Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging mechanistic understanding of cilia function in cellular signalling

Abstract

Primary cilia are solitary, immotile sensory organelles present on most cells in the body that participate broadly in human health, physiology and disease. Cilia generate a unique environment for signal transduction with tight control of protein, lipid and second messenger concentrations within a relatively small compartment, enabling reception, transmission and integration of biological information. In this Review, we discuss how cilia function as signalling hubs in cell–cell communication using three signalling pathways as examples: ciliary G-protein-coupled receptors (GPCRs), the Hedgehog (Hh) pathway and polycystin ion channels. We review how defects in these ciliary signalling pathways lead to a heterogeneous group of conditions known as ‘ciliopathies’, including metabolic syndromes, birth defects and polycystic kidney disease. Emerging understanding of these pathways’ transduction mechanisms reveals common themes between these cilia-based signalling pathways that may apply to other pathways as well. These mechanistic insights reveal how cilia orchestrate normal and pathophysiological signalling outputs broadly throughout human biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The primary cilium is a specialized compartment for signal transduction.
Fig. 2: G-protein-coupled receptor signalling in primary cilia.
Fig. 3: Hedgehog signal transduction in primary cilia.
Fig. 4: Models of polycystin function in vertebrate development and homeostasis.
Fig. 5: Crosstalk between ciliary signalling pathways.

Similar content being viewed by others

References

  1. Mill, P., Christensen, S. T. & Pedersen, L. B. Primary cilia as dynamic and diverse signalling hubs in development and disease. Nat. Rev. Genet. 24, 421–441 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hilgendorf, K. I., Johnson, C. T. & Jackson, P. K. The primary cilium as a cellular receiver: organizing ciliary GPCR signaling. Curr. Opin. Cell Biol. 39, 84–92 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hilgendorf, K. I. Primary cilia are critical regulators of white adipose tissue expansion. Front. Physiol. 12, 769367 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wachten, D. & Mick, D. U. Signal transduction in primary cilia — analyzing and manipulating GPCR and second messenger signaling. Pharmacol. Ther. 224, 107836 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, Y. & Beachy, P. A. Cellular and molecular mechanisms of Hedgehog signalling. Nat. Rev. Mol. Cell Biol. 24, 668–687 (2023).

    Article  CAS  PubMed  Google Scholar 

  6. Gigante, E. D. & Caspary, T. Signaling in the primary cilium through the lens of the Hedgehog pathway. Wiley Interdiscip. Rev. Dev. Biol. 9, e377 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kong, J. H., Siebold, C. & Rohatgi, R. Biochemical mechanisms of vertebrate hedgehog signaling. Development 146, dev166892 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Esarte Palomero, O., Larmore, M. & DeCaen, P. G. Polycystin channel complexes. Annu. Rev. Physiol. 85, 425–448 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Pazour, G. J., Quarmby, L., Smith, A. O., Desai, P. B. & Schmidts, M. Cilia in cystic kidney and other diseases. Cell Signal. 69, 109519 (2020).

    Article  PubMed  Google Scholar 

  10. Derderian, C., Canales, G. I. & Reiter, J. F. Seriously cilia: a tiny organelle illuminates evolution, disease, and intercellular communication. Dev. Cell 58, 1333–1349 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Reiter, J. F. & Leroux, M. R. Genes and molecular pathways underpinning ciliopathies. Nat. Rev. Mol. Cell Biol. 18, 533–547 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wallmeier, J. et al. Motile ciliopathies. Nat. Rev. Dis. Prim. 6, 77 (2020).

    Article  PubMed  Google Scholar 

  13. Breslow, D. K. & Holland, A. J. Mechanism and regulation of centriole and cilium biogenesis. Annu. Rev. Biochem. 88, 691–724 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Prosser, S. L. & Pelletier, L. Mitotic spindle assembly in animal cells: a fine balancing act. Nat. Rev. Mol. Cell Biol. 18, 187–201 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Carvalho-Santos, Z., Azimzadeh, J., Pereira-Leal, J. B. & Bettencourt-Dias, M. Evolution: tracing the origins of centrioles, cilia, and flagella. J. Cell Biol. 194, 165–175 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Serwas, D., Su, T. Y., Roessler, M., Wang, S. & Dammermann, A. Centrioles initiate cilia assembly but are dispensable for maturation and maintenance in C. elegans. J. Cell Biol. 216, 1659–1671 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Satir, P., Pedersen, L. B. & Christensen, S. T. The primary cilium at a glance. J. Cell Sci. 123, 499–503 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kiesel, P. et al. The molecular structure of mammalian primary cilia revealed by cryo-electron tomography. Nat. Struct. Mol. Biol. 27, 1115–1124 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Polino, A. J., Sviben, S., Melena, I., Piston, D. W. & Hughes, J. W. Scanning electron microscopy of human islet cilia. Proc. Natl Acad. Sci. USA 120, e2302624120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sun, S., Fisher, R. L., Bowser, S. S., Pentecost, B. T. & Sui, H. Three-dimensional architecture of epithelial primary cilia. Proc. Natl Acad. Sci. USA 116, 9370–9379 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  21. Wang, W. et al. Intraflagellar transport proteins as regulators of primary cilia length. Front. Cell Dev. Biol. 9, 661350 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Plotnikova, O. V., Pugacheva, E. N. & Golemis, E. A. Primary cilia and the cell cycle. Methods Cell Biol. 94, 137–160 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nachury, M. V. & Mick, D. U. Establishing and regulating the composition of cilia for signal transduction. Nat. Rev. Mol. Cell Biol. 20, 389–405 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang, Z. et al. Centriole and transition zone structures in photoreceptor cilia revealed by cryo-electron tomography. Life Sci. Alliance 7, e202302409 (2023).

    Article  ADS  Google Scholar 

  25. Horst, C. J., Forestner, D. M. & Besharse, J. C. Cytoskeletal–membrane interactions: a stable interaction between cell surface glycoconjugates and doublet microtubules of the photoreceptor connecting cilium. J. Cell Biol. 105, 2973–2987 (1987).

    Article  CAS  PubMed  Google Scholar 

  26. Sang, L. et al. Mapping the NPHP–JBTS–MKS protein network reveals ciliopathy disease genes and pathways. Cell 145, 513–528 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Garcia, G., Raleigh, D. R. & Reiter, J. F. How the ciliary membrane is organized inside-out to communicate outside-in. Curr. Biol. 28, R421–R434 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ghossoub, R., Molla-Herman, A., Bastin, P. & Benmerah, A. The ciliary pocket: a once-forgotten membrane domain at the base of cilia. Biol. Cell 103, 131–144 (2011).

    Article  PubMed  Google Scholar 

  29. Molla-Herman, A. et al. The ciliary pocket: an endocytic membrane domain at the base of primary and motile cilia. J. Cell Sci. 123, 1785–1795 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Han, S. et al. TULP3 is required for localization of membrane-associated proteins ARL13B and INPP5E to primary cilia. Biochem. Biophys. Res. Commun. 509, 227–234 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Conduit, S. E. & Vanhaesebroeck, B. Phosphoinositide lipids in primary cilia biology. Biochem. J. 477, 3541–3565 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Chávez, M. et al. Modulation of ciliary phosphoinositide content regulates trafficking and Sonic hedgehog signaling output. Dev. Cell 34, 338–350 (2015).

    Article  PubMed  Google Scholar 

  33. Garcia-Gonzalo, F. R. et al. Phosphoinositides regulate ciliary protein trafficking to modulate Hedgehog signaling. Dev. Cell 34, 400–409 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Conduit, S. E., Davies, E. M., Fulcher, A. J., Oorschot, V. & Mitchell, C. A. Superresolution microscopy reveals distinct phosphoinositide subdomains within the cilia transition zone. Front. Cell Dev. Biol. 9, 634649 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Krajnik, A. et al. Phosphoinositide signaling and mechanotransduction in cardiovascular biology and disease. Front. Cell Dev. Biol. 8, 595849 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kinnebrew, M. et al. Cholesterol accessibility at the ciliary membrane controls hedgehog signaling. eLife 8, e50051 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Breslow, D. K., Koslover, E. F., Seydel, F., Spakowitz, A. J. & Nachury, M. V. An in vitro assay for entry into cilia reveals unique properties of the soluble diffusion barrier. J. Cell Biol. 203, 129–147 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Delling, M., DeCaen, P. G., Doerner, J. F., Febvay, S. & Clapham, D. E. Primary cilia are specialized calcium signalling organelles. Nature 504, 311–314 (2013).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  39. Paolocci, E. & Zaccolo, M. Compartmentalised cAMP signalling in the primary cilium. Front. Physiol. 14, 1187134 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Nachury, M. V. How do cilia organize signalling cascades? Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130465 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Qiao, J., Mei, F. C., Popov, V. L., Vergara, L. A. & Cheng, X. Cell cycle-dependent subcellular localization of exchange factor directly activated by cAMP. J. Biol. Chem. 277, 26581–26586 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Stoufflet, J. et al. Primary cilium-dependent cAMP/PKA signaling at the centrosome regulates neuronal migration. Sci. Adv. 6, eaba3992 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  43. Truong, M. E. et al. Vertebrate cells differentially interpret ciliary and extraciliary cAMP. Cell 184, 2911–2926.e18 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jordan, M. A. & Pigino, G. The structural basis of intraflagellar transport at a glance. J. Cell Sci. 134, jcs247163 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Stepanek, L. & Pigino, G. Microtubule doublets are double-track railways for intraflagellar transport trains. Science 352, 721–724 (2016).

    Article  CAS  PubMed  ADS  Google Scholar 

  46. Mallet, A. & Bastin, P. Restriction of intraflagellar transport to some microtubule doublets: an opportunity for cilia diversification? Bioessays 44, e2200031 (2022).

    Article  PubMed  Google Scholar 

  47. Bertiaux, E. et al. Bidirectional intraflagellar transport is restricted to two sets of microtubule doublets in the trypanosome flagellum. J. Cell Biol. 217, 4284–4297 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen, Z. et al. In situ cryo-electron tomography reveals the asymmetric architecture of mammalian sperm axonemes. Nat. Struct. Mol. Biol. 30, 360–369 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mukhopadhyay, S. et al. TULP3 bridges the IFT-A complex and membrane phosphoinositides to promote trafficking of G protein-coupled receptors into primary cilia.Genes Dev. 24, 2180–2193 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mukhopadhyay, S. & Jackson, P. K. The tubby family proteins. Genome Biol. 12, 225 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Badgandi, H. B., Hwang, S.-H., Shimada, I. S., Loriot, E. & Mukhopadhyay, S. Tubby family proteins are adapters for ciliary trafficking of integral membrane proteins. J. Cell Biol. 216, 743–760 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nachury, M. V. The molecular machines that traffic signaling receptors into and out of cilia. Curr. Opin. Cell Biol. 51, 124–131 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yang, S. et al. Near-atomic structures of the BBSome reveal the basis for BBSome activation and binding to GPCR cargoes. eLife 9, e55954 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lagerström, M. C. & Schiöth, H. B. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat. Rev. Drug. Discov. 7, 339–357 (2008).

    Article  PubMed  Google Scholar 

  55. Hauser, A. S., Attwood, M. M., Rask-Andersen, M., Schiöth, H. B. & Gloriam, D. E. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug. Discov. 16, 829–842 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yang, D. et al. G protein-coupled receptors: structure- and function-based drug discovery. Signal. Transduct. Target. Ther. 6, 7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wedegaertner, P. B., Wilson, P. T. & Bourne, H. R. Lipid modifications of trimeric G proteins. J. Biol. Chem. 270, 503–506 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Calebiro, D., Koszegi, Z., Lanoiselée, Y., Miljus, T. & O’Brien, S. G protein-coupled receptor–G protein interactions: a single-molecule perspective. Physiol. Rev. 101, 857–906 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Qu, C. et al. Scaffolding mechanism of arrestin-2 in the cRaf/MEK1/ERK signaling cascade. Proc. Natl Acad. Sci. USA 118, e2026491118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Okashah, N. et al. Variable G protein determinants of GPCR coupling selectivity. Proc. Natl Acad. Sci. USA 116, 12054–12059 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  61. Olsen, R. H. J. et al. TRUPATH, an open-source biosensor platform for interrogating the GPCR transducerome. Nat. Chem. Biol. 16, 841–849 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wu, C.-T. et al. Discovery of ciliary G protein-coupled receptors regulating pancreatic islet insulin and glucagon secretion. Genes. Dev. 35, 1243–1255 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hilgendorf, K. I. et al. ω-3 fatty acids activate ciliary FFAR4 to control adipogenesis. Cell 179, 1289–1305.e21 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Oh, D. Y. et al. GPR120 is an ω-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142, 687–698 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Masyuk, A. I. et al. Ciliary subcellular localization of TGR5 determines the cholangiocyte functional response to bile acid signaling. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G1013–G1024 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sheu, S.-H. et al. A serotonergic axon–cilium synapse drives nuclear signaling to alter chromatin accessibility. Cell 185, 3390–3407.e18 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hansen, J. N. et al. A cAMP signalosome in primary cilia drives gene expression and kidney cyst formation. EMBO Rep. 23, e54315 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Komolov, K. E. & Benovic, J. L. G protein-coupled receptor kinases: past, present and future. Cell Signal. 41, 17–24 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. Homan, K. T. & Tesmer, J. J. G. Structural insights into G protein-coupled receptor kinase function. Curr. Opin. Cell Biol. 27, 25–31 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Shinde, S. R., Nager, A. R. & Nachury, M. V. Ubiquitin chains earmark GPCRs for BBSome-mediated removal from cilia. J. Cell Biol. 219, e202003020 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Desai, P. B., Stuck, M. W., Lv, B. & Pazour, G. J. Ubiquitin links smoothened to intraflagellar transport to regulate Hedgehog signaling. J. Cell Biol. 219, e201912104 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Shinde, S. R. et al. The ancestral ESCRT protein TOM1L2 selects ubiquitinated cargoes for retrieval from cilia. Dev. Cell 58, 677–693.e9 (2023).

    Article  CAS  PubMed  Google Scholar 

  73. Jin, H. et al. The conserved Bardet–Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia. Cell 141, 1208–1219 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ye, F., Nager, A. R. & Nachury, M. V. BBSome trains remove activated GPCRs from cilia by enabling passage through the transition zone. J. Cell Biol. 217, 1847–1868 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nager, A. R. et al. An actin network dispatches ciliary GPCRs into extracellular vesicles to modulate signaling. Cell 168, 252–263.e14 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. Ismail, S. A. et al. Arl2-GTP and Arl3-GTP regulate a GDI-like transport system for farnesylated cargo. Nat. Chem. Biol. 7, 942–949 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Wright, K. J. et al. An ARL3–UNC119–RP2 GTPase cycle targets myristoylated NPHP3 to the primary cilium. Genes. Dev. 25, 2347–2360 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang, H. et al. UNC119 is required for G protein trafficking in sensory neurons. Nat. Neurosci. 14, 874–880 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ismail, S. A. et al. Structural basis for Arl3-specific release of myristoylated ciliary cargo from UNC119. EMBO J. 31, 4085–4094 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gotthardt, K. et al. A G-protein activation cascade from Arl13B to Arl3 and implications for ciliary targeting of lipidated proteins. eLife 4, e11859 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Evans, R. J. et al. The retinitis pigmentosa protein RP2 links pericentriolar vesicle transport between the Golgi and the primary cilium. Hum. Mol. Genet. 19, 1358–1367 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Jaiswal, M. et al. Novel biochemical and structural insights into the interaction of myristoylated cargo with Unc119 protein and their release by Arl2/3. J. Biol. Chem. 291, 20766–20778 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Brewer, K. M., Brewer, K. K., Richardson, N. C. & Berbari, N. F. Neuronal cilia in energy homeostasis. Front. Cell Dev. Biol. 10, 1082141 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Wang, Y. et al. Melanocortin 4 receptor signals at the neuronal primary cilium to control food intake and body weight. J. Clin. Invest. 131, e142064 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bishop, G. A., Berbari, N. F., Lewis, J. & Mykytyn, K. Type III adenylyl cyclase localizes to primary cilia throughout the adult mouse brain. J. Comp. Neurol. 505, 562–571 (2007).

    Article  PubMed  Google Scholar 

  86. Wang, Z. et al. Adult type 3 adenylyl cyclase-deficient mice are obese. PLoS One 4, e6979 (2009).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  87. Davenport, J. R. et al. Disruption of intraflagellar transport in adult mice leads to obesity and slow-onset cystic kidney disease. Curr. Biol. 17, 1586–1594 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Loktev, A. V. & Jackson, P. K. Neuropeptide Y family receptors traffic via the Bardet–Biedl syndrome pathway to signal in neuronal primary cilia. Cell Rep. 5, 1316–1329 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Baldini, G. & Phelan, K. D. The melanocortin pathway and control of appetite-progress and therapeutic implications. J. Endocrinol. 241, R1–R33 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Farooqi, I. S. et al. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N. Engl. J. Med. 348, 1085–1095 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Siljee, J. E. et al. Subcellular localization of MC4R with ADCY3 at neuronal primary cilia underlies a common pathway for genetic predisposition to obesity. Nat. Genet. 50, 180–185 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bernard, A. et al. MRAP2 regulates energy homeostasis by promoting primary cilia localization of MC4R. JCI Insight 8, e155900 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Beales, P. L., Elcioglu, N., Woolf, A. S., Parker, D. & Flinter, F. A. New criteria for improved diagnosis of Bardet–Biedl syndrome: results of a population survey. J. Med. Genet. 36, 437–446 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Marion, V. et al. BBS-induced ciliary defect enhances adipogenesis, causing paradoxical higher-insulin sensitivity, glucose usage, and decreased inflammatory response. Cell Metab. 16, 363–377 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Feuillan, P. P. et al. Patients with Bardet–Biedl syndrome have hyperleptinemia suggestive of leptin resistance. J. Clin. Endocrinol. Metab. 96, E528–E535 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rahmouni, K. et al. Leptin resistance contributes to obesity and hypertension in mouse models of Bardet–Biedl syndrome. J. Clin. Invest. 118, 1458–1467 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nachury, M. V. et al. A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 129, 1201–1213 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Ghaben, A. L. & Scherer, P. E. Adipogenesis and metabolic health. Nat. Rev. Mol. Cell Biol. 20, 242–258 (2019).

    Article  CAS  PubMed  Google Scholar 

  99. Cannavino, J. & Gupta, R. K. Mesenchymal stromal cells as conductors of adipose tissue remodeling. Genes. Dev. 37, 781–800 (2023).

    Article  CAS  PubMed  Google Scholar 

  100. Marion, V. et al. Transient ciliogenesis involving Bardet–Biedl syndrome proteins is a fundamental characteristic of adipogenic differentiation. Proc. Natl Acad. Sci. USA 106, 1820–1825 (2009).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  101. Forcioli-Conti, N., Lacas-Gervais, S., Dani, C. & Peraldi, P. The primary cilium undergoes dynamic size modifications during adipocyte differentiation of human adipose stem cells. Biochem. Biophys. Res. Commun. 458, 117–122 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Scamfer, S. R., Lee, M. D. & Hilgendorf, K. I. Ciliary control of adipocyte progenitor cell fate regulates energy storage. Front. Cell Dev. Biol. 10, 1083372 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Spinella-Jaegle, S. et al. Sonic hedgehog increases the commitment of pluripotent mesenchymal cells into the osteoblastic lineage and abolishes adipocytic differentiation. J. Cell Sci. 114, 2085–2094 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Suh, J. M. et al. Hedgehog signaling plays a conserved role in inhibiting fat formation. Cell Metab. 3, 25–34 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Li, Z. et al. Reduced white fat mass in adult mice bearing a truncated Patched 1. Int. J. Biol. Sci. 4, 29–36 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Han, J. C. et al. Comprehensive endocrine-metabolic evaluation of patients with Alström syndrome compared with BMI-matched controls. J. Clin. Endocrinol. Metab. 103, 2707–2719 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Collin, G. B. et al. Mutations in ALMS1 cause obesity, type 2 diabetes and neurosensory degeneration in Alström syndrome. Nat. Genet. 31, 74–78 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Hearn, T. et al. Mutation of ALMS1, a large gene with a tandem repeat encoding 47 amino acids, causes Alström syndrome. Nat. Genet. 31, 79–83 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Knorz, V. J. et al. Centriolar association of ALMS1 and likely centrosomal functions of the ALMS motif-containing proteins C10orf90 and KIAA1731. Mol. Biol. Cell 21, 3617–3629 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Geberhiwot, T. et al. Relative adipose tissue failure in Alström syndrome drives obesity-induced insulin resistance. Diabetes 70, 364–376 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. Marshall, J. D., Maffei, P., Collin, G. B. & Naggert, J. K. Alström syndrome: genetics and clinical overview. Curr. Genomics 12, 225–235 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Li, G. et al. A role for Alström syndrome protein, alms1, in kidney ciliogenesis and cellular quiescence. PLoS Genet. 3, e8 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Gerdes, J. M. et al. Ciliary dysfunction impairs β-cell insulin secretion and promotes development of type 2 diabetes in rodents. Nat. Commun. 5, 5308 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  114. Volta, F. et al. Glucose homeostasis is regulated by pancreatic β-cell cilia via endosomal EphA-processing. Nat. Commun. 10, 5686 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  115. Hughes, J. W. et al. Primary cilia control glucose homeostasis via islet paracrine interactions. Proc. Natl Acad. Sci. USA 117, 8912–8923 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  116. Kluth, O. et al. Decreased expression of cilia genes in pancreatic islets as a risk factor for type 2 diabetes in mice and humans. Cell Rep. 26, 3027–3036.e3 (2019).

    Article  CAS  PubMed  Google Scholar 

  117. Melena, I. & Hughes, J. W. Islet cilia and glucose homeostasis. Front. Cell Dev. Biol. 10, 1082193 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Bangs, F. & Anderson, K. V. Primary cilia and mammalian Hedgehog signaling. Cold Spring Harb. Perspect. Biol. 9, a028175 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Ingham, P. W. & McMahon, A. P. Hedgehog signaling in animal development: paradigms and principles. Genes. Dev. 15, 3059–3087 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Ingham, P. W. Hedgehog signaling. Curr. Top. Dev. Biol. 149, 1–58 (2022).

    Article  CAS  PubMed  Google Scholar 

  121. Briscoe, J. & Thérond, P. P. The mechanisms of Hedgehog signalling and its roles in development and disease. Nat. Rev. Mol. Cell Biol. 14, 416–429 (2013).

    Article  PubMed  Google Scholar 

  122. Zhu, J. & Mackem, S. John Saunders’ ZPA, Sonic hedgehog and digit identity — how does it really all work? Dev. Biol. 429, 391–400 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sagner, A. & Briscoe, J. Establishing neuronal diversity in the spinal cord: a time and a place. Development 146, dev182154 (2019).

    Article  CAS  PubMed  Google Scholar 

  124. Muenke, M. & Beachy, P. A. Genetics of ventral forebrain development and holoprosencephaly. Curr. Opin. Genet. Dev. 10, 262–269 (2000).

    Article  CAS  PubMed  Google Scholar 

  125. Anderson, E., Peluso, S., Lettice, L. A. & Hill, R. E. Human limb abnormalities caused by disruption of hedgehog signaling. Trends Genet. 28, 364–373 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. Pak, E. & Segal, R. A. Hedgehog signal transduction: key players, oncogenic drivers, and cancer therapy. Dev. Cell 38, 333–344 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wu, F., Zhang, Y., Sun, B., McMahon, A. P. & Wang, Y. Hedgehog signaling: from basic biology to cancer therapy.Cell. Chem. Biol. 24, 252–280 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Rohatgi, R., Milenkovic, L. & Scott, M. P. Patched1 regulates hedgehog signaling at the primary cilium. Science 317, 372–376 (2007).

    Article  CAS  PubMed  ADS  Google Scholar 

  129. Lv, B., Stuck, M. W., Desai, P. B., Cabrera, O. A. & Pazour, G. J. E3 ubiquitin ligase Wwp1 regulates ciliary dynamics of the Hedgehog receptor Smoothened. J. Cell Biol. 220, e202010177 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Corbit, K. C. et al. Vertebrate Smoothened functions at the primary cilium. Nature 437, 1018–1021 (2005).

    Article  CAS  PubMed  ADS  Google Scholar 

  131. Rosenbaum, D. M., Rasmussen, S. G. F. & Kobilka, B. K. The structure and function of G-protein-coupled receptors. Nature 459, 356–363 (2009).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  132. Zhang, Y. et al. Structural basis for cholesterol transport-like activity of the Hedgehog receptor Patched. Cell 175, 1352–1364.e14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Myers, B. R., Neahring, L., Zhang, Y., Roberts, K. J. & Beachy, P. A. Rapid, direct activity assays for Smoothened reveal Hedgehog pathway regulation by membrane cholesterol and extracellular sodium. Proc. Natl Acad. Sci. USA 114, E11141–E11150 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  134. Luchetti, G. et al. Cholesterol activates the G-protein coupled receptor Smoothened to promote Hedgehog signaling. eLife 5, e20304 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Huang, P. et al. Cellular cholesterol directly activates Smoothened in Hedgehog signaling. Cell 166, 1176–1187.e14 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Raleigh, D. R. et al. Cilia-associated oxysterols activate Smoothened. Mol. Cell 72, 316–327.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Maxfield, F. R. & van Meer, G. Cholesterol, the central lipid of mammalian cells. Curr. Opin. Cell Biol. 22, 422–429 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Deshpande, I. et al. Smoothened stimulation by membrane sterols drives Hedgehog pathway activity. Nature 571, 284–288 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Hui, C. & Angers, S. Gli proteins in development and disease. Annu. Rev. Cell Dev. Biol. 27, 513–537 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. Wang, B., Fallon, J. F. & Beachy, P. A. Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell 100, 423–434 (2000).

    Article  CAS  PubMed  Google Scholar 

  141. Niewiadomski, P. et al. Gli protein activity is controlled by multisite phosphorylation in vertebrate Hedgehog signaling. Cell Rep. 6, 168–181 (2014).

    Article  CAS  PubMed  Google Scholar 

  142. Tuson, M., He, M. & Anderson, K. V. Protein kinase A acts at the basal body of the primary cilium to prevent Gli2 activation and ventralization of the mouse neural tube. Development 138, 4921–4930 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Li, J. et al. PKA-mediated Gli2 and Gli3 phosphorylation is inhibited by Hedgehog signaling in cilia and reduced in Talpid3 mutant. Dev. Biol. 429, 147–157 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Walker, M. F. et al. GRK2 kinases in the primary cilium initiate SMOOTHENED-PKA signaling in the Hedgehog cascade. Preprint at bioRxiv https://doi.org/10.1101/2023.05.10.540226 (2023).

  145. Happ, J. T. et al. A PKA inhibitor motif within SMOOTHENED controls Hedgehog signal transduction. Nat. Struct. Mol. Biol. 29, 990–999 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. May, E. A. et al. Time-resolved proteomics profiling of the ciliary Hedgehog response. J. Cell Biol. 220, e202007207 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Mick, D. U. et al. Proteomics of primary cilia by proximity labeling. Dev. Cell 35, 497–512 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Arveseth, C. D. et al. Smoothened transduces Hedgehog signals via activity-dependent sequestration of PKA catalytic subunits. PLoS Biol. 19, e3001191 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Liu, A., Wang, B. & Niswander, L. A. Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors. Development 132, 3103–3111 (2005).

    Article  CAS  PubMed  Google Scholar 

  150. Shen, F., Cheng, L., Douglas, A. E., Riobo, N. A. & Manning, D. R. Smoothened is a fully competent activator of the heterotrimeric G protein Gi. Mol. Pharmacol. 83, 691–697 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Riobo, N. A., Saucy, B., Dilizio, C. & Manning, D. R. Activation of heterotrimeric G proteins by Smoothened. Proc. Natl Acad. Sci. USA 103, 12607–12612 (2006).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  152. Masdeu, C. et al. Identification and characterization of Hedgehog modulator properties after functional coupling of Smoothened to G15. Biochem. Biophys. Res. Commun. 349, 471–479 (2006).

    Article  CAS  PubMed  Google Scholar 

  153. DeCamp, D. L., Thompson, T. M., de Sauvage, F. J. & Lerner, M. R. Smoothened activates Gαi-mediated signaling in frog melanophores. J. Biol. Chem. 275, 26322–26327 (2000).

    Article  CAS  PubMed  Google Scholar 

  154. Moore, B. S. et al. Cilia have high cAMP levels that are inhibited by Sonic hedgehog-regulated calcium dynamics. Proc. Natl Acad. Sci. USA 113, 13069–13074 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  155. Regard, J. B. et al. Activation of Hedgehog signaling by loss of GNAS causes heterotopic ossification. Nat. Med. 19, 1505–1512 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Low, W. C. et al. The decoupling of Smoothened from Gαi proteins has little effect on Gli3 protein processing and Hedgehog-regulated chick neural tube patterning. Dev. Biol. 321, 188–196 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Bachmann, V. A. et al. Gpr161 anchoring of PKA consolidates GPCR and cAMP signaling. Proc. Natl Acad. Sci. USA 113, 7786–7791 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  158. Hoppe, N. et al. GPR161 structure uncovers the redundant role of sterol-regulated ciliary cAMP signaling in the Hedgehog pathway. Preprint at bioRxiv https://doi.org/10.1101/2023.05.23.540554 (2023).

  159. Mukhopadhyay, S. et al. The ciliary G-protein-coupled receptor Gpr161 negatively regulates the Sonic hedgehog pathway via cAMP signaling. Cell 152, 210–223 (2013).

    Article  CAS  PubMed  Google Scholar 

  160. Pusapati, G. V. et al. G protein-coupled receptors control the sensitivity of cells to the morphogen Sonic hedgehog. Sci. Signal. 11, eaao5749 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Hwang, S.-H. et al. The G protein-coupled receptor Gpr161 regulates forelimb formation, limb patterning and skeletal morphogenesis in a primary cilium-dependent manner. Development 145, dev154054 (2018).

    PubMed  PubMed Central  Google Scholar 

  162. Shimada, I. S. et al. Basal suppression of the Sonic hedgehog pathway by the G-protein-coupled receptor Gpr161 restricts medulloblastoma pathogenesis. Cell Rep. 22, 1169–1184 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Goodrich, L. V., Milenkovic, L., Higgins, K. M. & Scott, M. P. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277, 1109–1113 (1997).

    Article  CAS  PubMed  Google Scholar 

  164. Pierce, K. L., Premont, R. T. & Lefkowitz, R. J. Seven-transmembrane receptors. Nat. Rev. Mol. Cell Biol. 3, 639–650 (2002).

    Article  CAS  PubMed  Google Scholar 

  165. Taylor, S. S., Zhang, P., Steichen, J. M., Keshwani, M. M. & Kornev, A. P. PKA: lessons learned after twenty years. Biochim. Biophys. Acta 1834, 1271–1278 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Kenakin, T. Receptor theory. Curr. Protoc. Pharmacol. Chapter 1, Unit1.2 (2008).

  167. Zhao, Z. et al. An essential role for Grk2 in Hedgehog signalling downstream of Smoothened. EMBO Rep. 17, 739–752 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Bosakova, M. et al. Mutations in GRK2 cause Jeune syndrome by impairing Hedgehog and canonical Wnt signaling. EMBO Mol. Med. 12, e11739 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ranieri, N., Thérond, P. P. & Ruel, L. Switch of PKA substrates from Cubitus interruptus to Smoothened in the Hedgehog signalosome complex. Nat. Commun. 5, 5034 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  170. He, M. et al. The kinesin-4 protein Kif7 regulates mammalian Hedgehog signalling by organizing the cilium tip compartment. Nat. Cell Biol. 16, 663–672 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Jiang, S. et al. Interplay between the kinesin and tubulin mechanochemical cycles underlies microtubule tip tracking by the non-motile ciliary kinesin Kif7. Dev. Cell 49, 711–730.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Luo, L., Roy, S., Li, L. & Ma, M. Polycystic kidney disease: novel insights into polycystin function. Trends Mol. Med. 29, 268–281 (2023).

    Article  CAS  PubMed  Google Scholar 

  173. Barr, M. M. & Sternberg, P. W. A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans. Nature 401, 386–389 (1999).

    Article  CAS  PubMed  ADS  Google Scholar 

  174. Yoder, B. K., Hou, X. & Guay-Woodford, L. M. The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J. Am. Soc. Nephrol. 13, 2508–2516 (2002).

    Article  CAS  PubMed  Google Scholar 

  175. Pazour, G. J., San Agustin, J. T., Follit, J. A., Rosenbaum, J. L. & Witman, G. B. Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease. Curr. Biol. 12, R378–R380 (2002).

    Article  CAS  PubMed  Google Scholar 

  176. Qin, H., Rosenbaum, J. L. & Barr, M. M. An autosomal recessive polycystic kidney disease gene homolog is involved in intraflagellar transport in C. elegans ciliated sensory neurons. Curr. Biol. 11, 457–461 (2001).

    Article  CAS  PubMed  Google Scholar 

  177. Lin, F. et al. Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease. Proc. Natl Acad. Sci. USA 100, 5286–5291 (2003).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  178. Otto, E. A. et al. Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left–right axis determination. Nat. Genet. 34, 413–420 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Sun, Z. et al. A genetic screen in zebrafish identifies cilia genes as a principal cause of cystic kidney. Development 131, 4085–4093 (2004).

    Article  CAS  PubMed  Google Scholar 

  180. Yoder, B. K. et al. Polaris, a protein disrupted in orpk mutant mice, is required for assembly of renal cilium. Am. J. Physiol. Ren. Physiol. 282, F541–F552 (2002).

    Article  CAS  Google Scholar 

  181. Senum, S. R. et al. Monoallelic IFT140 pathogenic variants are an important cause of the autosomal dominant polycystic kidney-spectrum phenotype. Am. J. Hum. Genet. 109, 136–156 (2022).

    Article  CAS  PubMed  Google Scholar 

  182. Lu, H. et al. Mutations in DZIP1L, which encodes a ciliary-transition-zone protein, cause autosomal recessive polycystic kidney disease. Nat. Genet. 49, 1025–1034 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Ward, C. J. et al. The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein. Nat. Genet. 30, 259–269 (2002).

    Article  PubMed  Google Scholar 

  184. Ward, C. J. et al. Cellular and subcellular localization of the ARPKD protein; fibrocystin is expressed on primary cilia. Hum. Mol. Genet. 12, 2703–2710 (2003).

    Article  CAS  PubMed  Google Scholar 

  185. Garcia-Gonzalo, F. R. et al. A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. Nat. Genet. 43, 776–784 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Jafari Khamirani, H. et al. A pathogenic variant of TULP3 causes renal and hepatic fibrocystic disease. Front. Genet. 13, 1021037 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Ma, M., Tian, X., Igarashi, P., Pazour, G. J. & Somlo, S. Loss of cilia suppresses cyst growth in genetic models of autosomal dominant polycystic kidney disease. Nat. Genet. 45, 1004–1012 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Walker, R. V. et al. Ciliary exclusion of Polycystin-2 promotes kidney cystogenesis in an autosomal dominant polycystic kidney disease model. Nat. Commun. 10, 4072 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  189. Yoshiba, S. et al. Cilia at the node of mouse embryos sense fluid flow for left–right determination via Pkd2. Science 338, 226–231 (2012).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  190. Cai, Y. et al. Altered trafficking and stability of polycystins underlie polycystic kidney disease. J. Clin. Invest. 124, 5129–5144 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Qian, F., Watnick, T. J., Onuchic, L. F. & Germino, G. G. The molecular basis of focal cyst formation in human autosomal dominant polycystic kidney disease type I. Cell 87, 979–987 (1996).

    Article  CAS  PubMed  Google Scholar 

  192. Tan, A. Y. et al. Somatic mutations in renal cyst epithelium in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 29, 2139–2156 2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Bastos, A. P. et al. Pkd1 haploinsufficiency increases renal damage and induces microcyst formation following ischemia/reperfusion. J. Am. Soc. Nephrol. 20, 2389–2402 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Prasad, S., McDaid, J. P., Tam, F. W. K., Haylor, J. L. & Ong, A. C. M. Pkd2 dosage influences cellular repair responses following ischemia–reperfusion injury. Am. J. Pathol. 175, 1493–1503 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Diver, M. M., Lin King, J. V., Julius, D. & Cheng, Y. Sensory TRP channels in three dimensions. Annu. Rev. Biochem. 91, 629–649 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Nauli, S. M. et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat. Genet. 33, 129–137 (2003).

    Article  CAS  PubMed  Google Scholar 

  197. Delling, M. et al. Primary cilia are not calcium-responsive mechanosensors. Nature 531, 656–660 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  198. Katoh, T. A. et al. Immotile cilia mechanically sense the direction of fluid flow for left–right determination. Science 379, 66–71 (2023).

    Article  CAS  PubMed  ADS  Google Scholar 

  199. Djenoune, L. et al. Cilia function as calcium-mediated mechanosensors that instruct left–right asymmetry. Science 379, 71–78 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  200. Ponting, C. P., Hofmann, K. & Bork, P. A latrophilin/CL-1-like GPS domain in polycystin-1. Curr. Biol. 9, R585–R588 (1999).

    Article  CAS  PubMed  Google Scholar 

  201. Yeung, J. et al. GPR56/ADGRG1 is a platelet collagen-responsive GPCR and hemostatic sensor of shear force. Proc. Natl Acad. Sci. USA 117, 28275–28286 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  202. Scholz, N. et al. The adhesion GPCR latrophilin/CIRL shapes mechanosensation. Cell Rep. 11, 866–874 (2015).

    Article  CAS  PubMed  Google Scholar 

  203. Ha, K. et al. The heteromeric PC-1/PC-2 polycystin complex is activated by the PC-1 N-terminus. eLife 9, e60684 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Liu, X. et al. Polycystin-2 is an essential ion channel subunit in the primary cilium of the renal collecting duct epithelium. eLife 7, e33183 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Wilkes, M. et al. Molecular insights into lipid-assisted Ca2+ regulation of the TRP channel Polycystin-2. Nat. Struct. Mol. Biol. 24, 123–130 (2017).

    Article  CAS  PubMed  Google Scholar 

  206. Wang, Q. et al. Lipid interactions of a ciliary membrane TRP channel: simulation and structural studies of polycystin-2. Structure 28, 169–184.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Kleene, S. J. & Kleene, N. K. The native TRPP2-dependent channel of murine renal primary cilia. Am. J. Physiol. Ren. Physiol. 312, F96–F108 (2017).

    Article  CAS  Google Scholar 

  208. Kleene, S. J. & Kleene, N. K. Inward Ca2+ current through the polycystin-2-dependent channels of renal primary cilia. Am. J. Physiol. Ren. Physiol. 320, F1165–F1173 (2021).

    Article  CAS  Google Scholar 

  209. Koulen, P. et al. Polycystin-2 accelerates Ca2+ release from intracellular stores in Caenorhabditis elegans. Cell Calcium 37, 593–601 (2005).

    Article  CAS  PubMed  Google Scholar 

  210. Su, Q. et al. Structure of the human PKD1–PKD2 complex. Science 361, eaat9819 (2018).

    Article  PubMed  Google Scholar 

  211. Wang, Z. et al. The ion channel function of polycystin‐1 in the polycystin‐1/polycystin‐2 complex. EMBO Rep. 20, e48336 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. DeCaen, P. G., Delling, M., Vien, T. N. & Clapham, D. E. Direct recording and molecular identification of the calcium channel of primary cilia. Nature 504, 315–318 (2013).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  213. Chen, C.-C. et al. A small molecule restores function to TRPML1 mutant isoforms responsible for mucolipidosis type IV. Nat. Commun. 5, 4681 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  214. Hu, J., Bae, Y.-K., Knobel, K. M. & Barr, M. M. Casein kinase II and calcineurin modulate TRPP function and ciliary localization. Mol. Biol. Cell 17, 2200–2211 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Pennekamp, P. et al. The ion channel polycystin-2 is required for left–right axis determination in mice. Curr. Biol. 12, 938–943 (2002).

    Article  CAS  PubMed  Google Scholar 

  216. Nonaka, S. et al. Randomization of left–right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95, 829–837 (1998).

    Article  CAS  PubMed  Google Scholar 

  217. Nonaka, S. et al. De novo formation of left–right asymmetry by posterior tilt of nodal cilia. PLoS Biol. 3, e268 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  218. McGrath, J., Somlo, S., Makova, S., Tian, X. & Brueckner, M. Two populations of node monocilia initiate left–right asymmetry in the mouse. Cell 114, 61–73 (2003).

    Article  CAS  PubMed  Google Scholar 

  219. Dasgupta, A. & Amack, J. D. Cilia in vertebrate left–right patterning. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 20150410 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Ferreira, R. R., Vilfan, A., Jülicher, F., Supatto, W. & Vermot, J. Physical limits of flow sensing in the left–right organizer. eLife 6, e25078 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Karcher, C. et al. Lack of a laterality phenotype in Pkd1 knock-out embryos correlates with absence of polycystin-1 in nodal cilia. Differentiation 73, 425–432 (2005).

    Article  CAS  PubMed  Google Scholar 

  222. Vetrini, F. et al. Bi-allelic mutations in PKD1L1 are associated with laterality defects in humans. Am. J. Hum. Genet. 99, 886–893 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Kamura, K. et al. Pkd1l1 complexes with Pkd2 on motile cilia and functions to establish the left–right axis. Development 138, 1121–1129 (2011).

    Article  CAS  PubMed  Google Scholar 

  224. Vogel, P. et al. Situs inversus in Dpcd/Poll–/–, Nme7–/–, and Pkd1l1–/– mice. Vet. Pathol. 47, 120–131 (2010).

    Article  CAS  PubMed  Google Scholar 

  225. Grimes, D. T. et al. Genetic analysis reveals a hierarchy of interactions between polycystin-encoding genes and genes controlling cilia function during left — right determination. PLoS Genet. 12, e1006070 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Su, Q. et al. Cryo-EM structure of the polycystic kidney disease-like channel PKD2L1. Nat. Commun. 9, 1192 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  227. Su, Q. et al. Structural basis for Ca2+ activation of the heteromeric PKD1L3/PKD2L1 channel. Nat. Commun. 12, 4871 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  228. Hulse, R. E., Li, Z., Huang, R. K., Zhang, J. & Clapham, D. E. Cryo-EM structure of the polycystin 2-l1 ion channel. eLife 7, e36931 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Sternberg, J. R. et al. Pkd2l1 is required for mechanoception in cerebrospinal fluid-contacting neurons and maintenance of spine curvature. Nat. Commun. 9, 3804 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  230. Orts-Del’Immagine, A. et al. A single polycystic kidney disease 2-like 1 channel opening acts as a spike generator in cerebrospinal fluid-contacting neurons of adult mouse brainstem. Neuropharmacology 101, 549–565 (2016).

    Article  PubMed  Google Scholar 

  231. Lu, H., Shagirova, A., Goggi, J. L., Yeo, H. L. & Roy, S. Reissner fibre-induced urotensin signalling from cerebrospinal fluid-contacting neurons prevents scoliosis of the vertebrate spine. Biol. Open. 9, bio052027 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Orts-Del’Immagine, A. et al. Sensory neurons contacting the cerebrospinal fluid require the Reissner fiber to detect spinal curvature in vivo. Curr. Biol. 30, 827–839.e4 (2020).

    Article  PubMed  Google Scholar 

  233. Zhang, X. et al. Cilia-driven cerebrospinal fluid flow directs expression of urotensin neuropeptides to straighten the vertebrate body axis. Nat. Genet. 50, 1666–1673 (2018).

    Article  CAS  PubMed  Google Scholar 

  234. Grimes, D. T. et al. Zebrafish models of idiopathic scoliosis link cerebrospinal fluid flow defects to spine curvature. Science 352, 1341–1344 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  235. Troutwine, B. R. et al. The Reissner fiber is highly dynamic in vivo and controls morphogenesis of the spine. Curr. Biol. 30, 2353–2362.e3 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Wang, Y., Troutwine, B. R., Zhang, H. & Gray, R. S. The axonemal dynein heavy chain 10 gene is essential for monocilia motility and spine alignment in zebrafish. Dev. Biol. 482, 82–90 (2022).

    Article  CAS  PubMed  Google Scholar 

  237. Cantaut-Belarif, Y., Sternberg, J. R., Thouvenin, O., Wyart, C. & Bardet, P.-L. The Reissner fiber in the cerebrospinal fluid controls morphogenesis of the body axis. Curr. Biol. 28, 2479–2486.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Lima, W. C., Vinet, A., Pieters, J. & Cosson, P. Role of PKD2 in rheotaxis in Dictyostelium. PLOS ONE 9, e88682 (2014).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  239. Liu, P. et al. Chlamydomonas PKD2 organizes mastigonemes, hair-like glycoprotein polymers on cilia. J. Cell Biol. 219, e202001122 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Barr, M. M. et al. The Caenorhabditis elegans autosomal dominant polycystic kidney disease gene homologs lov-1 and pkd-2 act in the same pathway. Curr. Biol. 11, 1341–1346 (2001).

    Article  CAS  PubMed  Google Scholar 

  241. Wang, J. et al. C. elegans ciliated sensory neurons release extracellular vesicles that function in animal communication. Curr. Biol. 24, 519–525 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Hogan, M. C. et al. Characterization of PKD protein-positive exosome-like vesicles. J. Am. Soc. Nephrol. 20, 278–288 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Phua, S. C. et al. Dynamic remodeling of membrane composition drives cell cycle through primary cilia excision. Cell 168, 264–279.e15 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Wood, C. R., Huang, K., Diener, D. R. & Rosenbaum, J. L. The cilium secretes bioactive ectosomes. Curr. Biol. 23, 906–911 (2013).

    Article  CAS  PubMed  Google Scholar 

  245. Meselson, M. & Stahl, F. W. The replication of DNA in Escherichia coli. Proc. Natl Acad. Sci. USA 44, 671–682 (1958).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  246. Mukhopadhyay, S. & Rohatgi, R. G-protein-coupled receptors, Hedgehog signaling and primary cilia. Semin. Cell Dev. Biol. 33, 63–72 (2014).

    Article  CAS  PubMed  Google Scholar 

  247. Klatt Shaw, D. et al. Intracellular calcium mobilization is required for Sonic hedgehog signaling. Dev. Cell 45, 512–525.e5 (2018).

    Article  CAS  PubMed  Google Scholar 

  248. Jiang, J. Y., Falcone, J. L., Curci, S. & Hofer, A. M. Direct visualization of cAMP signaling in primary cilia reveals up-regulation of ciliary GPCR activity following Hedgehog activation. Proc. Natl Acad. Sci. USA 116, 12066–12071 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  249. Ha, K. et al. The cilia enriched oxysterol 7β,27-DHC is required for polycystin activation. Preprint at bioRxiv https://doi.org/10.1101/2022.04.13.488122 (2022).

  250. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  251. Monaco, S. et al. A flow cytometry-based approach for the isolation and characterization of neural stem cell primary cilia. Front. Cell Neurosci. 12, 519 (2018).

    Article  CAS  PubMed  Google Scholar 

  252. Ishikawa, H., Thompson, J., Yates, J. R. & Marshall, W. F. Proteomic analysis of mammalian primary cilia. Curr. Biol. 22, 414–419 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Breslow, D. K. et al. A CRISPR-based screen for Hedgehog signaling provides insights into ciliary function and ciliopathies. Nat. Genet. 50, 460–471 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Kinnebrew, M. et al. Patched 1 reduces the accessibility of cholesterol in the outer leaflet of membranes. eLife 10, e70504 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Keren I. Hilgendorf, Benjamin R. Myers or Jeremy F. Reiter.

Ethics declarations

Competing interests

J.F.R. consulted for Maze Therapeutics, and co-founded stealth companies funded via BridgeBio and 459AM.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Maureen Barr and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hilgendorf, K.I., Myers, B.R. & Reiter, J.F. Emerging mechanistic understanding of cilia function in cellular signalling. Nat Rev Mol Cell Biol (2024). https://doi.org/10.1038/s41580-023-00698-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41580-023-00698-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing