Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Perfect and imperfect views of ultraconserved sequences

Abstract

Across the human genome, there are nearly 500 ‘ultraconserved’ elements: regions of at least 200 contiguous nucleotides that are perfectly conserved in both the mouse and rat genomes. Remarkably, the majority of these sequences are non-coding, and many can function as enhancers that activate tissue-specific gene expression during embryonic development. From their first description more than 15 years ago, their extreme conservation has both fascinated and perplexed researchers in genomics and evolutionary biology. The intrigue around ultraconserved elements only grew with the observation that they are dispensable for viability. Here, we review recent progress towards understanding the general importance and the specific functions of ultraconserved sequences in mammalian development and human disease and discuss possible explanations for their extreme conservation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Extreme conservation of ultraconserved elements.
Fig. 2: Ultraconserved sequence functions.
Fig. 3: Possible drivers of enhancer ultraconservation.
Fig. 4: Approaches for the identification of extremely conserved non-coding sequences.

Similar content being viewed by others

References

  1. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    CAS  PubMed  Google Scholar 

  2. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004).

    Google Scholar 

  3. Mouse Genome Sequencing Consortium. et al. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002).

    Google Scholar 

  4. Jacob, H. J. & Kwitek, A. E. Rat genetics: attaching physiology and pharmacology to the genome. Nat. Rev. Genet. 3, 33–42 (2002).

    CAS  PubMed  Google Scholar 

  5. Gibbs, R. A. et al. Genome sequence of the brown Norway rat yields insights into mammalian evolution. Nature 428, 493–521 (2004).

    CAS  PubMed  Google Scholar 

  6. Aparicio, S. et al. Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297, 1301–1310 (2002).

    CAS  PubMed  Google Scholar 

  7. International Chicken Genome Sequencing Consortium. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432, 695–716 (2004).

    Google Scholar 

  8. Lindblad-Toh, K. et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438, 803–819 (2005).

    CAS  PubMed  Google Scholar 

  9. Chimpanzee Sequencing and Analysis Consortium. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437, 69–87 (2005).

    Google Scholar 

  10. Bejerano, G. et al. Ultraconserved elements in the human genome. Science 304, 1321–1325 (2004). This is the first work to describe ultraconserved elements in the human genome.

    CAS  PubMed  Google Scholar 

  11. Hecker, N. & Hiller, M. A genome alignment of 120 mammals highlights ultraconserved element variability and placenta-associated enhancers. Gigascience 9, giz159 (2020).

    PubMed  PubMed Central  Google Scholar 

  12. McLean, C. & Bejerano, G. Dispensability of mammalian DNA. Genome Res. 18, 1743–1751 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ovcharenko, I. Widespread ultraconservation divergence in primates. Mol. Biol. Evol. 25, 1668–1676 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Navratilova, P. et al. Systematic human/zebrafish comparative identification of cis-regulatory activity around vertebrate developmental transcription factor genes. Dev. Biol. 327, 526–540 (2009).

    CAS  PubMed  Google Scholar 

  15. de la Calle-Mustienes, E. et al. A functional survey of the enhancer activity of conserved non-coding sequences from vertebrate Iroquois cluster gene deserts. Genome Res. 15, 1061–1072 (2005). This paper describes the first detailed experimental analysis of an ultraconserved enhancer.

    PubMed  PubMed Central  Google Scholar 

  16. Drake, J. A. et al. Conserved noncoding sequences are selectively constrained and not mutation cold spots. Nat. Genet. 38, 223–227 (2006). This study uses nascent human population sequencing data from the International HapMap Project to show that extremely conserved non-coding elements display higher rates of depletion for common human variants than rare variants, consistent with negative selection acting to maintain sequence conservation at these sites.

    CAS  PubMed  Google Scholar 

  17. Habic, A. et al. Genetic variations of ultraconserved elements in the human genome. OMICS 23, 549–559 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Derti, A., Roth, F. P., Church, G. M. & Wu, C.-T. Mammalian ultraconserved elements are strongly depleted among segmental duplications and copy number variants. Nat. Genet. 38, 1216–1220 (2006).

    CAS  PubMed  Google Scholar 

  19. Chiang, C. W. K. et al. Ultraconserved elements: analyses of dosage sensitivity, motifs and boundaries. Genetics 180, 2277–2293 (2008).

    PubMed  PubMed Central  Google Scholar 

  20. Conrad, D. F. et al. Origins and functional impact of copy number variation in the human genome. Nature 464, 704–712 (2010).

    CAS  PubMed  Google Scholar 

  21. McCole, R. B., Fonseka, C. Y., Koren, A. & Wu, C.-T. Abnormal dosage of ultraconserved elements is highly disfavored in healthy cells but not cancer cells. PLoS Genet. 10, e1004646 (2014).

    PubMed  PubMed Central  Google Scholar 

  22. Byeon, G. W. et al. Functional and structural basis of extreme conservation in vertebrate 5′ untranslated regions. Nat. Genet. 53, 729–741 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Leclair, N. K. et al. Poison exon splicing regulates a coordinated network of sr protein expression during differentiation and tumorigenesis. Mol. Cell 80, 648–665.e9 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Thomas, J. D. et al. RNA isoform screens uncover the essentiality and tumor-suppressor activity of ultraconserved poison exons. Nat. Genet. 52, 84–94 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lareau, L. F., Inada, M., Green, R. E., Wengrod, J. C. & Brenner, S. E. Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements. Nature 446, 926–929 (2007).

    CAS  PubMed  Google Scholar 

  26. Pennacchio, L. A. et al. In vivo enhancer analysis of human conserved non-coding sequences. Nature 444, 499–502 (2006). This paper describes the first systematic characterization of ultraconserved elements for enhancer function and definitively establishes that many regulate gene expression during embryonic development.

    CAS  PubMed  Google Scholar 

  27. Visel, A. et al. Ultraconservation identifies a small subset of extremely constrained developmental enhancers. Nat. Genet. 40, 158–160 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Gorkin, D. U. et al. An atlas of dynamic chromatin landscapes in mouse fetal development. Nature 583, 744–751 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kushawah, G. & Mishra, R. K. Ultraconserved sequences associated with HoxD cluster have strong repression activity. Genome Biol. Evol. 9, 2049–2054 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Calin, G. A. et al. Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell 12, 215–229 (2007).

    CAS  PubMed  Google Scholar 

  31. Cajigas, I. et al. The Evf2 ultraconserved enhancer lncRNA functionally and spatially organizes megabase distant genes in the developing forebrain. Mol. Cell 71, 956–972.e9 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. McCole, R. B., Erceg, J., Saylor, W. & Wu, C.-T. Ultraconserved elements occupy specific arenas of three-dimensional mammalian genome organization. Cell Rep. 24, 479–488 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ahituv, N. et al. Deletion of ultraconserved elements yields viable mice. PLoS Biol. 5, e234 (2007). This work describes the first mouse knockout studies of ultraconserved enhancers, which stunningly find that mice missing individual ultraconserved elements are viable and have no obvious phenotypes.

    PubMed  PubMed Central  Google Scholar 

  34. Dickel, D. E. et al. Ultraconserved enhancers are required for normal development. Cell 172, 491–499.e15 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Nolte, M. J. et al. Functional analysis of limb transcriptional enhancers in the mouse. Evol. Dev. 16, 207–223 (2014). This work was the first to identify a phenotype resulting from the deletion of an ultraconserved enhancer in mice. Together with Dickel et al. (2018), this study establishes that loss of ultraconserved enhancers in mice commonly results in developmental phenotypes that are likely to be selectively disadvantageous, partially explaining their extreme conservation.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Gaynor, K. U. et al. Studies of mice deleted for Sox3 and uc482: relevance to X-linked hypoparathyroidism. Endocr. Connect. 9, 173–186 (2020).

    CAS  PubMed Central  Google Scholar 

  37. Colasante, G. et al. ARX regulates cortical intermediate progenitor cell expansion and upper layer neuron formation through repression of Cdkn1c. Cereb. Cortex 25, 322–335 (2015).

    PubMed  Google Scholar 

  38. Kitamura, K. et al. Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat. Genet. 32, 359–369 (2002).

    CAS  PubMed  Google Scholar 

  39. Squire, L. R. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol. Rev. 99, 195–231 (1992).

    CAS  PubMed  Google Scholar 

  40. Schliebs, R. & Arendt, T. The cholinergic system in aging and neuronal degeneration. Behav. Brain Res. 221, 555–563 (2011).

    CAS  PubMed  Google Scholar 

  41. Visel, A. et al. A high-resolution enhancer atlas of the developing telencephalon. Cell 152, 895–908 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Jindal, G. A. & Farley, E. K. Enhancer grammar in development, evolution, and disease: dependencies and interplay. Dev. Cell 56, 575–587 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Patwardhan, R. P. et al. Massively parallel functional dissection of mammalian enhancers in vivo. Nat. Biotechnol. 30, 265–270 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Melnikov, A. et al. Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay. Nat. Biotechnol. 30, 271–277 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kircher, M. et al. Saturation mutagenesis of twenty disease-associated regulatory elements at single base-pair resolution. Nat. Commun. 10, 3583 (2019).

    PubMed  PubMed Central  Google Scholar 

  46. Canver, M. C. et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 527, 192–197 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Stefflova, K. et al. Cooperativity and rapid evolution of cobound transcription factors in closely related mammals. Cell 154, 530–540 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Heinz, S. et al. Effect of natural genetic variation on enhancer selection and function. Nature 503, 487–492 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Viturawong, T., Meissner, F., Butter, F. & Mann, M. A DNA-centric protein interaction map of ultraconserved elements reveals contribution of transcription factor binding hubs to conservation. Cell Rep. 5, 531–545 (2013).

    CAS  PubMed  Google Scholar 

  50. Lettice, L. A., Hill, A. E., Devenney, P. S. & Hill, R. E. Point mutations in a distant sonic hedgehog cis-regulator generate a variable regulatory output responsible for preaxial polydactyly. Hum. Mol. Genet. 17, 978–985 (2008).

    CAS  PubMed  Google Scholar 

  51. Lettice, L. A. et al. Opposing functions of the ETS factor family define Shh spatial expression in limb buds and underlie polydactyly. Dev. Cell 22, 459–467 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kvon, E. Z. et al. Comprehensive in vivo interrogation reveals phenotypic impact of human enhancer variants. Cell 180, 1262–1271.e15 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Siepel, A. et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15, 1034–1050 (2005). This paper introduces phastCons, one of the most widely used methods to identify highly conserved sequences with multiple species alignments.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lampe, X. et al. An ultraconserved Hox–Pbx responsive element resides in the coding sequence of Hoxa2 and is active in rhombomere 4. Nucleic Acids Res. 36, 3214–3225 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Snetkova, V. et al. Ultraconserved enhancer function does not require perfect sequence conservation. Nat. Genet. 53, 521–528 (2021). This study describes the most comprehensive examination of how sequence changes alter the activity of ultraconserved enhancers, finding that they are surprisingly robust to mutation. Collectively, the results suggest that there are likely to be multiple molecular drivers behind ultraconservation.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Rada-Iglesias, A. et al. A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470, 279–283 (2011).

    CAS  PubMed  Google Scholar 

  57. ENCODE Project Consortium. et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. . Nat. 583, 699–710 (2020).

    Google Scholar 

  58. Warnefors, M., Hartmann, B., Thomsen, S. & Alonso, C. R. Combinatorial gene regulatory functions underlie ultraconserved elements in Drosophila. Mol. Biol. Evol. 33, 2294–2306 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Stephen, S., Pheasant, M., Makunin, I. V. & Mattick, J. S. Large-scale appearance of ultraconserved elements in tetrapod genomes and slowdown of the molecular clock. Mol. Biol. Evol. 25, 402–408 (2008).

    CAS  PubMed  Google Scholar 

  60. Christley, S., Lobo, N. F. & Madey, G. Multiple organism algorithm for finding ultraconserved elements. BMC Bioinforma. 9, 15 (2008).

    Google Scholar 

  61. Mayor, C. et al. VISTA: visualizing global DNA sequence alignments of arbitrary length. Bioinformatics 16, 1046–1047 (2000).

    CAS  PubMed  Google Scholar 

  62. Schwartz, S. et al. PipMaker — a web server for aligning two genomic DNA sequences. Genome Res. 10, 577–586 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Nobrega, M. A. & Pennacchio, L. A. Comparative genomic analysis as a tool for biological discovery. J. Physiol. 554, 31–39 (2004).

    CAS  PubMed  Google Scholar 

  64. Sandelin, A. et al. Arrays of ultraconserved non-coding regions span the loci of key developmental genes in vertebrate genomes. BMC Genomics 5, 99 (2004).

    PubMed  PubMed Central  Google Scholar 

  65. Woolfe, A. et al. Highly conserved non-coding sequences are associated with vertebrate development. PLoS Biol. 3, e7 (2005).

    PubMed  Google Scholar 

  66. Ovcharenko, I., Stubbs, L. & Loots, G. G. Interpreting mammalian evolution using Fugu genome comparisons. Genomics 84, 890–895 (2004).

    CAS  PubMed  Google Scholar 

  67. Nobrega, M. A., Ovcharenko, I., Afzal, V. & Rubin, E. M. Scanning human gene deserts for long-range enhancers. Science 302, 413 (2003).

    CAS  PubMed  Google Scholar 

  68. Cooper, G. M. et al. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res. 15, 901–913 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Prabhakar, S. et al. Close sequence comparisons are sufficient to identify human cis-regulatory elements. Genome Res. 16, 855–863 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Lindblad-Toh, K. et al. A high-resolution map of human evolutionary constraint using 29 mammals. Nature 478, 476–482 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Royo, J. L. et al. Transphyletic conservation of developmental regulatory state in animal evolution. Proc. Natl Acad. Sci. USA 108, 14186–14191 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Clarke, S. L. et al. Human developmental enhancers conserved between deuterostomes and protostomes. PLoS Genet. 8, e1002852 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kikuta, H. et al. Genomic regulatory blocks encompass multiple neighboring genes and maintain conserved synteny in vertebrates. Genome Res. 17, 545–555 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Touceda-Suárez, M. et al. Ancient genomic regulatory blocks are a source for regulatory gene deserts in vertebrates after whole-genome duplications. Mol. Biol. Evol. 37, 2857–2864 (2020).

    PubMed  PubMed Central  Google Scholar 

  75. Harmston, N. et al. Topologically associating domains are ancient features that coincide with metazoan clusters of extreme noncoding conservation. Nat. Commun. 8, 441 (2017).

    PubMed  PubMed Central  Google Scholar 

  76. Poulin, F. et al. In vivo characterization of a vertebrate ultraconserved enhancer. Genomics 85, 774–781 (2005).

    CAS  PubMed  Google Scholar 

  77. Ragvin, A. et al. Long-range gene regulation links genomic type 2 diabetes and obesity risk regions to HHEX, SOX4, and IRX3. Proc. Natl Acad. Sci. USA 107, 775–780 (2010).

    CAS  PubMed  Google Scholar 

  78. Bao, B.-Y. et al. Genetic variants in ultraconserved regions associate with prostate cancer recurrence and survival. Sci. Rep. 6, 22124 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Terracciano, D. et al. The role of a new class of long noncoding RNAs transcribed from ultraconserved regions in cancer. Biochim. Biophys. Acta Rev. Cancer 1868, 449–455 (2017).

    CAS  PubMed  Google Scholar 

  80. Fabris, L. & Calin, G. A. Understanding the genomic ultraconservations: T-UCRs and cancer. Int. Rev. Cell Mol. Biol. 333, 159–172 (2017).

    CAS  PubMed  Google Scholar 

  81. Bhatia, S. et al. Disruption of autoregulatory feedback by a mutation in a remote, ultraconserved PAX6 enhancer causes aniridia. Am. J. Hum. Genet. 93, 1126–1134 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Martínez, F. et al. Enrichment of ultraconserved elements among genomic imbalances causing mental delay and congenital anomalies. BMC Med. Genomics 3, 54 (2010).

    PubMed  PubMed Central  Google Scholar 

  83. McCole, R. B. et al. Structural disruption of genomic regions containing ultraconserved elements is associated with neurodevelopmental phenotypes. Preprint at bioRxiv https://doi.org/10.1101/233197 (2017).

    Article  Google Scholar 

  84. Short, P. J. et al. De novo mutations in regulatory elements in neurodevelopmental disorders. Nature 555, 611–616 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Faircloth, B. C. et al. Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Syst. Biol. 61, 717–726 (2012).

    PubMed  Google Scholar 

  86. Winker, K., Glenn, T. C. & Faircloth, B. C. Ultraconserved elements (UCEs) illuminate the population genomics of a recent, high-latitude avian speciation event. PeerJ 6, e5735 (2018).

    PubMed  PubMed Central  Google Scholar 

  87. Blaimer, B. B., Lloyd, M. W., Guillory, W. X. & Brady, S. G. Sequence capture and phylogenetic utility of genomic ultraconserved elements obtained from pinned insect specimens. PLoS ONE 11, e0161531 (2016).

    PubMed  PubMed Central  Google Scholar 

  88. Gilbert, P. S. et al. Genome-wide ultraconserved elements exhibit higher phylogenetic informativeness than traditional gene markers in percomorph fishes. Mol. Phylogenet. Evol. 92, 140–146 (2015).

    PubMed  PubMed Central  Google Scholar 

  89. Barrett, R. D. H. et al. Linking a mutation to survival in wild mice. Science 363, 499–504 (2019).

    CAS  PubMed  Google Scholar 

  90. Dukler, N., Mughal, M. R., Ramani, R., Huang, Y.-F. & Siepel, A. Extreme purifying selection against point mutations in the human genome. Preprint at bioRxiv https://doi.org/10.1101/2021.08.23.457339 (2021).

    Article  Google Scholar 

  91. Richter, F. et al. Genomic analyses implicate noncoding de novo variants in congenital heart disease. Nat. Genet. 52, 769–777 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Werling, D. M. et al. An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder. Nat. Genet. 50, 727–736 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Boycott, K. M. et al. A diagnosis for all rare genetic diseases: the horizon and the next frontiers. Cell 177, 32–37 (2019).

    CAS  PubMed  Google Scholar 

  94. Lappalainen, T., Scott, A. J., Brandt, M. & Hall, I. M. Genomic analysis in the age of human genome sequencing. Cell 177, 70–84 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Tewhey, R. et al. Direct identification of hundreds of expression-modulating variants using a multiplexed reporter assay. Cell 165, 1519–1529 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Visel, A., Minovitsky, S., Dubchak, I. & Pennacchio, L. A. VISTA Enhancer Browser — a database of tissue-specific human enhancers. Nucleic Acids Res. 35, D88–D92 (2007).

    CAS  PubMed  Google Scholar 

  97. Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature 590, 290–299 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. O’Leary, N. A. et al. Reference Sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2016).

    PubMed  Google Scholar 

  99. Kothary, R. et al. Inducible expression of an hsp68–lacZ hybrid gene in transgenic mice. Development 105, 707–714 (1989).

    CAS  PubMed  Google Scholar 

  100. Zakany, J., Tuggle, C. K., Patel, M. D. & Nguyen-Huu, M. C. Spatial regulation of homeobox gene fusions in the embryonic central nervous system of transgenic mice. Neuron 1, 679–691 (1988).

    CAS  PubMed  Google Scholar 

  101. Rijkers, T., Peetz, A. & Rüther, U. Insertional mutagenesis in transgenic mice. Transgenic Res. 3, 203–215 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

D.E.D. and L.A.P. are Weill Neurohub Investigators, and this work was supported by US National Institutes of Health (NIH) grants R01HG003988 (to L.A.P.), UM1HG009421 (to L.A.P. and A.V.), R01MH117106 (to D.E.D.) and R01DE028599 (to A.V.). Research was conducted at the E.O. Lawrence Berkeley National Laboratory and performed under US Department of Energy Contract DE-AC02-05CH11231, University of California.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of the article.

Corresponding authors

Correspondence to Len A. Pennacchio, Axel Visel or Diane E. Dickel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

BRAVO variant browser: https://bravo.sph.umich.edu/freeze5/hg38/

ENCODE: https://www.encodeproject.org/

VISTA Enhancer Browser: https://enhancer.lbl.gov/

Glossary

Comparative genomics

Comparing DNA sequences of different organisms to identify similarities and differences. Unexpectedly high sequence similarities of loci between species indicate conservation due to negative evolutionary selection and, therefore, often pinpoint regions of the genome that have important functions.

‘Ultraconserved’ elements

Originally defined as regions of the human reference genome of at least 200 bp that are perfectly conserved to both the mouse and rat reference genomes, which is the definition used throughout this Review. In the literature, this term has been more broadly used to refer to highly conserved sequences identified using various definitions of conservation and different combinations of species, which we refer to here instead as ‘extremely conserved’ sequences.

Non-coding

The portion of the genome that does not encode proteins. Approximately 98% of the human genome is non-coding.

Coding

The portion of the genome that encodes proteins.

Derived allele frequencies

A derived allele is a variant that occurs to change a sequence from its previous (ancestral) state. The frequency of an allele is the percentage of the allele in a given population, relative to all observed alleles present at a specific site.

Purifying selection

An evolutionary pressure to remove deleterious sequence variants from a population. Also known as negative selection.

Functional redundancy

Two or more genomic elements (for example, genes or enhancers) perform the same function. When one element is removed, the remaining element is sufficient to carry out this function alone.

Ectopic

In the context of this Review, ectopic refers to expression of a gene in an incorrect location. For example, ectopic reporter gene expression can occur as a result of mutating an enhancer linked to the reporter gene or from a reporter transgene integrating into the genome near an active regulatory element.

Synteny

In this Review, this refers to the conservation in ordering of several blocks of sequence between species.

Haploinsufficient

In this Review, this refers to a dominant mutation that alters the expression of a gene such that the remaining wild-type copy of the gene does not produce sufficient quantities of the encoded protein to prevent a phenotypic change.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snetkova, V., Pennacchio, L.A., Visel, A. et al. Perfect and imperfect views of ultraconserved sequences. Nat Rev Genet 23, 182–194 (2022). https://doi.org/10.1038/s41576-021-00424-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-021-00424-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing