Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transport and barrier mechanisms that regulate ciliary compartmentalization and ciliopathies

Abstract

Primary cilia act as cell surface antennae, coordinating cellular responses to sensory inputs and signalling molecules that regulate developmental and homeostatic pathways. Cilia are therefore critical to physiological processes, and defects in ciliary components are associated with a large group of inherited pleiotropic disorders — known collectively as ciliopathies — that have a broad spectrum of phenotypes and affect many or most tissues, including the kidney. A central feature of the cilium is its compartmentalized structure, which imparts its unique molecular composition and signalling environment despite its membrane and cytosol being contiguous with those of the cell. Such compartmentalization is achieved via active transport pathways that bring protein cargoes to and from the cilium, as well as gating pathways at the ciliary base that establish diffusion barriers to protein exchange into and out of the organelle. Many ciliopathy-linked proteins, including those involved in kidney development and homeostasis, are components of the compartmentalizing machinery. New insights into the major compartmentalizing pathways at the cilium, namely, ciliary gating, intraflagellar transport, lipidated protein flagellar transport and ciliary extracellular vesicle release pathways, have improved our understanding of the mechanisms that underpin ciliary disease and associated renal disorders.

Key points

  • Cilia at the cell plasma membrane serve motility, sensory and signalling roles that are essential for cell and tissue formation, homeostasis and function. Cilia defects cause ciliopathy disorders that affect many tissue types.

  • The unique and dynamic molecular composition of the ciliary organelle and its biochemically compartmentalized state are established and maintained via interconnected barrier and active transport systems.

  • The ciliary base, which encompasses the transition zone and basal body regions, and associated ‘gating’ complexes (MKS, NPHP, TAF and NUP modules), establish barriers to regulate the movement of cytosolic and membrane proteins into and out of cilia.

  • Membrane and cytosolic proteins move into and out of cilia by binding to cargo adaptor complexes (intraflagellar transport (IFT)-A, IFT-B and the BBSome) present on kinesin-2 and cytoplasmic dynein-driven IFT trains that run bidirectionally along ciliary microtubules.

  • Myristoyl-anchored and palmitoyl-anchored membrane proteins enter cilia via lipidated IFT, which involves shuttling carriers (UNC119B and PDE6D), cargo displacement factors (ARL3) and associated regulators (RP2 and ARL13B).

  • Extracellular vesicles that bud from the ciliary membrane regulate ciliary structure, composition and function by dispatching molecules and membrane from the organelle. Ciliary extracellular vesicles may serve as waste disposal and/or cell–cell communication devices.

  • Better knowledge of the ciliary compartmentalization pathways is essential for understanding mechanisms of ciliary disease such as the renal ciliopathies that include autosomal dominant polycystic kidney disease and nephronophthisis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of cilium structure, function and compartmentalization mechanisms.
Fig. 2: Ciliary gating.
Fig. 3: Intraflagellar transport.
Fig. 4: Lipidated intraflagellar transport.
Fig. 5: Ciliary extracellular vesicles.

Similar content being viewed by others

References

  1. Anvarian, Z., Mykytyn, K., Mukhopadhyay, S., Pedersen, L. B. & Christensen, S. T. Cellular signalling by primary cilia in development, organ function and disease. Nat. Rev. Nephrol. 15, 199–219 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Carrisoza-Gaytan, R., Carattino, M. D., Kleyman, T. R. & Satlin, L. M. An unexpected journey: conceptual evolution of mechanoregulated potassium transport in the distal nephron. Am. J. Physiol. Cell Physiol. 310, C243–C259 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Satir, P., Pedersen, L. B. & Christensen, S. T. The primary cilium at a glance. J. Cell Sci. 123, 499–503 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Benmerah, A. The ciliary pocket. Curr. Opin. Cell Biol. 25, 78–84 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Nachury, M. V. The molecular machines that traffic signaling receptors into and out of cilia. Curr. Opin. Cell Biol. 51, 124–131 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Garcia-Gonzalo, F. R. & Reiter, J. F. Open sesame: how transition fibers and the transition zone control ciliary composition. Cold Spring Harb. Perspect. Biol. 9, a028134 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wingfield, J. L., Lechtreck, K.-F. & Lorentzen, E. Trafficking of ciliary membrane proteins by the intraflagellar transport/BBSome machinery. Essays Biochem. 62, 753–763 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Naharros, I. O. & Nachury, M. V. Shedding of ciliary vesicles at a glance. J. Cell Sci. 135, jcs246553 (2022).

    Article  CAS  Google Scholar 

  9. Park, K. & Leroux, M. R. Composition, organization and mechanisms of the transition zone, a gate for the cilium. EMBO Rep. 23, e55420 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Carter, S. P. & Blacque, O. E. Membrane retrieval, recycling and release pathways that organise and sculpt the ciliary membrane. Curr. Opin. Cell Biol. 59, 133–139 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Long, H. & Huang, K. Transport of ciliary membrane proteins. Front. Cell Dev. Biol. 7, 381 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Waters, A. M. & Beales, P. L. Ciliopathies: an expanding disease spectrum. Pediatr. Nephrol. 26, 1039–1056 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Reiter, J. F. & Leroux, M. R. Genes and molecular pathways underpinning ciliopathies. Nat. Rev. Mol. Cell Biol. 18, 533–547 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lambacher, N. J. et al. TMEM107 recruits ciliopathy proteins to subdomains of the ciliary transition zone and causes Joubert syndrome. Nat. Cell Biol. 18, 122–131 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Schouteden, C., Serwas, D., Palfy, M. & Dammermann, A. The ciliary transition zone functions in cell adhesion but is dispensable for axoneme assembly in C. elegans. J. Cell Biol. 210, 35–44 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Trépout, S., Tassin, A.-M., Marco, S. & Bastin, P. STEM tomography analysis of the trypanosome transition zone. J. Struct. Biol. 202, 51–60 (2018).

    Article  PubMed  Google Scholar 

  17. van den Hoek, H. et al. In situ architecture of the ciliary base reveals the stepwise assembly of intraflagellar transport trains. Science 377, 543–548 (2022).

    Article  PubMed  Google Scholar 

  18. Gilula, N. B. & Satir, P. The ciliary necklace. A ciliary membrane specialization. J. Cell Biol. 53, 494–509 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kee, H. L. et al. A size-exclusion permeability barrier and nucleoporins characterize a ciliary pore complex that regulates transport into cilia. Nat. Cell Biol. 14, 431–437 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Breslow, D. K., Koslover, E. F., Seydel, F., Spakowitz, A. J. & Nachury, M. V. An in vitro assay for entry into cilia reveals unique properties of the soluble diffusion barrier. J. Cell Biol. 203, 129–147 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Endicott, S. J. & Brueckner, M. NUP98 sets the size-exclusion diffusion limit through the ciliary base. Curr. Biol. 28, 1643–1650 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lin, Y.-C. et al. Chemically inducible diffusion trap at cilia reveals molecular sieve-like barrier. Nat. Chem. Biol. 9, 437–443 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Najafi, M., Maza, N. A. & Calvert, P. D. Steric volume exclusion sets soluble protein concentrations in photoreceptor sensory cilia. Proc. Natl Acad. Sci. USA 109, 203–208 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Takao, D. et al. An assay for clogging the ciliary pore complex distinguishes mechanisms of cytosolic and membrane protein entry. Curr. Biol. 24, 2288–2294 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dishinger, J. F. et al. Ciliary entry of the kinesin-2 motor KIF17 is regulated by importin-beta2 and RanGTP. Nat. Cell Biol. 12, 703–710 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hurd, T. W., Fan, S. & Margolis, B. L. Localization of retinitis pigmentosa 2 to cilia is regulated by Importin beta2. J. Cell Sci. 124, 718–726 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Han, Y. et al. Regulation of Gli ciliary localization and Hedgehog signaling by the PY-NLS/karyopherin-β2 nuclear import system. PLoS Biol. 15, e2002063 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Funabashi, T. et al. Ciliary entry of KIF17 is dependent on its binding to the IFT-B complex via IFT46-IFT56 as well as on its nuclear localization signal. Mol. Biol. Cell 28, 624–633 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Del Viso, F. et al. Congenital heart disease genetics uncovers context-dependent organization and function of nucleoporins at cilia. Dev. Cell 38, 478–492 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Endicott, S. J., Basu, B., Khokha, M. & Brueckner, M. The NIMA-like kinase Nek2 is a key switch balancing cilia biogenesis and resorption in the development of left-right asymmetry. Development 142, 4068–4079 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Takao, D., Wang, L., Boss, A. & Verhey, K. J. Protein interaction analysis provides a map of the spatial and temporal organization of the ciliary gating zone. Curr. Biol. 27, 2296–2306.e3 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Blasius, T. L., Takao, D. & Verhey, K. J. NPHP proteins are binding partners of nucleoporins at the base of the primary cilium. PLoS ONE 14, e0222924 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Garcia-Gonzalo, F. R. et al. A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. Nat. Genet. 43, 776–784 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Craige, B. et al. CEP290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content. J. Cell Biol. 190, 927–940 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chih, B. et al. A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain. Nat. Cell Biol. 14, 61–72 (2011).

    Article  PubMed  Google Scholar 

  36. Williams, C. L. et al. MKS and NPHP modules cooperate to establish basal body/transition zone membrane associations and ciliary gate function during ciliogenesis. J. Cell Biol. 192, 1023–1041 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, L. et al. Ciliary transition zone proteins coordinate ciliary protein composition and ectosome shedding. Nat. Commun. 13, 3997 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yinsheng, Z. et al. TMEM67 is required for the gating function of the transition zone that controls entry of membrane-associated proteins ARL13B and INPP5E into primary cilia. Biochem. Biophys. Res. Commun. 636, 162–169 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Cevik, S. et al. Active transport and diffusion barriers restrict Joubert syndrome-associated ARL13B/ARL-13 to an Inv-like ciliary membrane subdomain. PLoS Genet. 9, e1003977 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Jensen, V. L. et al. Formation of the transition zone by Mks5/Rpgrip1L establishes a ciliary zone of exclusion (CIZE) that compartmentalises ciliary signalling proteins and controls PIP2 ciliary abundance. EMBO J. 34, 2537–2556 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. van Krugten, J., Danné, N. & Peterman, E. J. G. A local interplay between diffusion and intraflagellar transport distributes TRPV-channel OCR-2 along C. elegans chemosensory cilia. Commun. Biol. 5, 720 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nechipurenko, I. V. The enigmatic role of lipids in cilia signaling. Front. Cell Dev. Biol. 8, 777 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lin, H., Guo, S. & Dutcher, S. K. RPGRIP1L helps to establish the ciliary gate for entry of proteins. J. Cell Sci. 131, jcs220905 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Shi, X. et al. Super-resolution microscopy reveals that disruption of ciliary transition-zone architecture causes Joubert syndrome. Nat. Cell Biol. 19, 1178–1188 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jana, S. C. et al. Differential regulation of transition zone and centriole proteins contributes to ciliary base diversity. Nat. Cell Biol. 20, 928–941 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Yang, T. T. et al. Superresolution pattern recognition reveals the architectural map of the ciliary transition zone. Sci. Rep. 5, 14096 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Weng, R. R. et al. Super-resolution imaging reveals TCTN2 depletion-induced IFT88 lumen leakage and ciliary weakening. Biophys. J. 115, 263–275 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gogendeau, D. et al. MKS-NPHP module proteins control ciliary shedding at the transition zone. PLoS Biol. 18, e3000640 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li, C. et al. MKS5 and CEP290 dependent assembly pathway of the ciliary transition zone. PLoS Biol. 14, e1002416 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Awata, J. et al. NPHP4 controls ciliary trafficking of membrane proteins and large soluble proteins at the transition zone. J. Cell Sci. 127, 4714–4727 (2014).

    PubMed  PubMed Central  Google Scholar 

  51. Leterrier, C. The axon initial segment: an updated viewpoint. J. Neurosci. 38, 2135–2145 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Heiman, M. G. & Shaham, S. DEX-1 and DYF-7 establish sensory dendrite length by anchoring dendritic tips during cell migration. Cell 137, 344–355 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Diener, D. R., Lupetti, P. & Rosenbaum, J. L. Proteomic analysis of isolated ciliary transition zones reveals the presence of ESCRT proteins. Curr. Biol. 25, 379–384 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Theerthagiri, G., Eisenhardt, N., Schwarz, H. & Antonin, W. The nucleoporin NUP188 controls passage of membrane proteins across the nuclear pore complex. J. Cell Biol. 189, 1129–1142 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang, T. T. et al. Super-resolution architecture of mammalian centriole distal appendages reveals distinct blade and matrix functional components. Nat. Commun. 9, 2023 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yan, H. et al. TALPID3 and ANKRD26 selectively orchestrate FBF1 localization and cilia gating. Nat. Commun. 11, 2196 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wei, Q. et al. The hydrolethalus syndrome protein HYLS-1 regulates formation of the ciliary gate. Nat. Commun. 7, 12437 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hu, Q. et al. A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution. Science 329, 436–439 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kim, S. K. et al. Planar cell polarity acts through septins to control collective cell movement and ciliogenesis. Science 329, 1337–1340 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ghossoub, R. et al. Septins 2, 7 and 9 and MAP4 colocalize along the axoneme in the primary cilium and control ciliary length. J. Cell Sci. 126, 2583–2594 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kanamaru, T., Neuner, A., Kurtulmus, B. & Pereira, G. Balancing the length of the distal tip by septins is key for stability and signalling function of primary cilia. EMBO J. 41, e108843 (2022).

    Article  CAS  PubMed  Google Scholar 

  62. Fliegauf, M., Kahle, A., Häffner, K. & Zieger, B. Distinct localization of septin proteins to ciliary sub-compartments in airway epithelial cells. Biol. Chem. 395, 151–156 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Palander, O., El-Zeiry, M. & Trimble, W. S. Uncovering the roles of septins in cilia. Front. Cell Dev. Biol. 5, 36 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kaplan, O. I. et al. Endocytosis genes facilitate protein and membrane transport in C. elegans sensory cilia. Curr. Biol. 22, 451–460 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Clement, C. A. et al. TGF-β signaling is associated with endocytosis at the pocket region of the primary cilium. Cell Rep. 3, 1806–1814 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Cheng, H. et al. Actin filaments form a size-dependent diffusion barrier around centrosomes. EMBO Rep. 24, e54935 (2023).

    Article  CAS  PubMed  Google Scholar 

  67. Kozminski, K. G., Johnson, K. A., Forscher, P. & Rosenbaum, J. L. A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc. Natl Acad. Sci. USA 90, 5519–5523 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. van Dam, T. J. P. et al. Evolution of modular intraflagellar transport from a coatomer-like progenitor. Proc. Natl Acad. Sci. USA 110, 6943–6948 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kozminski, K. G., Beech, P. L. & Rosenbaum, J. L. The Chlamydomonas kinesin-like protein FLA10 is involved in motility associated with the flagellar membrane. J. Cell Biol. 131, 1517–1527 (1995).

    Article  CAS  PubMed  Google Scholar 

  70. Pazour, G. J., Dickert, B. L. & Witman, G. B. The DHC1b (DHC2) isoform of cytoplasmic dynein is required for flagellar assembly. J. Cell Biol. 144, 473–481 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Signor, D. et al. Role of a class DHC1b dynein in retrograde transport of IFT motors and IFT raft particles along cilia, but not dendrites, in chemosensory neurons of living Caenorhabditis elegans. J. Cell Biol. 147, 519–530 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Vuolo, L., Stevenson, N. L., Mukhopadhyay, A. G., Roberts, A. J. & Stephens, D. J. Cytoplasmic dynein-2 at a glance. J. Cell Sci. 133, jcs240614 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Cole, D. G. et al. Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J. Cell Biol. 141, 993–1008 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Taschner, M. & Lorentzen, E. The intraflagellar transport machinery. Cold Spring Harb. Perspect. Biol. 8, a028092 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Nachury, M. V. et al. A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 129, 1201–1213 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Snow, J. J. et al. Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons. Nat. Cell Biol. 6, 1109–1113 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Juhl, A. D. et al. Transient accumulation and bidirectional movement of KIF13B in primary cilia. J. Cell Sci. 136, jcs259257 (2023).

    Article  CAS  PubMed  Google Scholar 

  78. Peden, E. M. & Barr, M. M. The KLP-6 kinesin is required for male mating behaviors and polycystin localization in Caenorhabditis elegans. Curr. Biol. 15, 394–404 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Wachter, S. et al. Binding of IFT22 to the intraflagellar transport complex is essential for flagellum assembly. EMBO J. 38, e101251 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Bhogaraju, S. et al. Molecular basis of tubulin transport within the cilium by IFT74 and IFT81. Science 341, 1009–1012 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Taschner, M. et al. Intraflagellar transport proteins 172, 80, 57, 54, 38, and 20 form a stable tubulin‐binding IFT‐B2 complex. EMBO J. 35, 773–790 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lacey, S. E., Foster, H. E. & Pigino, G. The molecular structure of IFT-A and IFT-B in anterograde intraflagellar transport trains. Nat. Struct. Mol. Biol. 30, 584–593 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Petriman, N. A. et al. Biochemically validated structural model of the 15-subunit intraflagellar transport complex IFT-B. EMBO J. 41, e112440 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. McCafferty, C. L. et al. Integrative modeling reveals the molecular architecture of the intraflagellar transport A (IFT-A) complex. eLife 11, e81977 (2022).

    CAS  Google Scholar 

  85. Hesketh, S. J., Mukhopadhyay, A. G., Nakamura, D., Toropova, K. & Roberts, A. J. IFT-A structure reveals carriages for membrane protein transport into cilia. Cell 185, 4971–4985 (2022).

    Article  CAS  PubMed  Google Scholar 

  86. Meleppattu, S., Zhou, H., Dai, J., Gui, M. & Brown, A. Mechanism of IFT-A polymerization into trains for ciliary transport. Cell 185, 4986–4998 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jiang, M. et al. Human IFT-A complex structures provide molecular insights into ciliary transport. Cell Res. 33, 288–298 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ma, Y. et al. Structural insight into the intraflagellar transport complex IFT-A and its assembly in the anterograde IFT train. Nat. Commun. 14, 1506 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chou, H.-T. et al. The molecular architecture of native BBSome obtained by an integrated structural approach. Structure 27, 1384–1394 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yang, S. et al. Near-atomic structures of the BBSome reveal the basis for BBSome activation and binding to GPCR cargoes. eLife 9, e55954 (2020).

    Google Scholar 

  91. Klink, B. U., Gatsogiannis, C., Hofnagel, O., Wittinghofer, A. & Raunser, S. Structure of the human BBSome core complex. eLife 9, e53910 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kobayashi, T., Ishida, Y., Hirano, T., Katoh, Y. & Nakayama, K. Cooperation of the IFT-A complex with the IFT-B complex is required for ciliary retrograde protein trafficking and GPCR import. Mol. Biol. Cell 32, 45–56 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Nozaki, S., Castro Araya, R. F., Katoh, Y. & Nakayama, K. Requirement of IFT-B-BBSome complex interaction in export of GPR161 from cilia. Biol. Open. 8, bio043786 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Funabashi, T., Katoh, Y., Okazaki, M., Sugawa, M. & Nakayama, K. Interaction of heterotrimeric kinesin-II with IFT-B-connecting tetramer is crucial for ciliogenesis. J. Cell Biol. 217, 2867–2876 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jordan, M. A., Diener, D. R., Stepanek, L. & Pigino, G. The cryo-EM structure of intraflagellar transport trains reveals how dynein is inactivated to ensure unidirectional anterograde movement in cilia. Nat. Cell Biol. 20, 1250–1255 (2018).

    Article  CAS  PubMed  Google Scholar 

  96. Kiesel, P. et al. The molecular structure of mammalian primary cilia revealed by cryo-electron tomography. Nat. Struct. Mol. Biol. 27, 1115–1124 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Toropova, K. et al. Structure of the dynein-2 complex and its assembly with intraflagellar transport trains. Nat. Struct. Mol. Biol. 26, 823–829 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Williams, C. L. et al. Direct evidence for BBSome-associated intraflagellar transport reveals distinct properties of native mammalian cilia. Nat. Commun. 5, 5813 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Lechtreck, K.-F. et al. The Chlamydomonas reinhardtii BBSome is an IFT cargo required for export of specific signaling proteins from flagella. J. Cell Biol. 187, 1117–1132 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Stepanek, L. & Pigino, G. Microtubule doublets are double-track railways for intraflagellar transport trains. Science 352, 721–724 (2016).

    Article  CAS  PubMed  Google Scholar 

  101. Kuhns, S. & Blacque, O. E. Cilia train spotting. Dev. Cell 37, 395–396 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Bertiaux, E. et al. Bidirectional intraflagellar transport is restricted to two sets of microtubule doublets in the trypanosome flagellum. J. Cell Biol. 217, 4284–4297 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mallet, A. & Bastin, P. Restriction of intraflagellar transport to some microtubule doublets: an opportunity for cilia diversification? Bioessays 44, e2200031 (2022).

    Article  PubMed  Google Scholar 

  104. Kimura, Y. et al. Environmental responsiveness of tubulin glutamylation in sensory cilia is regulated by the p38 MAPK pathway. Sci. Rep. 8, 8392 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  105. O’Hagan, R. et al. The tubulin deglutamylase CCPP-1 regulates the function and stability of sensory cilia in C. elegans. Curr. Biol. 21, 1685–1694 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Wingfield, J. L. et al. IFT trains in different stages of assembly queue at the ciliary base for consecutive release into the cilium. eLife 6, e26609 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Buisson, J. et al. Intraflagellar transport proteins cycle between the flagellum and its base. J. Cell Sci. 126, 327–338 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Mijalkovic, J., Prevo, B., Oswald, F., Mangeol, P. & Peterman, E. J. G. Ensemble and single-molecule dynamics of IFT dynein in Caenorhabditis elegans cilia. Nat. Commun. 8, 14591 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Prevo, B., Mangeol, P., Oswald, F., Scholey, J. M. & Peterman, E. J. G. Functional differentiation of cooperating kinesin-2 motors orchestrates cargo import and transport in C. elegans cilia. Nat. Cell Biol. 17, 1536–1545 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Yi, P., Li, W.-J., Dong, M.-Q. & Ou, G. Dynein-driven retrograde intraflagellar transport is triphasic in C. elegans sensory cilia. Curr. Biol. 27, 1448–1461 (2017).

    Article  CAS  PubMed  Google Scholar 

  111. Hirano, T., Katoh, Y. & Nakayama, K. Intraflagellar transport-A complex mediates ciliary entry and retrograde trafficking of ciliary G protein-coupled receptors. Mol. Biol. Cell 28, 429–439 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Blacque, O. E., Cevik, S. & Kaplan, O. I. Intraflagellar transport: from molecular characterisation to mechanism. Front. Biosci. 13, 2633–2652 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Oswald, F., Prevo, B., Acar, S. & Peterman, E. J. G. Interplay between ciliary ultrastructure and IFT-train dynamics revealed by single-molecule super-resolution imaging. Cell Rep. 25, 224–235 (2018).

    Article  CAS  PubMed  Google Scholar 

  114. De-Castro, A. R. G. et al. WDR60-mediated dynein-2 loading into cilia powers retrograde IFT and transition zone crossing. J. Cell Biol. 221, e202010178 (2022).

    Article  CAS  PubMed  Google Scholar 

  115. Scheidel, N. & Blacque, O. E. Intraflagellar transport complex A genes differentially regulate cilium formation and transition zone gating. Curr. Biol. 28, 3279–3287 (2018).

    Article  CAS  PubMed  Google Scholar 

  116. Jensen, V. L. et al. Role for intraflagellar transport in building a functional transition zone. EMBO Rep. 19, e45862 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Vuolo, L., Stevenson, N. L., Heesom, K. J. & Stephens, D. J. Dynein-2 intermediate chains play crucial but distinct roles in primary cilia formation and function. eLife 7, e39655 (2018).

    Google Scholar 

  118. Zhang, Z., Danné, N., Meddens, B., Heller, I. & Peterman, E. J. G. Direct imaging of intraflagellar-transport turnarounds reveals that motors detach, diffuse, and reattach to opposite-direction trains. Proc. Natl Acad. Sci. USA 118, e2115089118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Jiang, L. et al. Kinesin family 17 (osmotic avoidance abnormal-3) is dispensable for photoreceptor morphology and function. FASEB J. 29, 4866–4880 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wingfield, J. L. et al. In vivo imaging shows continued association of several IFT A, B and dynein complexes while IFT trains U-turn at the tip. J. Cell Sci. 134, jcs259010 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Chien, A. et al. Dynamics of the IFT machinery at the ciliary tip. eLife 6, 28606 (2017).

    Google Scholar 

  122. Mijalkovic, J., van Krugten, J., Oswald, F., Acar, S. & Peterman, E. J. G. Single-molecule turnarounds of intraflagellar transport at the C. elegans ciliary tip. Cell Rep. 25, 1701–1707 (2018).

    Article  CAS  PubMed  Google Scholar 

  123. Engel, B. D. et al. The role of retrograde intraflagellar transport in flagellar assembly, maintenance, and function. J. Cell Biol. 199, 151–167 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Nakamura, K. et al. Anterograde trafficking of ciliary MAP kinase-like ICK/CILK1 by the intraflagellar transport machinery is required for intraciliary retrograde protein trafficking. J. Biol. Chem. 295, 13363–13376 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Chaya, T., Omori, Y., Kuwahara, R. & Furukawa, T. ICK is essential for cell type-specific ciliogenesis and the regulation of ciliary transport. EMBO J. 33, 1227–1242 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Satoda, Y. et al. BROMI/TBC1D32 together with CCRK/CDK20 and FAM149B1/JBTS36 contributes to intraflagellar transport turnaround involving ICK/CILK1. Mol. Biol. Cell 33, ar79 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Jin, H. et al. The conserved Bardet–Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia. Cell 141, 1208–1219 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Nievergelt, A. P. et al. Conversion of anterograde into retrograde trains is an intrinsic property of intraflagellar transport. Curr. Biol. 32, 4071–4078 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lechtreck, K. F. et al. ARMC2/PF27 is an obligate cargo adapter for intraflagellar transport of radial spokes. eLife 11, e74993 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Craft, J. M., Harris, J. A., Hyman, S., Kner, P. & Lechtreck, K. F. Tubulin transport by IFT is upregulated during ciliary growth by a cilium-autonomous mechanism. J. Cell Biol. 208, 223–237 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hao, L. et al. Intraflagellar transport delivers tubulin isotypes to sensory cilium middle and distal segments. Nat. Cell Biol. 13, 790–798 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wren, K. N. et al. A differential cargo-loading model of ciliary length regulation by IFT. Curr. Biol. 23, 2463–2471 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. Dai, J., Barbieri, F., Mitchell, D. R. & Lechtreck, K. F. In vivo analysis of outer arm dynein transport reveals cargo-specific intraflagellar transport properties. Mol. Biol. Cell 29, 2553–2565 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lechtreck, K. F., Mengoni, I., Okivie, B. & Hilderhoff, K. B. In vivo analyses of radial spoke transport, assembly, repair and maintenance. Cytoskeleton 75, 352–362 (2018).

    Article  CAS  PubMed  Google Scholar 

  135. Ye, F., Nager, A. R. & Nachury, M. V. BBSome trains remove activated GPCRs from cilia by enabling passage through the transition zone. J. Cell Biol. 217, 1847–1868 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lechtreck, K. F. et al. Chlamydomonas ARMC2/PF27 is an obligate cargo adapter for intraflagellar transport of radial spokes. eLife 11, e74993 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ye, F. et al. Single molecule imaging reveals a major role for diffusion in the exploration of ciliary space by signaling receptors. eLife 2, e00654 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Milenkovic, L. et al. Single-molecule imaging of Hedgehog pathway protein Smoothened in primary cilia reveals binding events regulated by Patched1. Proc. Natl Acad. Sci. USA 112, 8320–8325 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Weiss, L. E., Milenkovic, L., Yoon, J., Stearns, T. & Moerner, W. E. Motional dynamics of single patched1 molecules in cilia are controlled by Hedgehog and cholesterol. Proc. Natl Acad. Sci. USA 116, 5550–5557 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Mukhopadhyay, S. et al. TULP3 bridges the IFT-A complex and membrane phosphoinositides to promote trafficking of G protein-coupled receptors into primary cilia. Genes. Dev. 24, 2180–2193 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Badgandi, H. B., Hwang, S.-H., Shimada, I. S., Loriot, E. & Mukhopadhyay, S. Tubby family proteins are adapters for ciliary trafficking of integral membrane proteins. J. Cell Biol. 216, 743–760 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Nager, A. R. et al. An actin network dispatches ciliary GPCRs into extracellular vesicles to modulate signaling. Cell 168, 252–263 (2017).

    Article  CAS  PubMed  Google Scholar 

  143. Mukhopadhyay, S. et al. The ciliary G-protein-coupled receptor Gpr161 negatively regulates the Sonic hedgehog pathway via cAMP signaling. Cell 152, 210–223 (2013).

    Article  CAS  PubMed  Google Scholar 

  144. Eguether, T. et al. IFT27 links the BBSome to IFT for maintenance of the ciliary signaling compartment. Dev. Cell 31, 279–290 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Liu, Y.-X. et al. Bardet–Biedl syndrome 3 protein promotes ciliary exit of the signaling protein phospholipase D via the BBSome. eLife 10, e59119 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Lechtreck, K. F. et al. Cycling of the signaling protein phospholipase D through cilia requires the BBSome only for the export phase. J. Cell Biol. 201, 249–261 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Hou, Y. & Witman, G. B. The N-terminus of IFT46 mediates intraflagellar transport of outer arm dynein and its cargo-adaptor ODA16. Mol. Biol. Cell 28, 2420–2433 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Klink, B. U. et al. A recombinant BBSome core complex and how it interacts with ciliary cargo. eLife 6, e27434 (2017).

    Google Scholar 

  149. Jiang, X. et al. DYF-5/MAK-dependent phosphorylation promotes ciliary tubulin unloading. Proc. Natl Acad. Sci. USA 119, e2207134119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Craft Van De Weghe, J., Harris, J. A., Kubo, T., Witman, G. B. & Lechtreck, K. F. Diffusion rather than intraflagellar transport likely provides most of the tubulin required for axonemal assembly in Chlamydomonas. J. Cell Sci. 133, jcs249805 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Belzile, O., Hernandez-Lara, C. I., Wang, Q. & Snell, W. J. Regulated membrane protein entry into flagella is facilitated by cytoplasmic microtubules and does not require IFT. Curr. Biol. 23, 1460–1465 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Hao, K., Chen, Y., Yan, X. & Zhu, X. Cilia locally synthesize proteins to sustain their ultrastructure and functions. Nat. Commun. 12, 6971 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Quidwai, T. et al. A WDR35-dependent coat protein complex transports ciliary membrane cargo vesicles to cilia. eLife 10, e69786 (2021).

    Google Scholar 

  154. Wu, D. et al. Ciliogenesis requires sphingolipid-dependent membrane and axoneme interaction. Proc. Natl Acad. Sci. USA 119, e2201096119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Jékely, G. & Arendt, D. Evolution of intraflagellar transport from coated vesicles and autogenous origin of the eukaryotic cilium. Bioessays 28, 191–198 (2006).

    Article  PubMed  Google Scholar 

  156. Jensen, V. L. & Leroux, M. R. Gates for soluble and membrane proteins, and two trafficking systems (IFT and LIFT), establish a dynamic ciliary signaling compartment. Curr. Opin. Cell Biol. 47, 83–91 (2017).

    Article  CAS  PubMed  Google Scholar 

  157. Gotthardt, K. et al. A G-protein activation cascade from Arl13B to Arl3 and implications for ciliary targeting of lipidated proteins. eLife 4, e11859 (2015).

    Google Scholar 

  158. Ismail, S. A. et al. Structural basis for Arl3-specific release of myristoylated ciliary cargo from UNC119. EMBO J. 31, 4085–4094 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Jaiswal, M. et al. Novel biochemical and structural insights into the interaction of myristoylated cargo with Unc119 protein and their release by Arl2/3. J. Biol. Chem. 291, 20766–20778 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Wright, K. J. et al. An ARL3-UNC119-RP2 GTPase cycle targets myristoylated NPHP3 to the primary cilium. Genes Dev. 25, 2347–2360 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Humbert, M. C. et al. ARL13B, PDE6D, and CEP164 form a functional network for INPP5E ciliary targeting. Proc. Natl Acad. Sci. USA 109, 19691–19696 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Farazi, T. A., Waksman, G. & Gordon, J. I. The biology and enzymology of protein N-myristoylation. J. Biol. Chem. 276, 39501–39504 (2001).

    Article  CAS  PubMed  Google Scholar 

  163. Wang, M. & Casey, P. J. Protein prenylation: unique fats make their mark on biology. Nat. Rev. Mol. Cell Biol. 17, 110–122 (2016).

    Article  CAS  PubMed  Google Scholar 

  164. Zhang, Q. et al. GTP-binding of ARL-3 is activated by ARL-13 as a GEF and stabilized by UNC-119. Sci. Rep. 6, 24534 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Thomas, S. et al. A homozygous PDE6D mutation in Joubert syndrome impairs targeting of farnesylated INPP5E protein to the primary cilium. Hum. Mutat. 35, 137–146 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Fansa, E. K., Kösling, S. K., Zent, E., Wittinghofer, A. & Ismail, S. PDE6δ-mediated sorting of INPP5E into the cilium is determined by cargo-carrier affinity. Nat. Commun. 7, 11366 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Akella, J. S. et al. Ciliary Rab28 and the BBSome negatively regulate extracellular vesicle shedding. eLife 9, e50580 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Carter, S. P. et al. Genetic deletion of zebrafish Rab28 causes defective outer segment shedding, but not retinal degeneration. Front. Cell Dev. Biol. 8, 136 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Ying, G. et al. The small GTPase RAB28 is required for phagocytosis of cone outer segments by the murine retinal pigmented epithelium. J. Biol. Chem. 293, 17546–17558 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Dutta, N. & Seo, S. RPGR, a prenylated retinal ciliopathy protein, is targeted to cilia in a prenylation- and PDE6D-dependent manner. Biol. Open 5, 1283–1289 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Zhang, H. et al. Deletion of PrBP/delta impedes transport of GRK1 and PDE6 catalytic subunits to photoreceptor outer segments. Proc. Natl Acad. Sci. USA 104, 8857–8862 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Faber, S. et al. PDE6D mediates trafficking of prenylated proteins NIM1K and UBL3 to primary cilia. Cells 12, 312 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Zhang, H. et al. UNC119 is required for G protein trafficking in sensory neurons. Nat. Neurosci. 14, 874–880 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Pandey, M., Huang, Y., Lim, T. K., Lin, Q. & He, C. Y. Flagellar targeting of an arginine kinase requires a conserved lipidated protein intraflagellar transport (LIFT) pathway in Trypanosoma brucei. J. Biol. Chem. 295, 11326–11336 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Stephen, L. A. & Ismail, S. Shuttling and sorting lipid-modified cargo into the cilia. Biochem. Soc. Trans. 44, 1273–1280 (2016).

    Article  CAS  PubMed  Google Scholar 

  176. Hanzal-Bayer, M. The complex of Arl2-GTP and PDEdelta: from structure to function. EMBO J. 21, 2095–2106 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Chandra, A. et al. The GDI-like solubilizing factor PDEδ sustains the spatial organization and signalling of Ras family proteins. Nat. Cell Biol. 14, 148–158 (2012).

    Article  CAS  Google Scholar 

  178. Yelland, T., Garcia, E., Samarakoon, Y. & Ismail, S. The structural and biochemical characterization of UNC119B cargo binding and release mechanisms. Biochemistry 60, 1952–1963 (2021).

    Article  CAS  PubMed  Google Scholar 

  179. Grayson, C. Localization in the human retina of the X-linked retinitis pigmentosa protein RP2, its homologue cofactor C and the RP2 interacting protein Arl3. Hum. Mol. Genet. 11, 3065–3074 (2002).

    Article  CAS  PubMed  Google Scholar 

  180. Lokaj, M. et al. The interaction of CCDC104/BARTL1 with Arl3 and implications for ciliary function. Structure 23, 2122–2132 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Cevik, S. et al. Joubert syndrome Arl13b functions at ciliary membranes and stabilizes protein transport in Caenorhabditis elegans. J. Cell Biol. 188, 953–969 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Kühnel, K., Veltel, S., Schlichting, I. & Wittinghofer, A. Crystal structure of the human retinitis pigmentosa 2 protein and its interaction with Arl3. Structure 14, 367–378 (2006).

    Article  PubMed  Google Scholar 

  183. Evans, R. J. et al. The retinitis pigmentosa protein RP2 links pericentriolar vesicle transport between the Golgi and the primary cilium. Hum. Mol. Genet. 19, 1358–1367 (2010).

    Article  CAS  PubMed  Google Scholar 

  184. ElMaghloob, Y. et al. ARL3 activation requires the co-GEF BART and effector-mediated turnover. eLife 10, e64624 (2021).

    CAS  Google Scholar 

  185. Zhang, R.-K. et al. RABL2 promotes the outward transition zone passage of signaling proteins in cilia via ARL3. Proc. Natl Acad. Sci. USA 120, e2302603120 (2023).

    Article  CAS  PubMed  Google Scholar 

  186. Nozaki, S. et al. Regulation of ciliary retrograde protein trafficking by the Joubert syndrome proteins ARL13B and INPP5E. J. Cell Sci. 130, 563–576 (2017).

    CAS  PubMed  Google Scholar 

  187. Jensen, V. L. et al. Whole-organism developmental expression profiling identifies RAB-28 as a novel ciliary GTPase associated with the BBSome and intraflagellar transport. PLoS Genet. 12, e1006469 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Kösling, S. K., Fansa, E. K., Maffini, S. & Wittinghofer, A. Mechanism and dynamics of INPP5E transport into and inside the ciliary compartment. Biol. Chem. 399, 277–292 (2018).

    Article  PubMed  Google Scholar 

  189. Wang, J. & Barr, M. M. Cell–cell communication via ciliary extracellular vesicles: clues from model systems. Essays Biochem. 62, 205–213 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Phua, S. C. et al. Dynamic remodeling of membrane composition drives cell cycle through primary cilia excision. Cell 168, 264–279 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Wang, J. et al. C. elegans ciliated sensory neurons release extracellular vesicles that function in animal communication. Curr. Biol. 24, 519–525 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Dentler, W. A role for the membrane in regulating Chlamydomonas flagellar length. PLoS ONE 8, e53366 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Wood, C. R., Huang, K., Diener, D. R. & Rosenbaum, J. L. The cilium secretes bioactive ectosomes. Curr. Biol. 23, 906–911 (2013).

    Article  CAS  PubMed  Google Scholar 

  194. Hoang-Minh, L. B., Dutra-Clarke, M., Breunig, J. J. & Sarkisian, M. R. Glioma cell proliferation is enhanced in the presence of tumor-derived cilia vesicles. Cilia 7, 6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Long, H. et al. Comparative analysis of ciliary membranes and ectosomes. Curr. Biol. 26, 3327–3335 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Wang, J. et al. Sensory cilia act as a specialized venue for regulated extracellular vesicle biogenesis and signaling. Curr. Biol. 31, 3943–3951 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Bergman, K., Goodenough, U. W., Goodenough, D. A., Jawitz, J. & Martin, H. Gametic differentiation in Chlamydomonas reinhardtii. II. Flagellar membranes and the agglutination reaction. J. Cell Biol. 67, 606–622 (1975).

    Article  CAS  PubMed  Google Scholar 

  198. Wang, G. et al. Rab7 regulates primary cilia disassembly through cilia excision. J. Cell Biol. 218, 4030–4041 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Cocucci, E. & Meldolesi, J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol. 25, 364–372 (2015).

    Article  CAS  PubMed  Google Scholar 

  200. Volz, A.-K. et al. Bardet–Biedl syndrome proteins modulate the release of bioactive extracellular vesicles. Nat. Commun. 12, 5671 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Razzauti, A. & Laurent, P. Ectocytosis prevents accumulation of ciliary cargo in sensory neurons. eLife 10, e67670 (2021).

    CAS  Google Scholar 

  202. Clupper, M. et al. Kinesin-2 motors differentially impact biogenesis of extracellular vesicle subpopulations shed from sensory cilia. iScience 25, 105262 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Maguire, J. E. et al. Myristoylated CIL-7 regulates ciliary extracellular vesicle biogenesis. Mol. Biol. Cell 26, 2823–2832 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Nikonorova, I. A. et al. Isolation, profiling, and tracking of extracellular vesicle cargo in Caenorhabditis elegans. Curr. Biol. 32, 1924–1936 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Mohieldin, A. M. et al. Ciliary extracellular vesicles are distinct from the cytosolic extracellular vesicles. J. Extracell. Vesicles 10, e12086 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Salinas, R. Y. et al. Photoreceptor discs form through peripherin-dependent suppression of ciliary ectosome release. J. Cell Biol. 216, 1489–1499 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Meldolesi, J. Exosomes and ectosomes in intercellular communication. Curr. Biol. 28, R435–R444 (2018).

    Article  CAS  PubMed  Google Scholar 

  208. Stilling, S., Kalliakoudas, T., Benninghoven-Frey, H., Inoue, T. & Falkenburger, B. H. PIP2 determines length and stability of primary cilia by balancing membrane turnovers. Commun. Biol. 5, 1–15 (2022).

    Article  Google Scholar 

  209. Silva, M. et al. Cell-specific α-tubulin isotype regulates ciliary microtubule ultrastructure, intraflagellar transport, and extracellular vesicle biology. Curr. Biol. 27, 968–980 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Akella, J. S. & Barr, M. M. The tubulin code specializes neuronal cilia for extracellular vesicle release. Dev. Neurobiol. 81, 231–252 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Patel, V., Chowdhury, R. & Igarashi, P. Advances in the pathogenesis and treatment of polycystic kidney disease. Curr. Opin. Nephrol. Hyper. 18, 99–106 (2009).

    Article  CAS  Google Scholar 

  212. Rozycki, M. et al. The fate of the primary cilium during myofibroblast transition. Mol. Biol. Cell 25, 643–657 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Pazour, G. J. et al. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J. Cell Biol. 151, 709–718 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Barr, M. M. & Sternberg, P. W. A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans. Nature 401, 386–389 (1999).

    Article  CAS  PubMed  Google Scholar 

  215. Pazour, G. J., San Agustin, J. T., Follit, J. A., Rosenbaum, J. L. & Witman, G. B. Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease. Curr. Biol. 12, R378–80 (2002).

    Article  CAS  PubMed  Google Scholar 

  216. Yoder, B. K., Hou, X. & Guay-Woodford, L. M. The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J. Am. Soc. Nephrol. 13, 2508–2516 (2002).

    Article  CAS  PubMed  Google Scholar 

  217. Bergmann, C. et al. Polycystic kidney disease. Nat. Rev. Dis. Prim. 4, 50 (2018).

    Article  PubMed  Google Scholar 

  218. Ward, C. J. et al. Cellular and subcellular localization of the ARPKD protein; fibrocystin is expressed on primary cilia. Hum. Mol. Genet. 12, 2703–2710 (2003).

    Article  CAS  PubMed  Google Scholar 

  219. Lu, H. et al. Mutations in DZIP1L, which encodes a ciliary-transition-zone protein, cause autosomal recessive polycystic kidney disease. Nat. Genet. 49, 1025–1034 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Su, Q. et al. Structure of the human PKD1–PKD2 complex. Science 361, eaat9519 (2018).

    Article  Google Scholar 

  221. Maser, R. L., Calvet, J. P. & Parnell, S. C. The GPCR properties of polycystin-1 — a new paradigm. Front. Mol. Biosci. 9, 1035507 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Liu, X. et al. Polycystin-2 is an essential ion channel subunit in the primary cilium of the renal collecting duct epithelium. eLife 7, e33183 (2018).

    Google Scholar 

  223. Wang, Z. et al. The ion channel function of polycystin-1 in the polycystin-1/polycystin-2 complex. EMBO Rep. 20, e48336 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Fedeles, S. V. et al. A genetic interaction network of five genes for human polycystic kidney and liver diseases defines polycystin-1 as the central determinant of cyst formation. Nat. Genet. 43, 639–647 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Walker, R. V. et al. Ciliary exclusion of polycystin-2 promotes kidney cystogenesis in an autosomal dominant polycystic kidney disease model. Nat. Commun. 10, 4072 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Wang, W. et al. Ttc21b deficiency attenuates autosomal dominant polycystic kidney disease in a kidney tubular- and maturation-dependent manner. Kidney Int. 102, 577–591 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Gerakopoulos, V., Ngo, P. & Tsiokas, L. Loss of polycystins suppresses deciliation via the activation of the centrosomal integrity pathway. Life Sci. Alliance 3, e202000750 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Hildebrandt, F. et al. A novel gene encoding an SH3 domain protein is mutated in nephronophthisis type 1. Nat. Genet. 17, 149–153 (1997).

    Article  CAS  PubMed  Google Scholar 

  229. Fliegauf, M. et al. Nephrocystin specifically localizes to the transition zone of renal and respiratory cilia and photoreceptor connecting cilia. J. Am. Soc. Nephrol. 17, 2424–2433 (2006).

    Article  CAS  PubMed  Google Scholar 

  230. Halbritter, J. et al. Identification of 99 novel mutations in a worldwide cohort of 1,056 patients with a nephronophthisis-related ciliopathy. Hum. Genet. 132, 865–884 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Luo, F. & Tao, Y.-H. Nephronophthisis: a review of genotype–phenotype correlation. Nephrology 23, 904–911 (2018).

    Article  PubMed  Google Scholar 

  232. Nürnberger, J., Bacallao, R. L. & Phillips, C. L. Inversin forms a complex with catenins and N-cadherin in polarized epithelial cells. Mol. Biol. Cell 13, 3096–3106 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Donaldson, J. C. et al. Crk-associated substrate p130Cas interacts with nephrocystin and both proteins localize to cell–cell contacts of polarized epithelial cells. Exper. Cell Res. 256, 168–178 (2000).

    Article  CAS  Google Scholar 

  234. Choi, H. J. C. et al. NEK8 links the ATR-regulated replication stress response and S phase CDK activity to renal ciliopathies. Mol. Cell 51, 423–439 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Putoux, A., Attie-Bitach, T., Martinovic, J. & Gubler, M.-C. Phenotypic variability of Bardet–Biedl syndrome: focusing on the kidney. Pediatr. Nephrol. 27, 7–15 (2012).

    Article  PubMed  Google Scholar 

  236. Forsythe, E. et al. Risk factors for severe renal disease in Bardet–Biedl syndrome. J. Am. Soc. Nephrol. 28, 963–970 (2017).

    Article  CAS  PubMed  Google Scholar 

  237. Zaghloul, N. A. & Katsanis, N. Mechanistic insights into Bardet–Biedl syndrome, a model ciliopathy. J. Clin. Invest. 119, 428–437 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Davis, E. E. et al. TTC21B contributes both causal and modifying alleles across the ciliopathy spectrum. Nat. Genet. 43, 189–196 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Halbritter, J. et al. Defects in the IFT-B component IFT172 cause Jeune and Mainzer–Saldino syndromes in humans. Am. J. Hum. Genet. 93, 915–925 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Senum, S. R. et al. Monoallelic IFT140 pathogenic variants are an important cause of the autosomal dominant polycystic kidney-spectrum phenotype. Am. J. Hum. Genet. 109, 136–156 (2022).

    Article  CAS  PubMed  Google Scholar 

  241. Walczak-Sztulpa, J. et al. Identical variants cause variable skeletal ciliopathy phenotypes — challenges for the accurate diagnosis. Front. Genet. 13, 931822 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  242. McConnachie, D. J., Stow, J. L. & Mallett, A. J. Ciliopathies and the kidney: a review. Am. J. Kidney Dis. 77, 410–419 (2021).

    Article  CAS  PubMed  Google Scholar 

  243. Barbelanne, M., Hossain, D., Chan, D. P., Peränen, J. & Tsang, W. Y. Nephrocystin proteins NPHP5 and Cep290 regulate BBSome integrity, ciliary trafficking and cargo delivery. Hum. Mol. Genet. 24, 2185–2200 (2015).

    Article  CAS  PubMed  Google Scholar 

  244. Devane, J. et al. Progressive liver, kidney, and heart degeneration in children and adults affected by TULP3 mutations. Am. J. Hum. Genet. 109, 928–943 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Ma, M., Tian, X., Igarashi, P., Pazour, G. J. & Somlo, S. Loss of cilia suppresses cyst growth in genetic models of autosomal dominant polycystic kidney disease. Nat. Genet. 45, 1004–1012 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Shao, L. et al. Genetic reduction of cilium length by targeting intraflagellar transport 88 protein impedes kidney and liver cyst formation in mouse models of autosomal polycystic kidney disease. Kidney Int. 98, 1225–1241 (2020).

    Article  CAS  PubMed  Google Scholar 

  247. Hwang, S.-H. et al. Tulp3 regulates renal cystogenesis by trafficking of cystoproteins to cilia. Curr. Biol. 29, 790–802 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Walker, R. V. et al. Cilia-localized counterregulatory signals as drivers of renal cystogenesis. Front. Mol. Biosci. 9, 936070 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Legué, E. & Liem, K. F. Jr. Tulp3 is a ciliary trafficking gene that regulates polycystic kidney disease. Curr. Biol. 29, 803–812 (2019).

    Article  PubMed  Google Scholar 

  250. Alkanderi, S. et al. ARL3 mutations cause Joubert syndrome by disrupting ciliary protein composition. Am. J. Hum. Genet. 103, 612–620 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Hakim, S. et al. INPP5E suppresses polycystic kidney disease via inhibition of PI3K/Akt-dependent mTORC1 signaling. Hum. Mol. Genet. 25, 2295–2313 (2016).

    Article  CAS  PubMed  Google Scholar 

  252. Nakata, K., Shiba, D., Kobayashi, D. & Yokoyama, T. Targeting of Nphp3 to the primary cilia is controlled by an N-terminal myristoylation site and coiled–coil domains. Cytoskeleton 69, 221–234 (2012).

    Article  CAS  PubMed  Google Scholar 

  253. Lea, W. A. et al. Analysis of the polycystin complex (PCC) in human urinary exosome-like vesicles (ELVs). Sci. Rep. 10, 1500 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Hogan, M. C. et al. Identification of biomarkers for PKD1 using urinary exosomes. J. Am. Soc. Nephrol. 26, 1661–1670 (2015).

    Article  CAS  PubMed  Google Scholar 

  255. Ding, H., Li, L. X., Harris, P. C., Yang, J. & Li, X. Extracellular vesicles and exosomes generated from cystic renal epithelial cells promote cyst growth in autosomal dominant polycystic kidney disease. Nat. Commun. 12, 4548 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Mohieldin, A. M., Alachkar, A., Yates, J. & Nauli, S. M. Novel biomarkers of ciliary extracellular vesicles interact with ciliopathy and Alzheimer’s associated proteins. Commun. Integr. Biol. 14, 264–269 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Hua, K. & Ferland, R. J. Primary cilia proteins: ciliary and extraciliary sites and functions. Cell. Mol. Life Sci. 75, 1521–1540 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Hwang, S.-H., Somatilaka, B. N., White, K. & Mukhopadhyay, S. Ciliary and extraciliary Gpr161 pools repress Hedgehog signaling in a tissue-specific manner. eLife 10, e67121 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Gigante, E. D., Taylor, M. R., Ivanova, A. A., Kahn, R. A. & Caspary, T. ARL13B regulates Sonic hedgehog signaling from outside primary cilia. eLife 9, e50434 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Silva, L. M. et al. Analysis of primary cilia in renal tissue and cells. Methods Cell Biol. 153, 205–229 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. D.P.N., D.J.M.P. and O.E.B. contributed substantially to discussion of the content. All authors wrote the article, and A.L.M., D.J.M.P. and O.E.B. reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Dorien J. M. Peters or Oliver E. Blacque.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nehprology thanks Saikat Mukhopadhyay and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moran, A.L., Louzao-Martinez, L., Norris, D.P. et al. Transport and barrier mechanisms that regulate ciliary compartmentalization and ciliopathies. Nat Rev Nephrol 20, 83–100 (2024). https://doi.org/10.1038/s41581-023-00773-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-023-00773-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing