  CAS  PubMed  Google Scholar 

  118. Gu, X. et al. Analysis of GWAS-linked variants in multiple system atrophy. Neurobiol. Aging 67, 201.e1–201.e4 (2018).

    Article  CAS  PubMed  Google Scholar 

  119. Ogaki, K. et al. Analysis of COQ2 gene in multiple system atrophy. Mol. Neurodegener. 9, 44 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Schottlaender, L. V. & Houlden, H. Mutant COQ2 in multiple-system atrophy. N. Engl. J. Med. 371, 81 (2014).

    CAS  PubMed  Google Scholar 

  121. Sharma, M., Wenning, G. & Kruger, R. Mutant COQ2 in multiple-system atrophy. N. Engl. J. Med. 371, 80–81 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Chen, Y. P. et al. Mutation scanning of the COQ2 gene in ethnic Chinese patients with multiple-system atrophy. Neurobiol. Aging 36, 1222.e7–1222.e11 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Wullner, U. et al. Probable multiple system atrophy in a German family. J. Neurol. Neurosurg. Psychiatry 75, 924–925 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hara, K. et al. Multiplex families with multiple system atrophy. Arch. Neurol. 64, 545–551 (2007).

    Article  PubMed  Google Scholar 

  125. Leys, F. et al. Family history for neurodegeneration in multiple system atrophy: does it indicate susceptibility? Mov. Disord. https://doi.org/10.1002/mds.29202 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Gwinn-Hardy, K. et al. Distinctive neuropathology revealed by alpha-synuclein antibodies in hereditary parkinsonism and dementia linked to chromosome 4p. Acta Neuropathol. 99, 663–672 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Fanciulli, A. et al. A multiplex pedigree with pathologically confirmed multiple system atrophy and Parkinson’s disease with dementia. Brain Commun. 4, fcac175 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Singleton, A. B. et al. α-Synuclein locus triplication causes Parkinson’s disease. Science 302, 841 (2003).

    Article  CAS  PubMed  Google Scholar 

  129. Ross, O. A. et al. Genomic investigation of alpha-synuclein multiplication and parkinsonism. Ann. Neurol. 63, 743–750 (2008).

    Article  CAS  PubMed  Google Scholar 

  130. Kiely, A. P. et al. α-Synucleinopathy associated with G51D SNCA mutation: a link between Parkinson’s disease and multiple system atrophy? Acta Neuropathol. 125, 753–769 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. King, A., Lee, Y. K., Jones, S. & Troakes, C. A pathologically confirmed case of combined amyotrophic lateral sclerosis with C9orf72 mutation and multiple system atrophy. Neuropathology 42, 302–308 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Goldman, J. S. et al. Multiple system atrophy and amyotrophic lateral sclerosis in a family with hexanucleotide repeat expansions in C9orf72. JAMA Neurol. 71, 771–774 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Schottlaender, L. V. et al. Analysis of C9orf72 repeat expansions in a large series of clinically and pathologically diagnosed cases with atypical parkinsonism. Neurobiol. Aging 36, 1221.e1–1226.e6 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Scholz, S. W. et al. Multiple system atrophy is not caused by C9orf72 hexanucleotide repeat expansions. Neurobiol. Aging 36, 1223.e1–1223.e2 (2015).

    Article  CAS  PubMed  Google Scholar 

  135. Gilman, S. et al. Spinocerebellar ataxia type 1 with multiple system degeneration and glial cytoplasmic inclusions. Ann. Neurol. 39, 241–255 (1996).

    Article  CAS  PubMed  Google Scholar 

  136. Nirenberg, M. J., Libien, J., Vonsattel, J. P. & Fahn, S. Multiple system atrophy in a patient with the spinocerebellar ataxia 3 gene mutation. Mov. Disord. 22, 251–254 (2007).

    Article  PubMed  Google Scholar 

  137. Wan, L. et al. Biallelic intronic AAGGG expansion of RFC1 is related to multiple system atrophy. Ann. Neurol. 88, 1132–1143 (2020).

    Article  CAS  PubMed  Google Scholar 

  138. Record, C. J. et al. Severe distinct dysautonomia in RFC1-related disease associated with Parkinsonism. J. Peripher. Nerv. Syst. 27, 311–315 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Goutman, S. A. et al. Emerging insights into the complex genetics and pathophysiology of amyotrophic lateral sclerosis. Lancet Neurol. 21, 465–479 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Bettencourt, C. et al. White matter DNA methylation profiling reveals deregulation of HIP1, LMAN2, MOBP, and other loci in multiple system atrophy. Acta Neuropathol. 139, 135–156 (2020).

    Article  CAS  PubMed  Google Scholar 

  141. Koga, S., Sekiya, H., Kondru, N., Ross, O. A. & Dickson, D. W. Neuropathology and molecular diagnosis of synucleinopathies. Mol. Neurodegener. 16, 83 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kontopoulos, E., Parvin, J. D. & Feany, M. B. Alpha-synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity. Hum. Mol. Genet. 15, 3012–3023 (2006).

    Article  CAS  PubMed  Google Scholar 

  143. Sturm, E. et al. Neuroprotection by epigenetic modulation in a transgenic model of multiple system atrophy. Neurotherapeutics 13, 871–879 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Schafferer, S. et al. Changes in the miRNA–mRNA regulatory network precede motor symptoms in a mouse model of multiple system atrophy: clinical implications. PLoS ONE 11, e0150705 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Kim, T., Valera, E. & Desplats, P. Alterations in striatal microRNA–mRNA networks contribute to neuroinflammation in multiple system atrophy. Mol. Neurobiol. 56, 7003–7021 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Vanacore, N. et al. Case–control study of multiple system atrophy. Mov. Disord. 20, 158–163 (2005).

    Article  PubMed  Google Scholar 

  147. Ozawa, T. et al. The spectrum of pathological involvement of the striatonigral and olivopontocerebellar systems in multiple system atrophy: clinicopathological correlations. Brain 127, 2657–2671 (2004).

    Article  PubMed  Google Scholar 

  148. Campese, N. et al. Neuropathology of multiple system atrophy: Kurt Jellinger’s legacy. J. Neural Transm. 128, 1481–1494 (2021).

    Article  PubMed  Google Scholar 

  149. Uchihara, T. et al. Silver stainings distinguish Lewy bodies and glial cytoplasmic inclusions: comparison between Gallyas–Braak and Campbell–Switzer methods. Acta Neuropathol. 110, 255–260 (2005).

    Article  CAS  PubMed  Google Scholar 

  150. Koga, S. et al. Profile of cognitive impairment and underlying pathology in multiple system atrophy. Mov. Disord. 32, 405–413 (2017).

    Article  PubMed  Google Scholar 

  151. Wakabayashi, K., Miki, Y., Tanji, K. & Mori, F. Neuropathology of multiple system atrophy, a glioneuronal degenerative disease. Cerebellum https://doi.org/10.1007/s12311-022-01407-2 (2022).

    Article  PubMed  Google Scholar 

  152. Doppler, K. et al. Distinctive distribution of phospho-alpha-synuclein in dermal nerves in multiple system atrophy. Mov. Disord. 30, 1688–1692 (2015).

    Article  CAS  PubMed  Google Scholar 

  153. Haga, R. et al. Clinical utility of skin biopsy in differentiating between Parkinson’s disease and multiple system atrophy. Parkinsons Dis. 2015, 167038 (2015).

    PubMed  PubMed Central  Google Scholar 

  154. Overk, C. et al. Multiple system atrophy: experimental models and reality. Acta Neuropathol. 135, 33–47 (2018).

    Article  PubMed  Google Scholar 

  155. Stefanova, N., Tison, F., Reindl, M., Poewe, W. & Wenning, G. K. Animal models of multiple system atrophy. Trends Neurosci. 28, 501–506 (2005).

    Article  CAS  PubMed  Google Scholar 

  156. Kahle, P. J. et al. Hyperphosphorylation and insolubility of alpha-synuclein in transgenic mouse oligodendrocytes. EMBO Rep. 3, 583–588 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Shults, C. W. et al. Neurological and neurodegenerative alterations in a transgenic mouse model expressing human alpha-synuclein under oligodendrocyte promoter: implications for multiple system atrophy. J. Neurosci. 25, 10689–10699 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Yazawa, I. et al. Mouse model of multiple system atrophy alpha-synuclein expression in oligodendrocytes causes glial and neuronal degeneration. Neuron 45, 847–859 (2005).

    Article  CAS  PubMed  Google Scholar 

  159. Tanji, K. et al. A mouse model of adult-onset multiple system atrophy. Neurobiol. Dis. 127, 339–349 (2019).

    Article  CAS  PubMed  Google Scholar 

  160. Marmion, D. J. et al. Viral-based rodent and nonhuman primate models of multiple system atrophy: fidelity to the human disease. Neurobiol. Dis. 148, 105184 (2021).

    Article  CAS  PubMed  Google Scholar 

  161. Stefanova, N., Kaufmann, W. A., Humpel, C., Poewe, W. & Wenning, G. K. Systemic proteasome inhibition triggers neurodegeneration in a transgenic mouse model expressing human alpha-synuclein under oligodendrocyte promoter: implications for multiple system atrophy. Acta Neuropathol. 124, 51–65 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Woerman, A. L. et al. Multiple system atrophy prions retain strain specificity after serial propagation in two different Tg(SNCA*A53T) mouse lines. Acta Neuropathol. 137, 437–454 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Ding, X. et al. Propagation of pathological α-synuclein from the urogenital tract to the brain initiates MSA-like syndrome. iScience 23, 101166 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to the manuscript.

Corresponding author

Correspondence to Nadia Stefanova.

Ethics declarations

Competing interests

N.S. reports consultancy fees from Inhibikase Therapeutics and Astellas Pharma and research grants from the Austrian Science Fund (FWF), Alterity Therapeutics and the US MSA Coalition. G.K.W. reports consultancy and lecture fees from Biohaven, Inhibikase, Ono and Takeda and research grants from the Austrian Science Fund (FWF), the Austrian National Bank, the US MSA Coalition, Parkinson Funds Austria and International Parkinson and Movement Disorder Society outside the submitted work.

Peer review

Peer review information

Nature Reviews Neuroscience thanks C. Proukakis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stefanova, N., Wenning, G.K. Multiple system atrophy: at the crossroads of cellular, molecular and genetic mechanisms. Nat Rev Neurosci 24, 334–346 (2023). https://doi.org/10.1038/s41583-023-00697-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-023-00697-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing